Scene Statistics Part 2

Odelia Schwartz 2019

Summary

- We've considered bottom-up scene statistics, efficient coding, and relation of linear transforms to visual filters
- This class: going beyond learning V1 like linear filters

Beyond linear

- Filter responses as independent as possible assuming a linear transform
- But are they independent?

Are *X*₁ and *X*₂ statistically independent?

7

Schwartz and Simoncelli, 2001

Bottom-up Statistics

Filter pair and different image patches... $0 \longrightarrow X_1$

 $0 \longrightarrow X_2$

Bottom-up Statistics

Image patch and different filter pairs...

Modeling filter coordination in images

- Learning how more complex representations build up from the structure of dependencies in images
- Reducing dependencies further via nonlinear: divisive normalization – linking to spatial context effects (later)

Modeling filter coordination in images

What kind of complex representations?

Modeling filter coordination in images

What kind of complex representations?

In V1, eg complex cells
Higher visual areas

Modeling filter coordination in images

First what we know; then learning from dependencies in images

In primary visual cortex (capturing an invariance)

Beyond Primary Visual Cortex

Beyond Primary Visual Cortex

"each area is drawn with a size proportional to its cortical surface area, and the lines connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas."

Wallisch and Movshon 2008; After Felleman and Van Essen, 1991

RF size increases at higher levels

Beyond Primary Visual Cortex

Example of V2 neurophysiology

Ito and Komatsu, 2005

Example of V2 neurophysiology

Ito and Komatsu, 2005

Example of V2 neurophysiology

Freeman, Ziemba, Heeger, Simoncelli, Movshon 2013

More complex: Figure ground

Zhou et al. von der Heydt, 2000; Zhaoping 2005

Beyond Primary Visual Cortex

Example of V4 neurophysiology

Example of V4 neurophysiology

Pasupathy lab (Kosai et al. 2014)

Beyond Primary Visual Cortex

Selectivity and tolerance increase at higher levels

Reisenhuber and Poggio

What about learning from natural images beyond V1 like filters ?

Types of learning?

Types of learning

- Unsupervised
- Supervised, discriminative
- (Reinforcement learning)

Deep learning and unsupervised

- Some work on learning hierarchy across several layers with unsupervised approaches
- Large scale supervised, discriminative learning has had success in scene recognition in recent years (eg, with Krizhevsky et al. 2012) from the machine learning perspective, and some studies have started linking to cortical processing

Extensions to ICA neighbourhood of s, depender

independent

- from Hyvarinen and Hoyer; relax independence assumption; nearby units no longer independent; but different peiceboord independent of one another
- ³⁵ different neighborhoods independent of one another...

Extensions to ICA

Hyvarinen and Hoyer

Extensions to ICA

37

 Hyvarinen book: shown smaller group of dependent filters

Complex cell

Adelson & Bergen (1985)

Relates to complex cells and invariances...

Unsupervised learning

Lee, Ekanadham, NG, 2007:

• 2-layer sparse coding (first layer)

Unsupervised learning

Lee, Ekanadham, NG, 2007:2-layer sparse coding (second layer)

Unsupervised learning

- Hosoya, Hyvarinen, 2015
- Significant dimensionality reduction via PCA before expansive ICA on "complex cells"

Optimal normalization in first layer can help unsupervised learning of next layer

V2 model units Linear transform (e.g., PCA)

V1 model units Nonlinear transform (e.g., flexible divisive normalization)

Cagli, Schwartz, 2013

Optimal normalization in first layer can help unsupervised learning of next layer

 Flexible normalization in V1 model units results in more sophisticated V2 units than with standard or no normalization

Cagli, Schwartz, 2013

Optimal normalization in first layer can help unsupervised learning of next layer

 Flexible normalization in V1 model units results in more sophisticated V2 units than with standard or no normalization

Cagli, Schwartz, 2013 (also Bowren, Sanchez Giraldo, Schwartz, VSS 2019; see also V2 model of Hosoya, Hyvärinen, 2015)

Flexible normalization and perceptual tasks: recognition

Cagli, Schwartz, 2013

Flexible normalization and perceptual tasks: recognition

mean probability that center and surround were dependent = 0.78

Cagli, Schwartz, 2013

Flexible normalization and perceptual tasks: figure-ground classification

Cagli, Schwartz, 2013

Flexible normalization and perceptual tasks: figure-ground classification

Cagli, Schwartz, 2013

Hierarchical ICA

- Everything we have seen thus far: Unsupervised Learning
- There is no supervision about what object is in the image (eg, car versus tree)

Large scale supervised, discriminative learning has had success in recent years (eg, with Krizhevsky et al. 2012)

"Neural networks are an old idea, so what is new now?"

Taken from https://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/

5 I

Deep networks: supervised more layers

⁵² Zeiler, Fergus 2014

Deep networks: supervised more layers

⁵³ Zeiler, Fergus 2014

Deep networks: supervised more layers

Deep networks: supervised more

layers

⁵⁵ Zeiler, Fergus 2014

Deep networks: nonlinearities

The importance of nonlinearities (From Lee NIPS 2010 workshop; Jarrett, LeCun et al. 2009)

Deep networks: nonlinearities

The importance of nonlinearities (From Lee NIPS 2010 workshop; Jarrett, LeCun et al. 2009)

Deep networks: nonlinearities

The importance of nonlinearities (Jarrett, LeCun et al. 2009)

Scene statistics

Modeling filter coordination in images

- Learning how more complex representations build up from the structure of images
- Reducing dependencies further via divisive normalization – linking to spatial context effects (later)