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A central challenge for cognitive and systems neuroscience is to relate the incredibly complex behavior
of animals to the equally complex activity of their brains. Recently described, large-scale neural models
have not bridged this gap between neural activity and biological function. In this work, we present a
2.5-million-neuron model of the brain (called “Spaun”) that bridges this gap by exhibiting many different
behaviors. The model is presented only with visual image sequences, and it draws all of its responses with
a physically modeled arm. Although simplified, the model captures many aspects of neuroanatomy,
neurophysiology, and psychological behavior, which we demonstrate via eight diverse tasks.

Large-scale neural simulations are becom-
ing increasingly common [see (1) for a
review]. These include the ambitious Blue

Brain Project (2), which has simulated about
1 million neurons in cortical columns and includes
considerable biological detail, accurately reflect-
ing spatial structure, connectivity statistics, and
other neural properties. More recent work has sim-
ulated many more neurons, such as the 1 billion
neurons simulated in the Cognitive Computa-
tion Project (3), which has been hailed as a cat-
scale simulation. A human-scale simulation of
100 billion neurons has also been reported (4).

Although impressive scaling has been achieved,
no previous large-scale spiking neuronmodels have
demonstrated how such simulations connect to a
variety of specific observable behaviors. The focus
of this past work has been on scaling to larger num-
bers of neurons and more detailed neuron models.
Unfortunately, simulating a complex brain alone
does not address one of the central challenges for
neuroscience: explaining howcomplex brain activity
generates complex behavior. In contrast, we present
here a spiking neuronmodel of 2.5million neurons
that is centrally directed to bridging the brain-
behavior gap.Ourmodel embodies neuroanatomical
and neurophysiological constraints, making it di-
rectly comparable to neural data at many levels of
analysis. Critically, the model can perform a wide
variety of behaviorally relevant functions.We show
results on eight different tasks that are performed
by the same model, without modification.

All inputs to the model are 28 by 28 images of
handwritten or typed characters. All outputs are
the movements of a physically modeled arm
that hasmass, length, inertia, etc. For convenience,
we refer to themodel as “Spaun” (Semantic Point-
er Architecture Unified Network) (see Fig. 1 and
supplementarymaterials andmethods section S1.1).
Many of the tasks we have chosen are the subject of
extensive modeling in their own right [e.g., image
recognition (5, 6), serial working memory (WM)
(7, 8), and reinforcement learning (RL) (9, 10)],
and others demonstrate abilities that are rare for

neural network research and have not yet been dem-
onstrated in spiking networks (e.g., counting, question
answering, rapid variable creation, and fluid reason-
ing). The eight tasks (termed “A0” to “A7”) that
Spaun performs are: (A0) Copy drawing. Given a
randomly chosen handwritten digit, Spaun should
produce the same digit written in the same style
as the handwriting (movie S1; all supplemental
movies can be viewed at http://nengo.ca/build-a-
brain/spaunvideos). (A1) Image recognition.Given
a randomly chosen handwritten digit, Spaun should
produce the same digit written in its default writ-
ing (movie S2). (A2) RL. Spaun should perform
a three-armed bandit task, in which it must deter-
mine which of three possible choices generates the
greatest stochastically generated reward. Reward
contingencies can change from trial to trial (movie
S3). (A3) Serial WM. Given a list of any length,
Spaun should reproduce it (movie S4). (A4) Count-
ing.Given a starting value and a count value, Spaun
should write the final value (that is, the sum of the
two values) (movie S5). (A5) Question answering.
Given a list of numbers, Spaun should answer
either one of two possible questions: (i) what is in
a given position in the list? (a “P” question) or (ii)
given a kind of number, at what position is this
number in the list? (a “K” question) (movie S6).
(A6) Rapid variable creation. Given example syn-
tactic input/output patterns (e.g., 0 0 7 4→ 7 4;
0 0 2 4→ 2 4; etc.), Spaun should complete a novel
pattern given only the input (e.g., 0 0 1 4 → ?)
(movie S7). (A7) Fluid reasoning. Spaun should
perform a syntactic or semantic reasoning task
that is isomorphic to the induction problems from
the Raven’s Progressive Matrices (RPM) test for
fluid intelligence (11). This task requires completing
patterns of the form: 1 2 3; 5 6 7; 3 4 ? (movie S8).
Each input image is shown for 150ms and separated
by a 150-ms blank (see table S2 for example inputs
for each task). The model is told what the task will
be by showing it an “A” and the number of the task
(0 to 7). The model is then shown input defining
the task (see Figs. 2 and 3 for examples). Spaun is
robust to invalid input (fig. S10) and performs
tasks in any order without modeler intervention.

Figure 1A shows the anatomical architecture
of the model. Connectivity and functional ascrip-
tions to brain areas in Spaun are consistent with
current empirical evidence (table S1). In general,

we modeled neuron and synaptic response prop-
erties on the electrophysiology literature for the
relevant anatomical areas. For instance, the basal
ganglia have largely GABAergic neurons, with
dopamine modulating learning in the striatum,
and the cortex has largely N-methyl-D-aspartate and
AMPA synaptic connections (supplementary sec-
tion S1.3). As a result, the dynamics in the model
are tightly constrained by underlying neural prop-
erties (see supplementary section S2.4).

The functional architecture of the model is de-
scribed in Fig. 1B. The network implementing the
Spaunmodel consists of three compression hierar-
chies, an action-selection mechanism, and five sub-
systems. Components of the model communicate
using spiking neurons that implement neural rep-
resentations that we call “semantic pointers,” using
various firing patterns. Semantic pointers can be
understood as being elements of a compressed
neural vector space (supplementary sections S1.1
and S1.2). Compression is a natural way to under-
standmuch of neural processing. For instance, the
number of cells in the visual hierarchy gradually
decreases from the primary visual cortex (V1) to the
inferior temporal cortex (IT) (12), meaning that the
information has been compressed from a higher-
dimensional (image-based) space into a lower-
dimensional (feature) space (supplementary section
S1.3). This same kind of operationmapswell to the
motor hierarchy (13),where lower-dimensional firing
patterns are successively decompressed (for ex-
ample, when a lower-dimensional motor represen-
tation in Euclidean space moves down the motor
hierarchy to higher-dimensional muscle space).

Compression is functionally important because
low-dimensional representations can be more ef-
ficiently manipulated for a variety of neural compu-
tations. Consequently, learning or defining different
compression/decompression operations provides a
means of generating neural representations that
are well suited to a variety of neural computations.
The specific compression hierarchies in Spaun are
(see Fig. 1B): (i) a visual hierarchy, which com-
presses image input into lower-dimensional firing
patterns; (ii) a motor hierarchy that decompresses
firing patterns in a low-dimensional space to drive
a simulated arm; and (iii) aWM, which constructs
compressed firing patterns to store serial position
information. TheWMsubsystem includes several
subcomponents that provide stable representations
of intermediate task states, task subgoals, and context.

