
Sensory processing in the Drosophila antennal lobe
increases reliability and separability of ensemble
odor representations
Vikas Bhandawat1, Shawn R Olsen1,2, Nathan W Gouwens1,2, Michelle L Schlief1,2 & Rachel I Wilson1

Here we describe several fundamental principles of olfactory processing in the Drosophila melanogaster antennal lobe (the analog
of the vertebrate olfactory bulb), through the systematic analysis of input and output spike trains of seven identified glomeruli.
Repeated presentations of the same odor elicit more reproducible responses in second-order projection neurons (PNs) than in
their presynaptic olfactory receptor neurons (ORNs). PN responses rise and accommodate rapidly, emphasizing odor onset.
Furthermore, weak ORN inputs are amplified in the PN layer but strong inputs are not. This nonlinear transformation broadens PN
tuning and produces more uniform distances between odor representations in PN coding space. In addition, portions of the odor
response profile of a PN are not systematically related to their direct ORN inputs, which probably indicates the presence of lateral
connections between glomeruli. Finally, we show that a linear discriminator classifies odors more accurately using PN spike trains
than using an equivalent number of ORN spike trains.

Each glomerulus in the olfactory system receives synaptic input from
many ORNs, all of which express the same odorant receptor gene. Each
second-order neuron sends a dendrite into a single glomerulus, so for
each odorant receptor gene there is an identifiable ORN type and a
corresponding type of second-order neuron. An odorant typically
activates multiple ORN types, and so each odor is represented as a
population code across different glomerular processing channels1,2.
What happens to olfactory signals as they move through these channels?
It is technically challenging to address this question in vertebrates
because there are so many glomeruli. In Drosophila, the problem is
comparatively simpler because the antennal lobe contains only B50
glomeruli. Each of these glomeruli has a stereotyped position that is
identifiable across flies, and almost all have been matched to an
identified ORN type3–6. For these reasons, it may be easier to discover
the basic principles of early olfactory processing in this model organism.
In general, effective information transmission requires that the

response evoked by a stimulus should be highly reliable, and that the
responses evoked by different stimuli should be distinctive. Therefore,
we have focused on two fundamental questions. First, how reprodu-
cible is the number of spikes evoked by repeated presentations of the
same odor? There has been remarkably little attention paid to the
reproducibility of olfactory responses, and the small number of
previous studies on this issue have been concerned with the precision
of spike timing rather than the reproducibility of spike counts7,8.
Response reproducibility is a central issue in sensory processing
because the signal-to-noise ratio of a neural response limits the rate
of information transmission by that neuron.

The second fundamental question concerns the distinctiveness of
neural responses to different stimuli. How selective are ORNs, and how
does their selectivity compare with that of second-order olfactory
neurons? Three studies published more than 20 years ago in vertebrates
reached conflicting conclusions on this issue, but it was not feasible for
these investigators to directly compare the selectivity of pre- and
postsynaptic neurons corresponding to the same glomerulus9–11.
More recently, three studies made this direct comparison in the
Drosophila antennal lobe, but again the results were conflicting12–14.
Two of these studies used genetically encoded sensors, which may not
report spike trains faithfully owing to their limited dynamic range15,16;
the third study recorded spike trains directly, but examined only
one glomerulus.
Here we aim to resolve these issues with a systematic analysis of the

inputs and outputs of seven glomeruli in the Drosophila antennal lobe
(Supplementary Fig. 1 online). Our results show that there is a major
transformation of olfactory representations in this region of the brain.
The most important effects of this transformation are to improve the
signal-to-noise ratio of individual spike trains and to distribute odor
representations more uniformly in neuronal coding space.

RESULTS
Odor responses are more reliable in PNs than in ORNs
The variability of a neuronal response can be quantified by assessing the
variability in the number of spikes evoked by a sensory stimulus. In
most sensory systems, the spike-count variability of stimulus-evoked
responses increases at each successive level of processing in a sensory
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system17–19. However, in the Drosophila antennal lobe, B40 ORNs
with the same receptive field converge onto B4 PNs in each
glomerulus20–22. Thus, by pooling across these inputs, PNs might be
able to reduce their response variability. We therefore compared the
reliability of odor-evoked spike counts in ORNs and PNs.
We presented an odor stimulus in multiple consecutive trials to the

same cell (a ‘block’ of trials; Fig. 1a). To quantify the spike-count
reliability across trials, we divided each set of repeated responses into
50-ms windows that overlapped by 25 ms. In each time window, we
computed the mean and the standard deviation of the spike count
across repeated responses by the same cell to the same odor. Odors
typically evoked more vigorous responses in PNs than in ORNs
(Fig. 1a,b and Supplementary Fig. 2 online). So, although the typical
standard deviation of PN responses is slightly greater than that of
ORN responses (Fig. 1c), PN responses are less variable in proportion
to the magnitude of the response (P o 10!15, whether comparing
over the entire stimulus period or the 100-ms epoch at the response
peak, Mann-Whitney U-test, n ¼ 779 ORN responses and 843 PN
responses; Fig. 1d). Thus, individual PNs are more reliable than
individual ORNs, which should tend to make their responses
more informative.
We also compared the standard deviations of ORN and PN spike

counts as a function of the mean spike count for each time window. For
all mean spike counts, PNs have a lower standard deviation than
ORNs (Fig. 1e). Furthermore, the standard deviation is not strongly
dependent on the mean, and so stronger responses have a lower
coefficient of variation. Because PN responses are on average stronger
than ORN responses (Fig. 1b), this also tends to make PNs more
reliable than ORNs.

