The Neural Code
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Neurons communicate with action potentials. Understanding what
they are communicating requires knowledge of their language:
the neural code




Population of neurons and spikes
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Adapted from Gatsby Computational Neuroscience course



What your brain “sees”
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You infer...
Palm trees
UM Campus
Warm weather

Adapted from Gatsby Computational Neuroscience course
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Single neuron and spikes

Response




Response

Stimulus



Response

Stimulus

Encoding: Probability(Response | Stimulus)

As an experimenter, we can present stimuli and find
what responses they lead to...



Response

Decoding: the reverse problem...
Probability(Stimulus | Response)

An organism receives sensory responses, and makes
judgments about the stimulus



Response

Decoding: the reverse problem...
Probability(Stimulus | Response)

An organism receives sensory responses, and makes
judgments about the stimulus



Reconstruction
Orientation

Spatial location || | || | |
Sound pitch Response
Discrimination

Decoding: the reverse problem...
Probability(Stimulus | Response)

An organism receives sensory responses, and makes
judgments about the stimulus



Response

Stimulus

Ideally, for any input we'd like to know the response
And vice versa

Problems in deciphering the neural code?
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Response

Stimulus

Stimulus space huge

Response space huge



What kind of neural codes?



Rate codes

The only important characteristic of a response (spike train) is the number of
spikes evoked/the response rate.




Rate codes

The only important characteristic of a response (spike train) is the number of
spikes evoked/the response rate.

Example 1: Orientation tuning in primary visual cortex
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Rate codes

The only important characteristic of a response (spike train) is the number of
spikes evoked/the response rate.

Example 1: Orientation tuning in primary visual cortex

Normalized Response

290 -45 0 45 90
hz=S 0

Stimulus Orientation (deg)

Wissig and Kohn 2012




Rate codes: example 2
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» Dayan and Abbott textbook; adapted from Georgopoulos et al. 1982



Rate codes: example 3
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Rate codes

* The only important characteristic of the spike
train is the mean firing rate

* \What other codes”?



Rate codes

* The only important characteristic of the spike
train is the mean firing rate

* \What other codes?
Temporal codes: temporal structure of the spike
train carries information about the stimulus beyond
what is conveyed by the mean firing rate



Temporal codes

Example 1: Coding of olfactory stimuli

Neurons in the fly within a glomerulus: “Responses
across flies were similar not just in intensity but also in
temporal pattern, implying that odors elicit stereotyped
dynamics in the antennal lobe network”; Wilson et al.
2004



 Stimuli that change quickly typically generate rapidly
changing firing rates regardless of coding strategy

&
=

k2 fas'f} | BaRiEE e h z:-.. B
£ b3 " TAnT i --.- I PR AT Jipi
e & DRI A ;'. m-,' BHEI AR S
LA fd s L'Ah“:‘a e §8 3o in & i8).
L b LR O b L e
£33 ' ¥ s § I LR 1
;-.-’. -I‘f..l! .'.\F %3 0 il nt' Botectr phE i 32
2 s B TR e e
- 2 | ¥ :* .I - " H g - -
£ ¥l § DA -i!‘.-:!r. h f‘ h?- ! ‘ !4 u
R it ')-oc’{ymﬁyq:»m.um- HEZ R
&% L P MBOIHIGE I L D i
£ TR LR O R S B TR i S
spfd PAiEimnT IR i };j{: ;;}f},g‘
TS 22 AR TR IR RS2 PRt TS 2 ) aeds . '
IR N0 T ALY Tegaed g Qe
R TR IR N SR S R
I TR It K S LN A IR ST LT BT
LACOMES & DL v X 11 R T 28 3 M U S RIS

MT neurons, deCharms and Zador (after Buracas et al., 1998)



Importance of timing

Conspecific Song

Zebra finch song learning
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Theunissen et al. (2000) J Neurosci 20: 2315



 Stimuli that change quickly typically generate rapidly
changing firing rates regardless of coding strategy

» Temporal structure in spike trains carries information
about temporal structure of stimuli

* More controversial: temporal structure in spike trains carries
information not arising from dynamics of stimuli but due to
some other stimulus property



Problems for both rate and temporal codes

Neuronal responses are “noisy”

1500 2000 2500

Same stimulus presented many times...



Problems for both rate and temporal codes

Neuronal responses are “noisy”
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Difficult to measure:

Noise in temporal codes

Measure of spike train regularity

Number of cases
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Noise in temporal codes

Difficult to measure:

Measure of spike train regularity

Number of cases
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Poisson spike trains

Variability of neuronal spikes similar to a stochastic/random process,
specifically a Poisson process

Process is defined by a single parameter—firing rate. The probability of a
spike in any time interval is a random event (and independent of

previous spikes)
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Poisson spike trains
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Poisson spike trains
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Poisson spike trains

probability

2 3 45 6 7 8 9 10
spike count (in 100 msec)

spikes
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We’'ll generate Poisson spikes
iIn the computer lab...



Less variability than Poisson

m a M m)
RGC cells
Poisson model - S
(independent spikes) '
IF model
(spike history matters)
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Retinal Ganglion Cells, Pillow et al., 2006




Summary so far...

 Rate and temporal codes
« Neuronsare “noisy”

 We've seen one way to generate spike trains:
Poisson model

 We'd now like to look at a simple encoding
model (inputs and Poisson spiking outputs)
and estimate the response properties of
a neuron



How do we characterize the response
properties of neurons for a given encoding
model?



We ’ve already seen...

 Tuning curves characterize the average firing rate
response of a neuron to a given stimulus property

Normalized Response

290 -45 0 45 90
hz=S80

Stimulus Orientation (deg)

Wissig and Kohn 2012



We ’ve already seen...