Spaun’s action-selection mechanism is based
on a spiking basal ganglia model that we have
developed in other work (14) but is here extended
to process higher-dimensional neural represen-
tations. The basal ganglia determine which state
the network should be in, switching as appro-
priate for the current task goals. Consequently,
the model’s functional states are not hardwired,
as the basal ganglia are able to control the order
of operations by changing information flow be-
tween subsystems of the architecture.

The five subsystems, from left to right in Fig.
1B, are used to: (i) map the visual hierarchy firing
pattern to a conceptual firing pattern as needed
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2.5-million-neuron model of the brain (called “Spaun”) that bridges this gap by exhibiting many different
behaviors. The model is presented only with visual image sequences, and it draws all of its responses with
a physically modeled arm. Although simplified, the model captures many aspects of neuroanatomy,
neurophysiology, and psychological behavior, which we demonstrate via eight diverse tasks.
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Brain Project (2), which has simulated about
1 million neurons in cortical columns and includes
considerable biological detail, accurately reflect-
ing spatial structure, connectivity statistics, and
other neural properties. More recent work has sim-
ulated many more neurons, such as the 1 billion
neurons simulated in the Cognitive Computa-
tion Project (3), which has been hailed as a cat-
scale simulation. A human-scale simulation of
100 billion neurons has also been reported (4).

Although impressive scaling has been achieved,
no previous large-scale spiking neuronmodels have
demonstrated how such simulations connect to a
variety of specific observable behaviors. The focus
of this past work has been on scaling to larger num-
bers of neurons and more detailed neuron models.
Unfortunately, simulating a complex brain alone
does not address one of the central challenges for
neuroscience: explaining howcomplex brain activity
generates complex behavior. In contrast, we present
here a spiking neuronmodel of 2.5million neurons
that is centrally directed to bridging the brain-
behavior gap.Ourmodel embodies neuroanatomical
and neurophysiological constraints, making it di-
rectly comparable to neural data at many levels of
analysis. Critically, the model can perform a wide
variety of behaviorally relevant functions.We show
results on eight different tasks that are performed
by the same model, without modification.

All inputs to the model are 28 by 28 images of
handwritten or typed characters. All outputs are
the movements of a physically modeled arm
that hasmass, length, inertia, etc. For convenience,
we refer to themodel as “Spaun” (Semantic Point-
er Architecture Unified Network) (see Fig. 1 and
supplementarymaterials andmethods section S1.1).
Many of the tasks we have chosen are the subject of
extensive modeling in their own right [e.g., image
recognition (5, 6), serial working memory (WM)
(7, 8), and reinforcement learning (RL) (9, 10)],
and others demonstrate abilities that are rare for

neural network research and have not yet been dem-
onstrated in spiking networks (e.g., counting, question
answering, rapid variable creation, and fluid reason-
ing). The eight tasks (termed “A0” to “A7”) that
Spaun performs are: (A0) Copy drawing. Given a
randomly chosen handwritten digit, Spaun should
produce the same digit written in the same style
as the handwriting (movie S1; all supplemental
movies can be viewed at http://nengo.ca/build-a-
brain/spaunvideos). (A1) Image recognition.Given
a randomly chosen handwritten digit, Spaun should
produce the same digit written in its default writ-
ing (movie S2). (A2) RL. Spaun should perform
a three-armed bandit task, in which it must deter-
mine which of three possible choices generates the
greatest stochastically generated reward. Reward
contingencies can change from trial to trial (movie
S3). (A3) Serial WM. Given a list of any length,
Spaun should reproduce it (movie S4). (A4) Count-
ing.Given a starting value and a count value, Spaun
should write the final value (that is, the sum of the
two values) (movie S5). (A5) Question answering.
Given a list of numbers, Spaun should answer
either one of two possible questions: (i) what is in
a given position in the list? (a “P” question) or (ii)
given a kind of number, at what position is this
number in the list? (a “K” question) (movie S6).
(A6) Rapid variable creation. Given example syn-
tactic input/output patterns (e.g., 0 0 7 4→ 7 4;
0 0 2 4→ 2 4; etc.), Spaun should complete a novel
pattern given only the input (e.g., 0 0 1 4 → ?)
(movie S7). (A7) Fluid reasoning. Spaun should
perform a syntactic or semantic reasoning task
that is isomorphic to the induction problems from
the Raven’s Progressive Matrices (RPM) test for
fluid intelligence (11). This task requires completing
patterns of the form: 1 2 3; 5 6 7; 3 4 ? (movie S8).
Each input image is shown for 150ms and separated
by a 150-ms blank (see table S2 for example inputs
for each task). The model is told what the task will
be by showing it an “A” and the number of the task
(0 to 7). The model is then shown input defining
the task (see Figs. 2 and 3 for examples). Spaun is
robust to invalid input (fig. S10) and performs
tasks in any order without modeler intervention.

Figure 1A shows the anatomical architecture
of the model. Connectivity and functional ascrip-
tions to brain areas in Spaun are consistent with
current empirical evidence (table S1). In general,

we modeled neuron and synaptic response prop-
erties on the electrophysiology literature for the
relevant anatomical areas. For instance, the basal
ganglia have largely GABAergic neurons, with
dopamine modulating learning in the striatum,
and the cortex has largely N-methyl-D-aspartate and
AMPA synaptic connections (supplementary sec-
tion S1.3). As a result, the dynamics in the model
are tightly constrained by underlying neural prop-
erties (see supplementary section S2.4).

The functional architecture of the model is de-
scribed in Fig. 1B. The network implementing the
Spaunmodel consists of three compression hierar-
chies, an action-selection mechanism, and five sub-
systems. Components of the model communicate
using spiking neurons that implement neural rep-
resentations that we call “semantic pointers,” using
various firing patterns. Semantic pointers can be
understood as being elements of a compressed
neural vector space (supplementary sections S1.1
and S1.2). Compression is a natural way to under-
standmuch of neural processing. For instance, the
number of cells in the visual hierarchy gradually
decreases from the primary visual cortex (V1) to the
inferior temporal cortex (IT) (12), meaning that the
information has been compressed from a higher-
dimensional (image-based) space into a lower-
dimensional (feature) space (supplementary section
S1.3). This same kind of operationmapswell to the
motor hierarchy (13),where lower-dimensional firing
patterns are successively decompressed (for ex-
ample, when a lower-dimensional motor represen-
tation in Euclidean space moves down the motor
hierarchy to higher-dimensional muscle space).