PNs preferentially transmit the rising phase of ORN signals
ORN responses typically do not peak until 100–300 ms after odor
onset21. This is probably because spiking is coupled to odorant receptor
activation by the generation of second messengers. However, odors can
trigger rapid behavioral responses in flies, with a total latency from
stimulus to motor reaction of less than 300 ms23. This suggests that
neurons in the brain are preferentially tuned to detect the rising phase
of ORN signals, rather than the response peak. This motivated us to
compare the onset kinetics of odor responses in synaptically connected
ORNs and PNs.

Comparing peri-stimulus time histograms averaged across all odor
responses in all cells, we noted that PN responses rise more rapidly
than ORN responses (Fig. 2a). Furthermore, PN responses begin to
decay while ORN responses are still growing. This is also clear in most
direct comparisons between synaptically connected ORNs and PNs
(Figs. 1a and 2b,c). Overall, PN responses peak significantly faster than
ORN responses (P o 10!7, paired t-test, n ¼ 69 odor-glomerulus
combinations; Fig. 2d), and the time to half-decay of the response is
shorter for PNs than for their presynaptic ORNs (P o 10!5, paired
t-test; Fig. 2e). Taken together, faster rise and faster decay mean that a
more excitatory drive to third-order neurons occurs within an early
epoch of the odor response (P o 10!11, paired t-test; Fig. 2f). There-
fore, PNs act as high-pass filters that preferentially signal the rising
phase of the ORN response.
Because PN responses accommodate rapidly, we chose to quantify

response magnitudes in PNs by measuring the average firing rates
during an early epoch of the response (a 100-ms time window
beginning 100 ms after odor onset; Fig. 1b). Because a fruitfly can
respond rapidly after encountering an odor, this early epoch should be
particularly informative to downstream neurons. Throughout this
study, we also quantified PN responses in a different way: following
other investigators21,24, we measured the average spike rates over the
entire 500-ms stimulus period. The main conclusions from this study
are the same for both of these response metrics.

ORNs and PNs differ in odor selectivity and odor preferences
Setting aside the issues of trial-to-trial reliability and response kinetics,
we examined the average response magnitudes for each cell type to
our odor stimuli (Fig. 3a). How does the response profile of each
PN type compare with the response profile of its corresponding
ORNs? We began by asking simply whether these responses are
linearly correlated. For each glomerulus we found a statistically
significant correlation between the ORN and PN response profile
(P o 0.05 for all seven glomerular comparisons, Pearson’s correla-
tion; Supplementary Table 1 online), but r2 values are only in the
range of 0.26–0.81. This means that a linear scaling of ORN
responses explains only 26–81% of the odor-dependent variance in
PN responses.
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aFigure 1 Odor responses are more reliable in PNs than in ORNs. (a) Odor
responses of an ORN and PN pre- and postsynaptic to the glomerulus
(glomerulus VA2, odor is geranyl acetate). Each tick represents a spike, and
each row in a raster represents a different trial. The gray bar indicates a
500-ms odor stimulus period. (b) Mean odor responses are larger in PNs
(magenta) than in ORNs (green). Spikes were counted in 50-ms bins and
averaged across five trials with the same odor, then averaged across all blocks
of trials (all odors and all experiments). The gray bar indicates the stimulus
period; the black bar indicates a 100-ms period when average PN firing rates
are maximal. (c) Standard deviations (s.d.) of spike counts in five trials
with the same odor, averaged across all blocks of trials (all odors and all
experiments). (d) Coefficient of variation (s.d./mean) of spike counts in five
trials with the same odor, averaged across all blocks of trials. Note that the
coefficient of variation of PN responses drops again after odor offset. This is
because some responses contain zero spikes for an epoch following odor
offset, so the s.d. in these bins is zero for some responses. (e) The average
s.d. of spike counts is lower for PNs than for ORNs even when mean firing
rates are matched. s.d. values were measured for all counting windows in all
blocks of trials, binned according to mean firing rate and averaged across all
counting windows in the same bin. Note that because the s.d. deviation
depends sublinearly on the mean, the average coefficient of variation is larger
than (the average s.d.)/(the average mean).
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Two features of PN odor responses diminish this linear correlation.
First, for each glomerulus, PNs are less selective than their presynaptic
ORNs (Po 0.05, Wilcoxon signed-rank test; Fig. 3b, similar results in
Supplementary Fig. 3 online). To test the generality of this result, we
also compared ORN and PN selectivity for glomerulus DM4 at three
odor concentrations. As with our standard concentration (1:1,000
dilution), weaker stimuli (1:10,000 and 1:100,000 dilutions) produce
PN response profiles that were less selective than the corresponding
ORN response profiles (Fig. 4; see also Supplementary Fig. 4 online).
Other investigators who used identical stimulus conditions have shown
that ORN responses are very sparse at the 1:100,000 dilution, indicating
that this concentration is near the bottom of the dynamic range of this
system21,22,24,25. These results show that broad PN tuning is a phenom-
enon that is not limited to high odor concentrations.
Another factor that diminishes this linear correlation is that the rank