 Tuning curves characterize the average firing rate
response of a neuron to a given stimulus property

(orientation; reaching direction; etc)

« But we've decided in advance on a stimulus
dimension (such as orientation)!
Experimentalists did too when they used spots

of light or bars...
That seems pretty biased or lucky...



We ’ve already seen...

* Tuning curves characterize the average firing rate
response of a neuron to a given stimulus property
(orientation; reaching direction; etc)

 But we've decided in advance on a stimulus
dimension (such as orientation)!

 Instead: Can we “blindly” figure out what a neuron
cares about??



Characterizing response properties
of neurons

 Cool idea: Explicitly consider an encoding model
(Linear filter, Nonlinearity, Poisson spiking)

 Estimate the missing pieces (eg, the Linear filter)

* Here we'll use a simple approach known as
spike-triggered average (or reverse correlation)



Basic coding model: temporal

feature

s(Y) fy r(t)
WMJWWA 4\ — L1

* This can also be seen as a descriptive model!




Basic coding model: temporal

Linear Nonlinear Poisson

feature decision function

s(1) fy r(t)
0h - 4 — T

s*f,

* This can also be seen as a descriptive model!



Basic coding model: temporal

Linear Nonlinear Poisson

feature decision function

s(t) ' fy f T r(t)
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s*f,

In an experiment:
* We know the input stimuli
* And we measure the corresponding spike trains



Basic coding model: temporal
?7?

Linear

feature

In an experiment:

* We know the input stimuli

* And we measure the corresponding spike trains
 We don’t know the Linear or Nolinear boxes!



Basic coding model: temporal
?7?

Nonlinear Poisson

Linear

feature decision function

In an experiment:

* We know the input stimuli

* And we measure the corresponding spike trains
« We don’t know the Linear or Nolinear boxes!

« Here we will show how to find the Linear
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Basic coding model: temporal

Linear Nonlinear Poisson

feature decision function

fs r(t)
4 - —— T
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s*f,

In an experiment:
* We know the input stimuli

Or at least we have control over input stimuli.
What should we use???



Basic coding model: temporal

Linear Nonlinear Poisson
feature decision function
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s*f,

In an experiment:
* We know the input stimuli

Or at least we have control over input stimuli
What should we use??? Random stimuli



Spike-triggered Average (STA

Stimulus
intensity

From Dayan and Abbott textbook; 2001



Spike-triggered Average (STA)

Stimulus
intensity

From Dayan and Abbott textbook; 2001



Spike-triggered Average (STA

Stimulus
intensity

spike-triggered average

= estimated linear filter

From Dayan and Abbott textbook; 2001



Primary Visual Cortex Receptive Fields

R. Rao, 528 Lecture 1

Primary
isual Cortex

(From Nicholls et al., 1992)

Examples of

receptive
fields in

primary
visual cortex
(V1)

16



Spike-triggered average (STA)

Simple cell

________________________________

stimuli . ﬂ M l L T’Poisson spikes

Linear, Nonlinear, Poisson encoding model



Spike-triggered average (STA)

Simple cell

________________________________

¥ ﬂ }‘J“L_’ ~Y T Poisson spikes

stimuli

Linear, Nonlinear, Poisson (LNP) encoding model

We would like to characterize the linear receptive field
or filter (and the nonlinearity; later) for a neuron...



Spike-triggered Average (STA): example

From Nicole Rust



Spike-triggered Average (STA): example

From Nicole Rust



Spike-triggered Average (STA): example

From Nicole Rust



Spike-triggered Average (STA) : example
STA

‘ Average of
spike-triggered

stimuli

From Nicole Rust



Spike-triggered average (STA)

Simple cell

________________________________

¥ ﬂ }‘J“L_’ ~Y T Poisson spikes

stimuli

Linear, Nonlinear, Poisson (LNP) encoding model

Will estimate of Linear always work??



Spike-triggered average (STA)

Simple cell

________________________________

stimuli 1 ﬂ > l L ﬂ_’ Poisson spikes

Linear, Nonlinear, Poisson (LNP) encoding model

When can this estimation fail?

* Non Poisson spiking

 Input stimuli not spherically symmetric (Chichilnisky)
* Form of nonlinearity

(geometric view and more on later)



Spike-triggered average (STA)

Simple cell

________________________________

stimuli 1 ﬂ > l L ﬂ_’ Poisson spikes

Linear, Nonlinear, Poisson (LNP) encoding model

Can we generalize the model?

* More filters

« Other metrics of spike versus non spike ensemble
beyond the mean

(more on later)



So far: To Spike or not to Spike!

But can we also partition according to other
properties of interest and other signal types??



In Psychology: termed
“Classification Images”

METHOD: Stimulus Detection Analysis Information

Smith et al. Current Biology 2012:
Subijects told that half the noise stimuli contain
faces, although there are no faces...



In Psychology: termed
“Classification Images”
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—  Frontal sensors
OT sensors

“direct association between increasing faceness content of the stimuli and
enhanced positivity in the single-trial EEG amplitudes over frontal sensors—
i.e., the more face-like noise stimuli drove larger neural responses ...

and a significant association between increased negative responses over
occipitotemporal sensors and the faceness of the noise.”



Summary

Simple encoding model: Linear, Nonlinear,
Poisson

* It's a descriptive model of a neuron

 We've looked at estimating the Linear with
Spike Triggered Average (later: limitations)

* Approachuseful beyond single neurons
to other types of data (EEG, fMRI)

* Next: population codes
Later: more sophisticated encoding models