Compression is functionally important because
low-dimensional representations can be more ef-
ficiently manipulated for a variety of neural compu-
tations. Consequently, learning or defining different
compression/decompression operations provides a
means of generating neural representations that
are well suited to a variety of neural computations.
The specific compression hierarchies in Spaun are
(see Fig. 1B): (i) a visual hierarchy, which com-
presses image input into lower-dimensional firing
patterns; (ii) a motor hierarchy that decompresses
firing patterns in a low-dimensional space to drive
a simulated arm; and (iii) aWM, which constructs
compressed firing patterns to store serial position
information. TheWMsubsystem includes several
subcomponents that provide stable representations
of intermediate task states, task subgoals, and context.

Spaun’s action-selection mechanism is based
on a spiking basal ganglia model that we have
developed in other work (14) but is here extended
to process higher-dimensional neural represen-
tations. The basal ganglia determine which state
the network should be in, switching as appro-
priate for the current task goals. Consequently,
the model’s functional states are not hardwired,
as the basal ganglia are able to control the order
of operations by changing information flow be-
tween subsystems of the architecture.

The five subsystems, from left to right in Fig.
1B, are used to: (i) map the visual hierarchy firing
pattern to a conceptual firing pattern as needed
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a randomly chosen handwritten digit, Spaun should
produce the same digit written in its default writ-
ing (movie S2). (A2) RL. Spaun should perform
a three-armed bandit task, in which it must deter-
mine which of three possible choices generates the
greatest stochastically generated reward. Reward
contingencies can change from trial to trial (movie
S3). (A3) Serial WM. Given a list of any length,
Spaun should reproduce it (movie S4). (A4) Count-
ing.Given a starting value and a count value, Spaun
should write the final value (that is, the sum of the
two values) (movie S5). (A5) Question answering.
Given a list of numbers, Spaun should answer
either one of two possible questions: (i) what is in
a given position in the list? (a “P” question) or (ii)
given a kind of number, at what position is this
number in the list? (a “K” question) (movie S6).
(A6) Rapid variable creation. Given example syn-
tactic input/output patterns (e.g., 0 0 7 4→ 7 4;
0 0 2 4→ 2 4; etc.), Spaun should complete a novel
pattern given only the input (e.g., 0 0 1 4 → ?)
(movie S7). (A7) Fluid reasoning. Spaun should
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that is isomorphic to the induction problems from
the Raven’s Progressive Matrices (RPM) test for
fluid intelligence (11). This task requires completing
patterns of the form: 1 2 3; 5 6 7; 3 4 ? (movie S8).
Each input image is shown for 150ms and separated
by a 150-ms blank (see table S2 for example inputs
for each task). The model is told what the task will
be by showing it an “A” and the number of the task
(0 to 7). The model is then shown input defining
the task (see Figs. 2 and 3 for examples). Spaun is
robust to invalid input (fig. S10) and performs
tasks in any order without modeler intervention.

Figure 1A shows the anatomical architecture
of the model. Connectivity and functional ascrip-
tions to brain areas in Spaun are consistent with
current empirical evidence (table S1). In general,

we modeled neuron and synaptic response prop-
erties on the electrophysiology literature for the
relevant anatomical areas. For instance, the basal
ganglia have largely GABAergic neurons, with
dopamine modulating learning in the striatum,
and the cortex has largely N-methyl-D-aspartate and
AMPA synaptic connections (supplementary sec-
tion S1.3). As a result, the dynamics in the model
are tightly constrained by underlying neural prop-
erties (see supplementary section S2.4).

The functional architecture of the model is de-
scribed in Fig. 1B. The network implementing the
Spaunmodel consists of three compression hierar-
chies, an action-selection mechanism, and five sub-
systems. Components of the model communicate
using spiking neurons that implement neural rep-
resentations that we call “semantic pointers,” using
various firing patterns. Semantic pointers can be
understood as being elements of a compressed
neural vector space (supplementary sections S1.1
and S1.2). Compression is a natural way to under-
standmuch of neural processing. For instance, the
number of cells in the visual hierarchy gradually
decreases from the primary visual cortex (V1) to the
inferior temporal cortex (IT) (12), meaning that the
information has been compressed from a higher-
dimensional (image-based) space into a lower-
dimensional (feature) space (supplementary section
S1.3). This same kind of operationmapswell to the
motor hierarchy (13),where lower-dimensional firing
patterns are successively decompressed (for ex-
ample, when a lower-dimensional motor represen-
tation in Euclidean space moves down the motor
hierarchy to higher-dimensional muscle space).

Compression is functionally important because
low-dimensional representations can be more ef-
ficiently manipulated for a variety of neural compu-
tations. Consequently, learning or defining different
compression/decompression operations provides a
means of generating neural representations that
are well suited to a variety of neural computations.
The specific compression hierarchies in Spaun are
(see Fig. 1B): (i) a visual hierarchy, which com-
presses image input into lower-dimensional firing
patterns; (ii) a motor hierarchy that decompresses
firing patterns in a low-dimensional space to drive
a simulated arm; and (iii) aWM, which constructs
compressed firing patterns to store serial position
information. TheWMsubsystem includes several
subcomponents that provide stable representations
of intermediate task states, task subgoals, and context.

Spaun’s action-selection mechanism is based
on a spiking basal ganglia model that we have
developed in other work (14) but is here extended
to process higher-dimensional neural represen-
tations. The basal ganglia determine which state
the network should be in, switching as appro-
priate for the current task goals. Consequently,
the model’s functional states are not hardwired,
as the basal ganglia are able to control the order
of operations by changing information flow be-
tween subsystems of the architecture.

The five subsystems, from left to right in Fig.
1B, are used to: (i) map the visual hierarchy firing
pattern to a conceptual firing pattern as needed
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• Bridge  gap  between  complex  behaviors
and  complex  neural  activity

• Performs  whole  set  of  simulated  tasks  
associated  with  human  cognition

• Large  scale:  2.5  million  neurons

• Uses  spiking  models  of  neurons

• Summarizes  a  lot  of  papers/work  in  lab



• Inputs  to  model:  28  by  28  images  of  typed  
characters

• Outputs:  movements  of  physically  modeled  arm

• 8  tasks  (some  modeled  more  extensively  in    their  
other  papers)

• Refer  to  model  as  SPAUN  (Semantic  Pointer  
Architecture  Unified  Network)  



(information encoding), (ii) extract relations between
input elements (transformation calculation), (iii)
evaluate the reward associated with the input (re-
ward evaluation), (iv) decompress firing patterns
frommemory to conceptual firing pattern (informa-
tion decoding), and (v) map conceptual firing pat-
terns to motor firing patterns and control motor
timing (motor processing). Supplementarymaterials
section S1.3 includes a more detailed description
of each element. It is critical to note that the ele-
ments of Spaun are not task-specific. That is, they
are used in a variety of combinations to perform the
chosen tasks, resulting in the same circuitry being
used across tasks. This makes it straightforward
to extend the model to some new tasks (supple-
mentary section S2.4).