order of odor preferences differs for ORNs and PNs. For example,
whereas ethyl butyrate is the 3rd-ranked odor of DL1 PNs, it is only
ranked 16th among the odor responses of DL1 ORNs (Fig. 3a). Some
of this difference is due to errors in estimating each average response
profile on the basis of a limited sample of individual experiments.
However, sampling error cannot completely account for this result.
This can be shown by pairing an individual ORN with a corresponding
individual PNand computing the correlation between their odor ranks,
and then comparing the distribution of these correlations with the
correlations obtained from ORN-ORN or PN-PN pairings. Because we
were not able to test every odor in every experiment, we assembled
many simulated response profiles by drawing randomly from a normal
distribution defined by the mean and standard deviation of each
average response profile (Fig. 5a; see also Supplementary Methods

online). The median correlation between ORN and PN ranks was only
0.47, which is substantially lower than the correlation betweenORNs of
the same type or between PNs of the same type (0.65 and 0.61,
respectively; Fig. 5). The simplest explanation for this result is that
the odor preferences of a PN are influenced by lateral connections
between glomeruli26,27.

A nonlinear transformation function for each glomerulus
So, the output of a glomerulus is not a simple a linear scaling of its
inputs. Furthermore, because ORNs and PNs differ in their ranked
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Figure 2 PNs preferentially transmit the rising phase of ORN signals.
(a) Average peak-normalized peri-stimulus time histograms (PSTHs),
averaged across all odors and all glomeruli (±s.e.m.). Note that PN responses
rise and decay more rapidly than ORN responses. Odor stimulation begins at
0 ms and ends at 500 ms. (b) An example comparing the responses of pre-
and postsynaptic neurons to the same odor. PSTHs show the average
response of ORNs and PNs in glomerulus VA2 to geranyl acetate (mean ±
s.e.m., averaged across experiments). Note that the PN response is robust
at a time point when the ORNs have just begun to respond, and the PN
response begins decaying before the ORNs have peaked. (c) Another example
of PSTHs for ORNs and PNs in glomerulus DM1 showing responses to ethyl
butyrate. The PN response rises faster and peaks earlier, even though in this
case the PN peak is smaller. (d) Compared with ORN responses, PN
responses have a shorter latency to reach 90% of the response peak
(mean ± s.e.m., across all blocks of trials; see Supplementary Methods).
(e) PN responses have a faster decay from peak to half-peak. (f) A larger
percentage of the total spike count occurs in the first 200 ms after odor
onset for PN responses compared with ORN responses.
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Figure 3 ORNs and PNs differ in their odor selectivity. (a) Response profiles
of synaptically connected ORNs (green) and PNs (magenta) for seven
glomeruli. Bars show averages across all experiments (±s.e.m.; see
Supplementary Table 2 for n). Responses are measured as the mean spike
rate during the 100-ms epoch when firing rates are peaking (black bar in
Fig. 1b–d), minus the baseline firing rate. Results are similar over the entire
500-ms stimulus period (Supplementary Fig. 3). (b) The selectivity
of each response profile is quantified as lifetime sparseness29,48 (see
Supplementary Methods; 0 ¼ nonselective, 1 ¼ maximally selective). ORNs
and PNs that correspond to the same glomeruli are connected. PNs are
consistently less selective than their corresponding ORNs. The highest ORN
sparseness value is for glomerulus DL1 and the lowest is for glomerulus VM2.
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odor preferences, no monotonic function can describe the relationship
between the ORN and PN response profile for a glomerulus. We
therefore asked whether there is any systematic relationship between
ORN and PN responses. For each glomerulus, we plotted PN responses
to each odor as a function of ORN responses to the same odor (Fig. 6a;
see also Supplementary Fig. 5 online). This revealed a consistent
transformation function for each glomerulus, albeit with some
scatter. These functions have a similar shape for most glomeruli:
they initially slope steeply, meaning that the gain of the transforma-
tion function is high for weak inputs. As ORN input levels increase
these curves flatten, meaning that the gain of the transformation
function decreases. (This is true for all the glomeruli we tested
apart from DL1.) Therefore, these plots show that PNs inherit much
of their tuning from their presynaptic ORNs, but the transformation
is nonlinear.
This type of transformation function may be useful because it makes

better use of the available response range of a PN. This is illustrated by
projecting the points in each plot onto both the x and y axes (Fig. 6a).
ORNs do not use all parts of their dynamic range with equal frequency
in response to our stimuli. However, two odors that elicit similarly

