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Summary

- We've considered bottom-up scene statistics, efficient
coding, and relation of linear transforms to visual filters

- This class: going beyond learning V1 like linear
filters



Beyond linear
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e Filter responses as independent
as possible assuming a linear transform
e But are they independent?




Bottom-up Joint Statistics




Bottom-up Joint Statistics




Bottom-up Joint Statistics

histo(X, 1 X, =0.1)  histo(X, | X, =0.8)
1

Are X, andX, statistically independent?



Bottom-up Joint Statistics

histo(x, | x, =0.1) histo(x, | x, =0.8)

o 0 1

X, and X, are not statistically independent

Schwartz and Simoncelli, 2001



Bottom-up Joint Statistics
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Bottom-up Statistics

Filter pair and different image patches...
00—




Bottom-up Statistics

Image patch and different filter pairs...
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Modeling filter coordination

Modeling filter coordination in images
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 Learning how more complex representations

build up from the structure of dependenciesin
Images

 Reducing dependencies further via nonlinear:
divisive normalization - linking to spatial context
effects (later)



Modeling filter coordination

Modeling filter coordination in images
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What kind of complex representations?



Modeling filter coordination

Modeling filter coordination in images
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What kind of complex representations?

1. In V1, eg complex cells
. 2. Higher visual areas



Modeling filter coordination

Modeling filter coordination in images

First what we know; then learning
from dependencies Iin images



More complex representations

In primary visual cortex (capturing an invariance)

Complex cell

_________________________________

Adelson & Bergen (1985)



Beyond Primary Visual Cortex
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Wallisch and Movshon 2008;
After Felleman and Van Essen, 1991



Beyond Primary Visual Cortex

“each area is drawn with a size

proportional to its cortical surface
area, and the lines connecting the

areas each have a thickness

proportional to the estimated
number of fibers in the connection.
The estimate is derived by

assuming that each area has a
number of output fibers

proportional to its surface area and
that these fibers are divided among
the target areas in proportion to
their surface areas.”

Wallisch and Movshon 2008;
After Felleman and Van Essen, 1991
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RF size increases at higher levels

MT RF size

V3 RF size

1 deg

V2 RF size




Beyond Primary Visual Cortex
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More complex representations

Example of V2 neurophysiology
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Ito and Komatsu, 2005



More complex representations

Example of V2 neurophysiology
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More complex representations

Example of V2 neurophysiology
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More complex: Figure ground
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Beyond Primary Visual Cortex
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From Adam Kohn




More complex representations

Example of V4 neurophysiology
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More complex representations

Example of V4 neurophysiology
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Beyond Primary Visual Cortex

From Adam Kohn




More complex representations
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More complex representations
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Selectivity and tolerance increase
at higher levels
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More complex representations

What about learning from
natural images beyond V1
like filters ?

31



Types of learning?
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Types of learning

 Unsupervised
« Supervised, discriminative

* (Reinforcement learning)



Deep learning and unsupervised

« Some work on learning hierarchy across
several layers with unsupervised approaches

« Large scale supervised, discriminative learning
has had success in scene recognition in
recent years (eg, with Krizhevsky et al. 2012)

from the machine learning perspective, and some
studies have started linking to cortical processing

34



Extensions to ICA
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e from Hyvarinen and Hoyer; relax independence
assumption; nearby units no longer independent; but
s different neighborhoods independent of one another...



Extensions to ICA

e Hyvarinen and Hoyer



Extensions to ICA

« Hyvarinen book: shown smaller group of
dependent filters
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Complex cell

38

Complex cell

_________________________________

Adelson & Bergen (1985)

Relates to complex cells and invariances...



Unsupervised learning
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Lee, Ekanadham, NG, 2007:
« 2-layer sparse coding (first layer)



Unsupervised learning
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Unsupervised learning
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Hosoya, Hyvarinen, 2015
Significant dimensionality reduction via PCA
before expansive ICA on “complex cells”



Optimal normalization in first layer can

help unsupervised learning of next layer

perceptual decision

A A A A

V2 model units

Linear transform
(e.g., PCA)

V1 model units
Nonlinear transform
(e.g., flexible divisive
normalization)
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Cagli, Schwartz, 2013
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Optimal normalization in first layer can

help unsupervised learning of next layer

 Flexible normalization in V1 model units results in
more sophisticated V2 units than with standard or
no normalization
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aa Cagli, Schwartz, 2013 (also Bowren, Sanchez Giraldo, Schwartz,
VSS 2019; see also V2 model of Hosoya, Hyvarinen, 2015)



Flexible normalization and perceptual

tasks: recognition

Which category does
the image belong to? A
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Flexible normalization and perceptual

tasks: recognition

Which category does
the image belong to? A
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Cagli, Schwartz, 2013



Flexible normalization and perceptual

tasks: figure-ground classification

Which side of the
patch is figural? A
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Cagli, Schwartz, 2013



Flexible normalization and perceptual

tasks: figure-ground classification

Which side of the
patch is figural?
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Hierarchical ICA

« Everything we have seen thus far: Unsupervised
Learning

 There is no supervision about what object is in
the image (eg, car versus tree)
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Deep learning and unsupervised
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Large scale supervised,
discriminative learning

has had success in recent
yvears (eg, with Krizhevsky
et al. 2012)



“"Neural networks are an old idea, so what

51

iISs new now?”

ILSVRC top-5 error on ImageNet

30
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2010 2011 2012 2013 2014 Human  ArXiv 2015

Taken from https://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/



Deep networks: supervised more

layers

Zeiler, Fergus 2014



Deep networks: supervised more

layers
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Deep networks: supervised more
layers

54

Zeiler, Fergus 2014



Deep networks: supervised more
layers T B e

Zeiler, Fergus 2014




Deep networks: nonlinearities

max\(t, o)

Convolution Rectification Local contrast Max-pooling
or filtering normalization

The importance of nonlinearities (From Lee NIPS
s 2010 workshop; Jarrett, LeCun et al. 2009)



Deep networks: nonlinearities

or filtering

The importance of nonlinearities (From Lee NIPS
57 2010 workshop; Jarrett, LeCun et al. 2009)



Deep networks: nonlinearities
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s LeCun et al. 2009)



Scene statistics

Modeling filter coordination in images
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 Learning how more complex representations
build up from the structure of images

 Reducing dependencies further via
divisive normalization - linking to spatial context

effects (later)
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