The neural connection weights of these sub-
systems can be learned with a biologically plau-
sible spike-based rule (15), although we use more
efficient optimization methods to determine the
synaptic weights (supplementary section S1.2).

To help explain the functioning of the model,
we consider the serialWM task. Figure 2A shows
the information flow through the model for this
task. The storage and recall states of the network
are common to many tasks. For the WM task,
these states occur immediately one after the other,
although the delay is task-dependent. Initially, see-
ing the task identifier (A3) switches Spaun into the
storage state. In the storage state, the network com-
presses the incoming image into a visually based
firing pattern (FP in the figure) that encodes vi-

sual features, maps that firing pattern to another
firing pattern that represents the related concept
(e.g., “TWO”; see supplementary section S1.3), and
then compresses that firing pattern into a memory
trace that is stored in WM. The compression op-
erator (i.e., “⊗”) binds the concept firing pattern
(e.g., TWO) to a position representation (e.g., P3)
and adds the result (i.e., TWO ⊗ P3, as in Fig.
2C) to WM. As shown in Fig. 2C, this process is
repeated as long as items are shown to the model.

Figure 2B shows a screen capture from a
movie of the WM simulation. When the mod-
el sees the “?” input (as in Fig. 2B), the basal
ganglia reroute cortical connectivity to allow
Spaun to recall the input stored in the dorsolateral
prefrontal cortex (DLPFC). Recall consists of de-
compressing an item from the stored representation
of the full list, mapping the resulting concept
vector to a known high-level motor command,
and then decompressing that motor command
to specific joint torques to move the arm. This
process is repeated for each position in the WM,
to generate Spaun’s full written response. Figure
2C shows the entire process unfolding over time,
including spike rasters, conceptual decodings of
the contents of DLPFC, and the input and output.

Critically, no single task captures the distinct
features of this model. To highlight the diver-
sity of tasks the model is able to perform, Fig. 3
shows the results of the model performing a low-
level perceptual-motor task (the copy-drawing
task), as well as a challenging pattern-induction
task only performed by humans (the RPM task).

Specifically, Fig. 3A demonstrates that the low-
level perceptual features in the input are available
to Spaun to drive its motor behavior. Figure 3B
demonstrates the RPM task for one sample pattern
(see fig. S6 for an additional example). In this
task, Spaun is presented with two groups of three
related items and must learn the relation between
items in the groups. Spaun then uses its inferred
relation to complete the pattern of a third set of
items. Similarity plots for the DLPFC show con-
ceptual decodings of neural activities. The model
learns the relation between subsequent strings of
numbers by comparing patterns in DLPFC1 and
DLPFC2 (see supplementary section S1.3). Hu-
man participants average 89% correct (chance is
13%) on the matrices that include only an induc-
tion rule (5 of 36 matrices) (16). Spaun performs
similarly, achieving a match-adjusted success rate
of 88% (see supplementary section S2.3).

To demonstrate that Spaun captures general
psychological features of behavior, it is critical to be
able to simulate populations of participants. Every
time a specific instance of Spaun is generated, the
parameters of the neurons are picked from random
distributions (supplementary section S1.4). Conse-
quently, generating many instances allows for compar-
isonwith population-wide behavioral data. Figure 4
compares the recall accuracy of the model as a func-
tion of list length and position in a serial recall task
to human population data. Aswith human data (17),
Spaun produces distinct recency (items at the end
are recalled with greater accuracy) and primacy

Fig. 1. Anatomical and functional architecture of Spaun. (A) The anatomical architecture of Spaun shows the
major brain structures included in the model and their connectivity. Lines terminating in circles indicate
GABAergic connections. Lines terminating in open squares indicatemodulatory dopaminergic connections. Box
styles and colors indicate the relationship with the functional architecture in (B). PPC, posterior parietal cortex;
M1, primary motor cortex; SMA, supplementary motor area; PM, premotor cortex; VLPFC, ventrolateral pre-
frontal cortex; OFC, orbitofrontal cortex; AIT, anterior inferior temporal cortex; Str, striatum; vStr, ventral
striatum; STN, subthalamic nucleus; GPe, globus pallidus externus; GPi, globus pallidus internus; SNr, sub-
stantia nigra pars reticulata; SNc, substantia nigra pars compacta; VTA, ventral tegmental area; V2, secondary
visual cortex; V4, extrastriate visual cortex. (B) The functional architecture of Spaun. Thick black lines indicate
communication between elements of the cortex; thin lines indicate communication between the action-
selection mechanism (basal ganglia) and the cortex. Boxes with rounded edges indicate that the action-
selection mechanism can use activity changes to manipulate the flow of information into a subsystem. The
open-square end of the line connecting reward evaluation and action selection denotes that this connection
modulates connection weights. See table S1 for more detailed definitions of abbreviations, a summary of the
function to anatomy mapping, and references supporting Spaun’s anatomical and functional assumptions.
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(information encoding), (ii) extract relations between
input elements (transformation calculation), (iii)
evaluate the reward associated with the input (re-
ward evaluation), (iv) decompress firing patterns
frommemory to conceptual firing pattern (informa-
tion decoding), and (v) map conceptual firing pat-
terns to motor firing patterns and control motor
timing (motor processing). Supplementarymaterials
section S1.3 includes a more detailed description
of each element. It is critical to note that the ele-
ments of Spaun are not task-specific. That is, they
are used in a variety of combinations to perform the
chosen tasks, resulting in the same circuitry being
used across tasks. This makes it straightforward
to extend the model to some new tasks (supple-
mentary section S2.4).

The neural connection weights of these sub-
systems can be learned with a biologically plau-
sible spike-based rule (15), although we use more
efficient optimization methods to determine the
synaptic weights (supplementary section S1.2).

To help explain the functioning of the model,
we consider the serialWM task. Figure 2A shows
the information flow through the model for this
task. The storage and recall states of the network
are common to many tasks. For the WM task,
these states occur immediately one after the other,
although the delay is task-dependent. Initially, see-
ing the task identifier (A3) switches Spaun into the
storage state. In the storage state, the network com-
presses the incoming image into a visually based
firing pattern (FP in the figure) that encodes vi-

sual features, maps that firing pattern to another
firing pattern that represents the related concept
(e.g., “TWO”; see supplementary section S1.3), and
then compresses that firing pattern into a memory
trace that is stored in WM. The compression op-
erator (i.e., “⊗”) binds the concept firing pattern
(e.g., TWO) to a position representation (e.g., P3)
and adds the result (i.e., TWO ⊗ P3, as in Fig.
2C) to WM. As shown in Fig. 2C, this process is
repeated as long as items are shown to the model.