weak activity in an ORN can elicit different levels of activity in a
postsynaptic PN, because each glomerular transformation function
shows high gain at low ORN input levels. This tends to distribute the
responses to these stimuli more uniformly throughout the response
range of each PN.
This type of sensory transformation has been termed ‘histogram

equalization’28 because it produces a flatter histogram of response
intensities. To examine whether this is the case across the entire
population of cells in our data set, we plotted the distribution of
response intensities for ORNs and PNs, accumulated across all odors
and all glomeruli (Fig. 6b). The ORN response histogram shows a large
peak at low response intensities, and a long, flat tail covering the rest of
the ORN dynamic range. The PN response histogram, by contrast, is
much flatter, indicating that all available response intensities are used
with more uniform frequency. In this sense, PNs encode our odor
stimuli more efficiently than ORNs do.
Although there is a clear overall relationship between ORN and PN

responses for each glomerulus, it is also important to note that these
functions do not predict PN odor responses completely. Because ORNs
and PNs differ in their ranked odor preferences, no monotonic
function will account for all these data.
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Figure 5 The rank order of ORN and PN odor preferences is different. (a) An
example illustrating how we computed correlations between the odor ranks
of individual cell response profiles. Here we show the mean and standard
deviation of the ORN and PN response profiles for glomerulus DM4. (Note the
table is truncated after six odors.) We drew randomly from these distributions
to produce representative simulated profiles for two individual ORNs and
two individual PNs (arrows). Next we ranked the odors in each individual
response profile (blue). In this example, the correlation coefficient between
the 18 odor ranks of ORN sample 1 and ORN sample 2 (rs) is 0.79.
Correlation coefficients are lower for PN-PN comparisons (0.58 in this
example). In comparison with each of these, ORN-PN correlations are much
lower (0.33, 0.39, 0.42 and 0.46 in this particular example). (b) Histograms
showing the distribution of Spearman’s rank correlation coefficients (rs),
accumulated across 2,000 runs of the simulation procedure for each
glomerulus. Arrowheads indicate the median of each distribution. The ORN-
PN correlations (gray) do not lie between the ORN-ORN (green) and PN-PN
(magenta) correlations, indicating that ORN and PN odor ranks are not drawn
from the same underlying mean distribution.

Figure 4 ORNs and PNs differ in their odor selectivity even at low stimulus
intensities. (a) Response profiles for DM4 ORNs and PNs to a panel of 11
odors at three concentrations. Bars show averages across all experiments
(±s.e.m.; see Supplementary Table 3 for n). Because the response peak tends
to occur later for more dilute stimuli, we measured responses as the mean
spike rate during the entire 500-ms stimulus period, minus the baseline
firing rate (as in Supplementary Fig. 3). (b) The selectivity of each response
profile for the three odor dilutions. ORNs and PNs that correspond to the
same dilution are connected. Note that DM4 PNs are consistently less
selective than DM4 ORNs at all three concentrations. (Selectivity at the
1:1,000 dilution is slightly different from the selectivity value plotted in
Supplementary Figure 3 for this glomerulus because here we used only a
subset of our 18 test odors.)
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Odor representations in multiglomerular coding space
Third-order neurons receive convergent input from multiple PN
types29–32. It is therefore important to examine odor representations
in multiglomerular coding space. In the simplest case, histogram
equalization in one dimension should also produce a more uniform
distribution of odors in multiple dimensions. To visualize odor
representations in seven-dimensional space, we reduced the dimen-
sionality of this space by performing principal components analysis.
The first two principal components define the two-dimensional pro-
jection that maximizes the variance of the data. In this projection, most
odors are still clustered near the origin of the ORN space, with only a
few odors located far from this cluster (Fig. 7a). In the equivalent PN
space, odors fill the available coding space more uniformly (Fig. 7b).
Thus, as a result of the ORN-to-PN transformation, odor represen-

tations are distributed more efficiently in multiglomerular coding
space. In concrete terms, the ensemble patterns of spiking activity
elicited by any two odors become more different. We quantified this by
measuring Euclidean distances between odors in seven-dimensional
space for all possible pairwise combinations of odors ([18 choose 2]¼
153 pairs). During the early epoch of odor responses, distances are
significantly larger in PN space than in ORN space (Po 0.0001, paired
t-test, n¼ 153). Moreover, the distribution of distances is narrower for
PNs than for ORNs over the entire stimulus period (note the differing
interquartile ranges in Fig. 7c,d). This means that odors are distributed
more uniformly in PN coding space. Some odor distances decrease, but
others increase.
Is the separation of odors in multidimensional space larger or

smaller than we would predict, based solely on the independent odor
separation in each one-dimensional coding channel? The answer
depends on the degree of correlation between the different glomeruli.
Lateral connections shape PN odor responses26,27 (Fig. 5); if these
connections increase correlations between different PN types, this
would decrease inter-odor distances in multidimensional space. To
address this issue, we constructed a simulated data set that preserves the
distribution of response magnitudes for each glomerular cell type,
but breaks any dependencies between odor responses in different

glomeruli. We achieved this by independently
shuffling the odor labels on each glomerular
response profile. We then measured inter-
odor distances in seven-dimensional space

for all possible pairwise combinations of odors. When we repeated
this simulation many times, the range of distances we obtained was
indistinguishable from the distances we measured in our real data set
(Fig. 7c,d). This means the separation between ensemble odor repre-
sentations is roughly what we would predict, based solely on histogram
equalization in each glomerulus individually.

Correlations between cell types and odors
We have seen that PNs use all parts of their dynamic range with
approximately equal frequency, and in this sense encode odors more
efficiently than ORNs do28. However, the term ‘efficient coding’ has
also been applied to the idea that the responses of different neurons
should be maximally independent from each other33. We measured the
independence of different glomerular coding channels by computing
the percentage of the variance in the ensemble odor responses that is
captured by each of the seven principal components of the seven-
dimensional ORN or PN coding space. If all seven cell types were
completely correlated, then the first principal component would
account for 100% of the variance in the data. In other words, all the
data would lie along a single line in multidimensional space. Con-
versely, if all cell types were perfectly decorrelated, and if the data were
drawn from a multidimensional Gaussian distribution, then each
principal component would account for an equal amount of the total
variance (100% C 7 ¼ B14%). (Even in this case, we would need a
very large odor set to discern this perfect decorrelation.)
The principal components of our ORN data set fall between these

hypothetical extremes (Fig. 8a). In part, this reflects the limited size of
our odor set and the non-Gaussian distribution of the ORN response
histograms (Fig. 6b). We demonstrated this by independently and
randomly shuffling the odor labels on each of the seven ORN response
profiles and re-computing the principal components of this simulated
data set. These simulations always produced a first principal compo-
nent that accounted for a disproportionately large share of the variance
(usually 30–40%; Fig. 8a). However, the principal components of the
real (non-shuffled) data set are even more skewed, with the first
principal component accounting for 54% of the variance. This
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a Figure 6 PN odor responses are partly explained
by a highly nonlinear transformation of their direct
ORN inputs. (a) For each glomerulus, the average
PN response to an odor is plotted against the
average ORN response to that odor (black
symbols, ± s.e.m.). Curves are exponential fits
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as the mean spike rate during the 100-ms epoch
when firing rates are peaking (with no baseline
subtraction), but results are similar if responses
are measured as the mean spike rate during the
entire 500-ms stimulus period (Supplementary
Fig. 5). (b) Histograms of ORN and PN response
magnitudes. Each histogram is accumulated
across all 126 response magnitudes (¼ 7
glomeruli $ 18 odors). The PN histogram is flatter
than the ORN histogram, indicating that PNs use
their dynamic range more efficiently.
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means that ORNs in different glomeruli have odor preferences that are
more highly correlated than we would expect, based solely on the
distribution of response magnitudes in each glomerular channel.
Similarly, about half the variance in the PN data is captured by

the first principal component (51%; Fig. 8b). This is mainly due
to the limited size of our odor set and the non-Gaussian distribution
of the PN response histograms, as shuffling the odor labels on
each PN response profile always produced a skewed distribution of
principal component contributions (Fig. 8b). Because real PN
data produced a distribution that was even more skewed than the
simulated data, PNs (like ORNs) are more correlated than we would
expect, based solely on the distribution of responsemagnitudes for each
PN type.
In summary, sensory processing in the Drosophila antennal lobe

does not change the degree of independence between different
glomerular coding channels. The conclusions of this analysis are
similar regardless of whether we measure spike rates around the
response peak (Fig. 8) or over the entire stimulus period (Supplemen-
tary Fig. 6 online).

PN responses are more linearly separable than ORN responses
Increased PN reliability andmore uniform odor distances in PN coding
space should mean that odors are more discriminable on the basis of
PN spike trains than on the basis of an equivalent number of ORN
spike trains. We tested this prediction by measuring the ability of an
algorithm to identify the odor stimulus on the basis of the ensemble
neural response elicited by that odor. Because our data come from
single (not multiple) unit ORN and PN recordings, we simulated
‘multi-unit’ responses by assembling data from different glomerular
classes. Each simulated data set consisted of 90 multi-unit responses
(18 odors with 5 spike trains per odor per cell). We performed linear
discriminant analysis to identify the linear combinations of input
variables that best separated all 18 odor response clusters from each
other. To evaluate the quality of these discriminations, we withheld 1
multi-unit odor response from the data set, trained the algorithm with
the remaining 89, and predicted the odor corresponding to the
one withheld response. The predicted odor was then compared

with the actual odor. We repeated this analysis with many
independently assembled multi-unit responses at each time point in
the odor response.
Before odor onset, the prediction success rate hovers near chance