Figure 2B shows a screen capture from a
movie of the WM simulation. When the mod-
el sees the “?” input (as in Fig. 2B), the basal
ganglia reroute cortical connectivity to allow
Spaun to recall the input stored in the dorsolateral
prefrontal cortex (DLPFC). Recall consists of de-
compressing an item from the stored representation
of the full list, mapping the resulting concept
vector to a known high-level motor command,
and then decompressing that motor command
to specific joint torques to move the arm. This
process is repeated for each position in the WM,
to generate Spaun’s full written response. Figure
2C shows the entire process unfolding over time,
including spike rasters, conceptual decodings of
the contents of DLPFC, and the input and output.

Critically, no single task captures the distinct
features of this model. To highlight the diver-
sity of tasks the model is able to perform, Fig. 3
shows the results of the model performing a low-
level perceptual-motor task (the copy-drawing
task), as well as a challenging pattern-induction
task only performed by humans (the RPM task).

Specifically, Fig. 3A demonstrates that the low-
level perceptual features in the input are available
to Spaun to drive its motor behavior. Figure 3B
demonstrates the RPM task for one sample pattern
(see fig. S6 for an additional example). In this
task, Spaun is presented with two groups of three
related items and must learn the relation between
items in the groups. Spaun then uses its inferred
relation to complete the pattern of a third set of
items. Similarity plots for the DLPFC show con-
ceptual decodings of neural activities. The model
learns the relation between subsequent strings of
numbers by comparing patterns in DLPFC1 and
DLPFC2 (see supplementary section S1.3). Hu-
man participants average 89% correct (chance is
13%) on the matrices that include only an induc-
tion rule (5 of 36 matrices) (16). Spaun performs
similarly, achieving a match-adjusted success rate
of 88% (see supplementary section S2.3).

To demonstrate that Spaun captures general
psychological features of behavior, it is critical to be
able to simulate populations of participants. Every
time a specific instance of Spaun is generated, the
parameters of the neurons are picked from random
distributions (supplementary section S1.4). Conse-
quently, generating many instances allows for compar-
isonwith population-wide behavioral data. Figure 4
compares the recall accuracy of the model as a func-
tion of list length and position in a serial recall task
to human population data. Aswith human data (17),
Spaun produces distinct recency (items at the end
are recalled with greater accuracy) and primacy

Fig. 1. Anatomical and functional architecture of Spaun. (A) The anatomical architecture of Spaun shows the
major brain structures included in the model and their connectivity. Lines terminating in circles indicate
GABAergic connections. Lines terminating in open squares indicatemodulatory dopaminergic connections. Box
styles and colors indicate the relationship with the functional architecture in (B). PPC, posterior parietal cortex;
M1, primary motor cortex; SMA, supplementary motor area; PM, premotor cortex; VLPFC, ventrolateral pre-
frontal cortex; OFC, orbitofrontal cortex; AIT, anterior inferior temporal cortex; Str, striatum; vStr, ventral
striatum; STN, subthalamic nucleus; GPe, globus pallidus externus; GPi, globus pallidus internus; SNr, sub-
stantia nigra pars reticulata; SNc, substantia nigra pars compacta; VTA, ventral tegmental area; V2, secondary
visual cortex; V4, extrastriate visual cortex. (B) The functional architecture of Spaun. Thick black lines indicate
communication between elements of the cortex; thin lines indicate communication between the action-
selection mechanism (basal ganglia) and the cortex. Boxes with rounded edges indicate that the action-
selection mechanism can use activity changes to manipulate the flow of information into a subsystem. The
open-square end of the line connecting reward evaluation and action selection denotes that this connection
modulates connection weights. See table S1 for more detailed definitions of abbreviations, a summary of the
function to anatomy mapping, and references supporting Spaun’s anatomical and functional assumptions.
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(information encoding), (ii) extract relations between
input elements (transformation calculation), (iii)
evaluate the reward associated with the input (re-
ward evaluation), (iv) decompress firing patterns
frommemory to conceptual firing pattern (informa-
tion decoding), and (v) map conceptual firing pat-
terns to motor firing patterns and control motor
timing (motor processing). Supplementarymaterials
section S1.3 includes a more detailed description
of each element. It is critical to note that the ele-
ments of Spaun are not task-specific. That is, they
are used in a variety of combinations to perform the
chosen tasks, resulting in the same circuitry being
used across tasks. This makes it straightforward
to extend the model to some new tasks (supple-
mentary section S2.4).

The neural connection weights of these sub-
systems can be learned with a biologically plau-
sible spike-based rule (15), although we use more
efficient optimization methods to determine the
synaptic weights (supplementary section S1.2).

To help explain the functioning of the model,
we consider the serialWM task. Figure 2A shows
the information flow through the model for this
task. The storage and recall states of the network
are common to many tasks. For the WM task,
these states occur immediately one after the other,
although the delay is task-dependent. Initially, see-
ing the task identifier (A3) switches Spaun into the
storage state. In the storage state, the network com-
presses the incoming image into a visually based
firing pattern (FP in the figure) that encodes vi-

sual features, maps that firing pattern to another
firing pattern that represents the related concept
(e.g., “TWO”; see supplementary section S1.3), and
then compresses that firing pattern into a memory
trace that is stored in WM. The compression op-
erator (i.e., “⊗”) binds the concept firing pattern
(e.g., TWO) to a position representation (e.g., P3)
and adds the result (i.e., TWO ⊗ P3, as in Fig.
2C) to WM. As shown in Fig. 2C, this process is
repeated as long as items are shown to the model.

Figure 2B shows a screen capture from a
movie of the WM simulation. When the mod-
el sees the “?” input (as in Fig. 2B), the basal
ganglia reroute cortical connectivity to allow
Spaun to recall the input stored in the dorsolateral
prefrontal cortex (DLPFC). Recall consists of de-
compressing an item from the stored representation
of the full list, mapping the resulting concept
vector to a known high-level motor command,
and then decompressing that motor command
to specific joint torques to move the arm. This
process is repeated for each position in the WM,
to generate Spaun’s full written response. Figure
2C shows the entire process unfolding over time,
including spike rasters, conceptual decodings of
the contents of DLPFC, and the input and output.