(Fig. 9a). (The success rate is slightly above chance because different
cells have different spontaneous firing rates, and spontaneous firing
rates sometimes drift during experiments; thus, spontaneous firing
rates were slightly ‘predictive’ of the odor because successive trials with
an odor were presented consecutively rather than interleaved). After
odor stimulus onset, success rates rise rapidly. As expected, including
more glomerular classes in the data set produced higher success rates
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Figure 7 Odors are distributed more uniformly in ensemble PN coding space
than in ensemble ORN coding space. (a) Average odor responses from seven
ORN types projected onto the space defined by the first two principal
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data (with the same color conventions), showing a more uniform separation
between odor representations. (c) The difference between ensemble ORN
responses to different odors is quantified as the Euclidean distance between
odor representations in seven-dimensional space. Distances are computed for
all 153 pairwise combinations of the 18 odor stimuli, and the median and
interquartile range of this distribution are plotted here for each time point. The
interquartile range is wide because some odors are well separated in ORN
space, but many are poorly separated. Blue bands indicate the range of results
obtained by shuffling odor labels on each glomerular response profile (see
Supplementary Methods). The gray bar indicates the 500-ms stimulus period
and the black bar indicates the 100-ms period when firing rates were
measured for a and b. (d) Same as c for PN responses. At the peak of the
response (black bar), distances are significantly larger in PN space compared
with ORN space. PN responses then quickly accommodate (Fig. 2), and so
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(Fig. 9b). Because success rates using PN data plateau at 100% for some
classifications that use data from more than three glomeruli, this
procedure underestimates the difference between ORN and PN
responses. Nevertheless, success rates were significantly higher for PN
data than for ORN data for all conditions in Figure 9b (P o 0.005,
Mann-Whitney U-tests, n ¼ 20 runs of the classification procedure for
ORNs and PNs for each condition). This demonstrates that a linear
discriminator can classify odors more accurately with responses from
several PNs than with responses from the same number of ORNs.

DISCUSSION
An improved signal-to-noise ratio
Studies in other systems have implied that the variability of stimulus-
evoked spike counts almost always increases at successively higher levels
of sensory processing34. For example, the visual responses of higher
cortical neurons are often very noisy17, in contrast to the reliability of
retinal ganglion cells35. A direct comparison of the responses evoked by
identical stimuli in the retina, thalamus and visual cortex has con-
firmed that spike-count reliability decreases at each successively higher
level of the visual stream18. This is despite the fact that a simple cell in
primary visual cortex pools signals from B30 thalamic neurons36,
which should improve its reliability. Similarly, a direct comparison of
spike trains at successive levels of an insect auditory circuit has found
that noise increases at successively higher levels19. Our results show a
different trend: spike counts in individual PNs are more consistent than
spike counts in individual ORNs. This is partly because PNs tend to fire
more vigorously than their presynaptic ORNs in response to the same
stimulus, and stronger responses are more reliable for both ORNs and
PNs. This may imply an increasingly deterministic control of spike
timing at high firing rates owing to intrinsic refractoriness37. However,
even at the same firing rates, PN responses are more reliable than ORN
responses. This may reflect the benefits of pooling: each PN is
postsynaptic to many ORNs, and all these ORNs respond in a similar
way to odors21,22,38. If noise is uncorrelated across ORNs, then pooling
these inputs should improve the reliability of PN responses.
On balance, the improvement in reliability is smaller than one might

predict. Each glomerulus corresponds toB40 ORNs andB4 PNs; this

means the average PN pool inputs from 10–40 ORNs (depending on
whether each ORN contacts all PNs in a glomerulus). Because pooling
N ORN inputs should decrease the variability of the pooled average by
ON, we would expect the coefficient of variation to improve byO10 to
O40. The effect we describe is on the low end of this range, suggesting
that eachORN contacts only a single PN, or that PNs receive additional
noise from other neuronal sources.

High-pass filtering of olfactory signals
Our results show that PNs can be extremely sensitive to small
differences between weak ORN inputs. Even a small increase in ORN
spike rate above the baseline can produce a robust response in
postsynaptic PNs. As a result, PN responses rise rapidly even when
ORN responses build slowly. This is particularly useful because the
onset kinetics of ORNs are intrinsically limited by the speed of the
signal transduction cascades that link odorant receptor activation to
spike initiation. PN responses then rapidly decline while ORN spike
rates continue to rise. This means that PNs act as high-pass filters,
transmitting the rising phase of ORN responses preferentially over the
tonic component of ORN responses. This rapid accommodation might
be due to any of several mechanisms, including short-term synaptic
depression at the ORN-to-PN synapse.
Taken together, a faster rise and a faster decay should sharpen the

estimate of odor arrival time by downstream neurons. For a fly in flight,
this should translate to an improved estimate of odor plume location.
Notably, Drosophila can turn in flight less than 300 ms after encounter-
ing an odor plume23. A similar phenomenon operates in the visual
system: sluggish photoreceptor responses trigger speedy depolari-
zations in downstream neurons39 and ultimately rapid behavioral
responses to visual stimuli.
We note that Drosophila PN responses differ from the responses of

locust PNs, which typically show more complex temporal pattern-
ing29,40,41. Locust PNs also show a higher average level of maintained
activity throughout the odor response (relative to the response peak)
and often show excitatory responses to odor offset41. By contrast,
Drosophila PNs accommodate rapidly and typically do not burst after
stimulus offset (but for some exceptions see Supplementary Fig. 2f).