Critically, no single task captures the distinct
features of this model. To highlight the diver-
sity of tasks the model is able to perform, Fig. 3
shows the results of the model performing a low-
level perceptual-motor task (the copy-drawing
task), as well as a challenging pattern-induction
task only performed by humans (the RPM task).

Specifically, Fig. 3A demonstrates that the low-
level perceptual features in the input are available
to Spaun to drive its motor behavior. Figure 3B
demonstrates the RPM task for one sample pattern
(see fig. S6 for an additional example). In this
task, Spaun is presented with two groups of three
related items and must learn the relation between
items in the groups. Spaun then uses its inferred
relation to complete the pattern of a third set of
items. Similarity plots for the DLPFC show con-
ceptual decodings of neural activities. The model
learns the relation between subsequent strings of
numbers by comparing patterns in DLPFC1 and
DLPFC2 (see supplementary section S1.3). Hu-
man participants average 89% correct (chance is
13%) on the matrices that include only an induc-
tion rule (5 of 36 matrices) (16). Spaun performs
similarly, achieving a match-adjusted success rate
of 88% (see supplementary section S2.3).

To demonstrate that Spaun captures general
psychological features of behavior, it is critical to be
able to simulate populations of participants. Every
time a specific instance of Spaun is generated, the
parameters of the neurons are picked from random
distributions (supplementary section S1.4). Conse-
quently, generating many instances allows for compar-
isonwith population-wide behavioral data. Figure 4
compares the recall accuracy of the model as a func-
tion of list length and position in a serial recall task
to human population data. Aswith human data (17),
Spaun produces distinct recency (items at the end
are recalled with greater accuracy) and primacy

Fig. 1. Anatomical and functional architecture of Spaun. (A) The anatomical architecture of Spaun shows the
major brain structures included in the model and their connectivity. Lines terminating in circles indicate
GABAergic connections. Lines terminating in open squares indicatemodulatory dopaminergic connections. Box
styles and colors indicate the relationship with the functional architecture in (B). PPC, posterior parietal cortex;
M1, primary motor cortex; SMA, supplementary motor area; PM, premotor cortex; VLPFC, ventrolateral pre-
frontal cortex; OFC, orbitofrontal cortex; AIT, anterior inferior temporal cortex; Str, striatum; vStr, ventral
striatum; STN, subthalamic nucleus; GPe, globus pallidus externus; GPi, globus pallidus internus; SNr, sub-
stantia nigra pars reticulata; SNc, substantia nigra pars compacta; VTA, ventral tegmental area; V2, secondary
visual cortex; V4, extrastriate visual cortex. (B) The functional architecture of Spaun. Thick black lines indicate
communication between elements of the cortex; thin lines indicate communication between the action-
selection mechanism (basal ganglia) and the cortex. Boxes with rounded edges indicate that the action-
selection mechanism can use activity changes to manipulate the flow of information into a subsystem. The
open-square end of the line connecting reward evaluation and action selection denotes that this connection
modulates connection weights. See table S1 for more detailed definitions of abbreviations, a summary of the
function to anatomy mapping, and references supporting Spaun’s anatomical and functional assumptions.
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• Spiking  neurons

• Form  compressed  representation

A Large-Scale Model of the
Functioning Brain
Chris Eliasmith,* Terrence C. Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf,
Yichuan Tang, Daniel Rasmussen
A central challenge for cognitive and systems neuroscience is to relate the incredibly complex behavior
of animals to the equally complex activity of their brains. Recently described, large-scale neural models
have not bridged this gap between neural activity and biological function. In this work, we present a
2.5-million-neuron model of the brain (called “Spaun”) that bridges this gap by exhibiting many different
behaviors. The model is presented only with visual image sequences, and it draws all of its responses with
a physically modeled arm. Although simplified, the model captures many aspects of neuroanatomy,
neurophysiology, and psychological behavior, which we demonstrate via eight diverse tasks.

Large-scale neural simulations are becom-
ing increasingly common [see (1) for a
review]. These include the ambitious Blue

Brain Project (2), which has simulated about
1 million neurons in cortical columns and includes
considerable biological detail, accurately reflect-
ing spatial structure, connectivity statistics, and
other neural properties. More recent work has sim-
ulated many more neurons, such as the 1 billion
neurons simulated in the Cognitive Computa-
tion Project (3), which has been hailed as a cat-
scale simulation. A human-scale simulation of
100 billion neurons has also been reported (4).

Although impressive scaling has been achieved,
no previous large-scale spiking neuronmodels have
demonstrated how such simulations connect to a
variety of specific observable behaviors. The focus
of this past work has been on scaling to larger num-
bers of neurons and more detailed neuron models.
Unfortunately, simulating a complex brain alone
does not address one of the central challenges for
neuroscience: explaining howcomplex brain activity
generates complex behavior. In contrast, we present
here a spiking neuronmodel of 2.5million neurons
that is centrally directed to bridging the brain-
behavior gap.Ourmodel embodies neuroanatomical
and neurophysiological constraints, making it di-
rectly comparable to neural data at many levels of
analysis. Critically, the model can perform a wide
variety of behaviorally relevant functions.We show
results on eight different tasks that are performed
by the same model, without modification.

All inputs to the model are 28 by 28 images of
handwritten or typed characters. All outputs are
the movements of a physically modeled arm
that hasmass, length, inertia, etc. For convenience,
we refer to themodel as “Spaun” (Semantic Point-
er Architecture Unified Network) (see Fig. 1 and
supplementarymaterials andmethods section S1.1).
Many of the tasks we have chosen are the subject of
extensive modeling in their own right [e.g., image
recognition (5, 6), serial working memory (WM)
(7, 8), and reinforcement learning (RL) (9, 10)],
and others demonstrate abilities that are rare for