A nonlinear transformation increases coding efficiency
An important finding from this study is that although PNs inherit a
substantial portion of their odor tuning from their presynaptic ORNs,
this relationship is nonlinear. This nonlinearity disproportionately
amplifies small differences between weak ORN inputs. By contrast,
small differences between strong ORN inputs are not amplified to the
same degree. Most ORN odor responses cluster in the weak end of the
dynamic range of the ORN. As a result of this nonlinear transforma-
tion, PNs use their dynamic range more uniformly than ORNs do. If all
portions of the dynamic range of a neuron are used with equal
frequency, the carrying capacity of that information channel is maxi-
mized because the entropy of the neuron’s response is maximized. This
tends to protect signals from contamination by noise added at later
stages in the processing channel42. This has long been recognized as a
useful computation in sensory processing28. If broader tuning curves
are useful, why has evolution not simply produced broadly tuned
ORNs? ORN responses are directly linked to the way odorant receptor
proteins interact with odor molecules; therefore, broadening ORN
tuning might require changing the biophysics of odorant receptors in
ways that are unfavorable for other reasons.
Broad PN tuning may seem counterintuitive: we tend to think of

higher-order neurons as being more selective than their presynaptic
inputs. These expectations are founded in part on the paradigm of
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Figure 9 A linear discriminator can classify odors more accurately with
responses from multiple PNs than with responses from the same number of
ORNs. (a) Odor classification success rate from linear discriminator analysis
with data sets that include cells from three glomerular classes. All possible
combinations of three glomeruli were sampled. Points are the mean ± s.e.m.,
averaged across 20 runs of the classification procedure. The dotted line
represents chance performance. (b) Success rate is higher for PN data than
for ORN data, regardless of how many glomerular classes are included in the
data set. Points are the mean ± s.e.m., averaged over the 100-ms window
shown in a, and then averaged across 20 runs of the classification procedure.
Dashed green and magenta lines plot the classification success rate during
the baseline period before odor onset; this is an artifact of varying
spontaneous activity rates (see text), and ORN and PN performance is
similar. Dotted black lines indicate perfect and chance performance.
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visual processing, in which successive layers of higher-order neurons
are increasingly specialized to represent complex conjunctions of visual
features. However, there is also a huge expansion in the number of
higher-order neurons devoted to representing complex visual features
compared with the number of retinal ganglion cells. Thus the dimen-
sionality of higher visual representations is increasingly large, so these
brain regions can afford to code information as ensembles of narrowly
tuned neurons. By contrast, in early olfactory processing, the dimen-
sionality of the second-order representation is the same as the dimen-
sionality of the first-order representation. Therefore, total coding space
cannot increase (unless time is used as another coding dimension43).
In a truly efficient coding scheme, neurons should efficiently encode

natural stimulus distributions, not arbitrary stimulus distributions28.
Although our odor set is chemically diverse and relatively large, it may
not be representative of the odors a wild fly would encounter. In the
future, it would be interesting to learn whether the principles of
olfactory processing we describe here also apply to a more naturalistic
distribution of odor stimuli.
Another caveat is that we have not sampled all antennal lobe

glomeruli. However, because most of the glomeruli in our data set
showed a similar nonlinear transformation function, our conclusions
probably generalize to many glomeruli outside our data set. An
interesting special case is the glomerulus DA1, which was not included
in our data set. ORNs projecting to this glomerulus respond weakly but
selectively to a Drosophila pheromone. Their postsynaptic PNs are
also selective for this odor, but respond much more robustly44. Thus,
this processing channel shows amplification without a change in
response selectivity.

Ensemble odor responses
Extending our analysis from one glomerular channel to multiglomer-
ular ensembles, we found that odors are more uniformly separated in
ensemble PN coding space than in ensemble ORN coding space. This
separation is approximately what we would expect, based on the
increased separation between odors within each glomerular coding
channel. We demonstrated this using a simulation that made the odor
preferences of each glomerulus independent from each other, while
preserving the characteristic response magnitudes of each cell type.
We also found that sensory processing in the antennal lobe does not

substantially alter the independence of different glomerular coding
channels. The degree of correlation between different PN types is
similar to the degree of correlation between different ORN types.
Notably, ORNs have more correlated odor preferences than we would
expect based solely on their tuning breadth and the size of our odor set.
We also obtained the same result by re-analyzing a large published data
set24 comprising 24 Drosophila ORN types and 110 odors (result not
shown). This result may be due to the common evolutionary origin of
different Drosophila odorant receptors in gene duplication events45. In
addition, some odors are intrinsically more volatile than others, which
will tend to produce similarities in the odor preferences of different
glomeruli. Like ORNs, PNs are also more correlated than we would
expect, based on their tuning breadth and the size of our odor set. This
may reflect correlations that are inherited from ORNs.