neural network research and have not yet been dem-
onstrated in spiking networks (e.g., counting, question
answering, rapid variable creation, and fluid reason-
ing). The eight tasks (termed “A0” to “A7”) that
Spaun performs are: (A0) Copy drawing. Given a
randomly chosen handwritten digit, Spaun should
produce the same digit written in the same style
as the handwriting (movie S1; all supplemental
movies can be viewed at http://nengo.ca/build-a-
brain/spaunvideos). (A1) Image recognition.Given
a randomly chosen handwritten digit, Spaun should
produce the same digit written in its default writ-
ing (movie S2). (A2) RL. Spaun should perform
a three-armed bandit task, in which it must deter-
mine which of three possible choices generates the
greatest stochastically generated reward. Reward
contingencies can change from trial to trial (movie
S3). (A3) Serial WM. Given a list of any length,
Spaun should reproduce it (movie S4). (A4) Count-
ing.Given a starting value and a count value, Spaun
should write the final value (that is, the sum of the
two values) (movie S5). (A5) Question answering.
Given a list of numbers, Spaun should answer
either one of two possible questions: (i) what is in
a given position in the list? (a “P” question) or (ii)
given a kind of number, at what position is this
number in the list? (a “K” question) (movie S6).
(A6) Rapid variable creation. Given example syn-
tactic input/output patterns (e.g., 0 0 7 4→ 7 4;
0 0 2 4→ 2 4; etc.), Spaun should complete a novel
pattern given only the input (e.g., 0 0 1 4 → ?)
(movie S7). (A7) Fluid reasoning. Spaun should
perform a syntactic or semantic reasoning task
that is isomorphic to the induction problems from
the Raven’s Progressive Matrices (RPM) test for
fluid intelligence (11). This task requires completing
patterns of the form: 1 2 3; 5 6 7; 3 4 ? (movie S8).
Each input image is shown for 150ms and separated
by a 150-ms blank (see table S2 for example inputs
for each task). The model is told what the task will
be by showing it an “A” and the number of the task
(0 to 7). The model is then shown input defining
the task (see Figs. 2 and 3 for examples). Spaun is
robust to invalid input (fig. S10) and performs
tasks in any order without modeler intervention.

Figure 1A shows the anatomical architecture
of the model. Connectivity and functional ascrip-
tions to brain areas in Spaun are consistent with
current empirical evidence (table S1). In general,

we modeled neuron and synaptic response prop-
erties on the electrophysiology literature for the
relevant anatomical areas. For instance, the basal
ganglia have largely GABAergic neurons, with
dopamine modulating learning in the striatum,
and the cortex has largely N-methyl-D-aspartate and
AMPA synaptic connections (supplementary sec-
tion S1.3). As a result, the dynamics in the model
are tightly constrained by underlying neural prop-
erties (see supplementary section S2.4).

The functional architecture of the model is de-
scribed in Fig. 1B. The network implementing the
Spaunmodel consists of three compression hierar-
chies, an action-selection mechanism, and five sub-
systems. Components of the model communicate
using spiking neurons that implement neural rep-
resentations that we call “semantic pointers,” using
various firing patterns. Semantic pointers can be
understood as being elements of a compressed
neural vector space (supplementary sections S1.1
and S1.2). Compression is a natural way to under-
standmuch of neural processing. For instance, the
number of cells in the visual hierarchy gradually
decreases from the primary visual cortex (V1) to the
inferior temporal cortex (IT) (12), meaning that the
information has been compressed from a higher-
dimensional (image-based) space into a lower-
dimensional (feature) space (supplementary section
S1.3). This same kind of operationmapswell to the
motor hierarchy (13),where lower-dimensional firing
patterns are successively decompressed (for ex-
ample, when a lower-dimensional motor represen-
tation in Euclidean space moves down the motor
hierarchy to higher-dimensional muscle space).

Compression is functionally important because
low-dimensional representations can be more ef-
ficiently manipulated for a variety of neural compu-
tations. Consequently, learning or defining different
compression/decompression operations provides a
means of generating neural representations that
are well suited to a variety of neural computations.
The specific compression hierarchies in Spaun are
(see Fig. 1B): (i) a visual hierarchy, which com-
presses image input into lower-dimensional firing
patterns; (ii) a motor hierarchy that decompresses
firing patterns in a low-dimensional space to drive
a simulated arm; and (iii) aWM, which constructs
compressed firing patterns to store serial position
information. TheWMsubsystem includes several
subcomponents that provide stable representations
of intermediate task states, task subgoals, and context.

Spaun’s action-selection mechanism is based
on a spiking basal ganglia model that we have
developed in other work (14) but is here extended
to process higher-dimensional neural represen-
tations. The basal ganglia determine which state
the network should be in, switching as appro-
priate for the current task goals. Consequently,
the model’s functional states are not hardwired,
as the basal ganglia are able to control the order
of operations by changing information flow be-
tween subsystems of the architecture.

The five subsystems, from left to right in Fig.
1B, are used to: (i) map the visual hierarchy firing
pattern to a conceptual firing pattern as needed

Centre for Theoretical Neuroscience, University of Waterloo,
Waterloo, ON N2J 3G1, Canada.
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• 2.5  hours  to  simulate  1  second  of  data  !



TEDx talk

https://www.youtube.com/watch?v=g2HHJfovb5E



https://www.youtube.com/watch?v=dKaqFz_WoIw&f
eature=youtu.be

Intro  video



red  highly  active;;  blue  low

(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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https://youtu.be/vuGDYajWyhU

Reinforcement  learning  task



https://youtu.be/XxIzmkWygjY

Serial  working  memory  task



Serial  working  memory  task  (red  highly  active;;
blue  low)

(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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Visual  input:  A3  indicated  working  memory  task

(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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WM  Task
Numbers  
presented Recall  numbers



Motor  output

(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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WM  Task
Numbers  
presented Recall  numbers

(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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Information  flow  through  Spaun during  the  WM  task.
Storage  in  memory.  FP  =  Firing  pattern  



(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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(items at the beginning are recalled with greater
accuracy) effects. A goodmatch to human data from
a rapid serial-memory task using digits and short
presentation times (18) is also evident, with 17 of 22
human mean values within the 95% confidence in-
terval of 40 instances of the model. Additional
population comparisons are presented in fig. S8.

To this point,we have only described performance
on three of the eight tasks that Spaun performs. The
tasks not yet discussed are: (i) image recognition,
for which the model achieves 94% accuracy on un-
traineddata from theMNISThandwriting database
[human accuracy is ~98% (19)]; (ii) RL, for which
themodel is able to learn reward-dependent actions
in a variable environment using knownneuralmech-
anisms (fig. S5); (iii) counting, for which the model
reproduces human reaction times and scaling of var-
iability (fig. S8A); (iv) question answering, for
which the model generates a novel behavioral pre-
diction (fig. S8B); and (v) rapid variable creation,
for which the model instantiates the first neural ar-
chitecture able to solve this challenging task (fig. S11).

However, the central purpose of this work is
not to explain any one of these tasks, but to propose
a unified set of neural mechanisms able to perform
them all. In a sense, the complex task solved by
Spaun is one of coordination. That is, the rapid
flexibility of biological systems is its target of ex-
planation.ThespecificdynamicsofSpaun’s responses
to this wide variety of tasks is governed by four
parameters, each of which is set empirically (the
time constants of the neurotransmitters; see sup-
plementary section S2.4). Thus, without fitting, the
model is consistent with dynamics from single cells
and behavior (see figs. S8 and S11 and supplemen-
tary section S2.4), and is able to switch between a
wide variety tasks quickly and robustly (fig. S10).