The role of lateral connections between glomeruli
Glomeruli in theDrosophila antennal lobe are connected by GABAergic
interneurons20,46 and cholinergic interneurons26,27. What is the role of
these connections in the transformations we have described?
We have noted that the rank order of PNodor preferences is different

from the order of ORN odor preferences. We show that this difference
is too large to be explained by the uncertainty in our estimates of each

average odor response profile (Fig. 5). Therefore, some of this
difference is probably caused by lateral interglomerular connections,
because lateral inputs would have an odor tuning that reflects the odor
preferences of ORNs that are presynaptic to other glomeruli. In
principle, either inhibitory or excitatory lateral connections could
cause this phenomenon. The computational significance of this phe-
nomenon is not clear, as it does not seem to decorrelate the responses of
PNs in different glomeruli (Fig. 8).
It is easy to see how lateral connections could cause scatter around

each glomerular transformation function. However, lateral connections
may also play an important part in determining the underlying shape of
these transformation functions. For example, all of these functions have
a y intercept above 0 (Fig. 6). This reflects the tendency of PNs to
respond weakly to an odor even when their presynaptic ORNs are not
responding at all. Lateral excitatory connections are strong enough to
trigger these responses26,27. Moreover, lateral inhibition could act on
ORN axon terminals to govern the probability of neurotransmitter
release, and thereby contribute to a nonlinear relationship between pre-
and postsynaptic activity. At the analogous synapse in the olfactory
bulb, ORN-to-mitral cell synapses show strong frequency-dependent
short-term plasticity that is modulated by presynaptic inhibition
through GABAergic local neurons47. Thus, we should not assume
that the systematic relationships in Figure 6 are intrinsic to each
glomerulus. More mechanistic experiments will be required to disen-
tangle the role of intra- versus interglomerular mechanisms in shaping
these transformation functions.

Odor discrimination
We have shown that a linear discriminator can identify odors more
accurately on the basis of PN spike trains than on the basis of an
equivalent number of ORN spike trains. This is probably due to both
the increased distances between odors in PN space and the improved
signal-to-noise ratio among PNs. It is important to point out that
linear discriminant analysis is not meant to emulate a biologically
plausible downstream neuron, and that real third-order neurons will be
subject to more constraints than our algorithm is. Also, this is not an
optimal decoder, and so its performance may not reflect the total
amount of information in the responses it decodes. Finally, the total
amount of information in the entire PN ensemble cannot, of course,
exceed the total amount of information in the entire ORN ensemble.
What we have shown here is that the information in a limited subset of
the PN ensemble is more useful to a linear decoder than the informa-
tion in an equivalent number of ORNs. This highlights the potential
functional consequence of increased PN reliability, combined with
increased inter-odor distances in PN coding space.
In conclusion, we have described two fundamental tasks that are

accomplished by the first stage of the olfactory processing stream. On a
neuron-to-neuron basis, our comparisons show that signal reproduci-
bility is increased and distinctions between the responses to different
stimuli are enhanced. The details of odor processing in the vertebrate
olfactory bulb might be different, especially because the number of
glomeruli in vertebrates is much larger. Nevertheless, most organisms
share a common olfactory processing architecture, which suggests that
some of the basic principles we have demonstrated in flies may also
apply to vertebrates.

METHODS
Fly stocks. Flies were reared at room temperature on conventional cornmeal
agar. All experiments were carried out on adult female flies 2–7 d after eclosion.
Supplementary Table 4 online lists genotypes for all experiments. See Supple-
mentary Methods for stock origins.
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ORN recordings. Flies were immobilized in the trimmed end of a plastic
pipette tip under a $50 air objective mounted on an Olympus BX51WI
microscope. A reference electrode filled with saline was inserted into the eye,
and a sharp saline-filled glass capillary (tip diametero1 mm) was inserted into
a sensillum. Recordings were obtained with an A-M Systems Model 2400
amplifier, low-pass filtered at 2 kHz and digitized at 10 kHz. ORN spikes were
detected using routines in IgorPro (Wavemetrics). See Supplementary Meth-
ods for details.

PN recordings.Whole-cell recordings from PN somata were carried out in vivo
as previously described46. One neuron was recorded per brain and the
morphology of each cell was visualized post hoc with biocytin-streptavidin
and nc82 histochemistry as described previously46, except that in the secondary
incubation we used 1:250 goat anti-mouse–AlexaFluor633 and 1:1,000 strepta-
vidin–AlexaFluor568 (Molecular Probes). See Supplementary Methods
for details.

Olfactory stimulation.We chose a panel of 18 odors to maximize the chemical
diversity of our stimuli, and to maximize overlap with odors used in other
studies of the same ORNs22,24. For all experiments (except in Fig. 4), odors
were diluted 1:100 v/v in paraffin oil (J.T. Baker, VWR no. JTS894), except
3-methylthio-1-propanol, which was diluted 1:100 v/v in water, and 4-methyl
phenol, which was diluted 1:100 w/v in water. In Figure 4, odors were
diluted 1:100, 1:1,000, or 1:10,000 in paraffin oil. See Supplementary Methods
for details.

Data analysis. See Supplementary Methods for data analysis details.

Note: Supplementary information is available on the Nature Neuroscience website.
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