Although Spaun’s main contribution lies in its
breadth, it also embodies new hypotheses regard-
ing how specific tasks are solved. For instance,
the proposedmethod of solving the rapid variable-
creation task is distinct to Spaun [this task has
been identified as one that no contemporary neural
architecture could perform as quickly as humans
(20)], as is the account of serial WM. Such hy-
potheses have resulted in new testable predictions
(figs. S8 and S9). Still, Spaun’s uniqueness lies
in its being a platform for exploring the robust
flexibility of biological cognition. Consider the ex-
ample of learning: Learning in Spaun takes on
many forms. Although learning takes place in the
RPM, rapid variable-creation, and RL, connection-
weight changes only occur in the RL task (supple-
mentary section S2.4). In most neural models, this
kind of learning is often used as the main method
ofmodel construction, and it is possible to learn all
of the elements of the Spaun model in this tra-
ditional sense (supplementary section S2.4). How-
ever, constructing models in this manner does not
address a central, difficult challenge of learning in
biological brains. That challenge consists of explain-
ing how robust learning can occur in a continuous-
ly operating, complex, and multifunctional brain.

Spaun minimally demonstrates this kind of
learning in the RL task, as connection-weight
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Fig. 2. The serial WM task. (A) Information flow through Spaun during the WM task. Line style and
color indicate the element of the functional architecture in Fig. 1B responsible for that function.
FP, firing pattern. (B) A screen capture from the simulation movie of this task (supplementary
section S2.1), taken at the 2.5-s mark of the time course plot in (C). The input image is on the
right, the output is drawn on the surface below the arm. Spatially organized (neurons with similar
tuning are near one another), low-pass–filtered neuron activity is approximately mapped to
relevant cortical areas and shown in color (red is high activity, blue is low). Thought bubbles show
spike trains, and the results of decoding those spikes are in the overlaid text. For Str, the thought
bubble shows decoded utilities of possible actions, and in GPi the selected action is darkest. (C)
Time course of a single run of the serial WM task. The stimulus row shows input images. The arm
row shows digits drawn by Spaun. Other rows are labeled by their anatomical area. Similarity plots
(solid colored lines) show the dot product (i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s vocabulary. These plots provide a conceptual
decoding of the spiking activity, but this decoding is not used by the model (supplementary section
S1.1). Raster plots in this figure are generated by randomly selecting 2000 neurons from the
relevant population and discarding any neurons with a variance of less than 10% over the run.
⊗ denotes the convolution compression operator.
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changes do not adversely affect the performance
of the model on other tasks. Smaller-scale models
cannot provide even this minimal demonstration,
because they lack the variety of tasks necessary
to demonstrate robustness. As such, Spaun pro-
vides a distinct opportunity to test learning algo-
rithms in a challenging but biologically plausible
setting. More generally, Spaun provides an op-
portunity to test any neural theory that may be
affected by being embedded in a complex, dynam-
ical context, reminiscent of a real neural system.

However, Spaun has little to say about how
that complex, dynamical system develops from
birth. Furthermore, Spaun has many other limi-
tations that distinguish it from developed brains.
For one, Spaun is not as adaptive as a real brain,
as the model is unable to learn completely new
tasks. In addition, both attention and eye position
of the model is fixed, making Spaun unable to
control its own input. Also, its perceptual and con-
ceptual representations are largely limited to the
space of digits from 0 to 9. Anatomically, many

areas of the brain are missing from the model.
Those that are included have too few neurons and
perform only a subset of functions found in their
respective areas. Physiologically, the variability of
spiking in the model is not always reflective of
the variability observed in real brains (table S3).
However, we believe that, as available computa-
tional power increases, many of these limitations can
be overcome via the same methods as those used
to construct Spaun (supplementary section S2.4).

Even in its current form, Spaun offers a dis-
tinctly functional view and set of hypotheses
regarding the neural mechanisms and organi-
zation that may underlie basic cognitive functions.
Consequently, Spaun opens new avenues for test-
ing ideas about biological cognition under bi-
ologically plausible, more complex, and more
functional settings than previously available.
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Figure 2 makes the point that two records that dif-
fer from each other minimally can mean very differ-
ent things. It demonstrates that traditional data
representation is unstable in the same sense as tradi-
tional programs are. Figure 3 shows that the same
information can take very different forms.

3. DISTRIBUTING THE RECORD
In this section we see how the information of a tradi-
tional record, the three-field record of Figure 1c, can
be encoded into a binary vector without fields. Each
field will be distributed fully, over the entire vector,
so that each bit contains some information about
every field. The resulting record is called holo-
graphic or holistic.

Codewords or -vectors. The holistic record is built
of codewords for field names (variables, roles) and
for values that occupy the fields (fillers). All code-
words are long, random bit strings or binary N-vec-
tors; N = 10,000 will be used in our examples. The N
bit positions or coordinates or columns (as in a table
where the vectors are the rows) of a codeword are
independent of each other, and 0s and 1s are equally
probable, p = Pr{1} = 0.5. To encode the record for
Pat Smith, one such codeword is needed for each of
‘name’, ‘Pat’, ‘sex’, ‘male’, ‘age’, and ‘66’. The
codewords are written in boldface: name, Pat, sex,
male, age, and 66.

Binding and chunking. A holistic record is com-
posed in two steps called binding and chunking.
Binding encodes a field, and chunking combines the
fields into a record. Binding is done with coordinate-
wise Boolean Exclusive-OR (XOR, �), so that ‘name
= Pat’ is represented by the 10,000-bit codeword
name�Pat. This corresponds to storing ‘Pat’ in the
name field of a traditional record. Similarly, sex�
male and age�66 encode the other two fields.

The encoded fields are chunked into a holistic
record according to the majority rule. Each bit of the
record will be a 0 or a 1 according to which of them
appears more often in that position, or column, in the
(three) vectors that are being chunked. When the
number of chunked vectors is even and there are ties,
they are broken at random with probability 1/2. The

composed record also has N bits, with 0s and 1s
equally probable, and thus it can, in turn, be assigned
as a value to a field (i.e., bound to a variable) and
chunked into further N-bit records. This property
makes the code recursive.

The majority rule can be realized as a thresholded
sum: by thresholding the columnwise sums at half the
number of chunked vectors. The holistic record for
Pat Smith—the encoding of ‘name = Pat & sex =
male & age = 66’—can then be expressed as

PSmith = [name�Pat + sex�male + age�66]

where the brackets […] indicate thresholding. The
vectors that are combined by chunking are also called
parts. To break ties when the number of parts is even,
we can chunk a random vector R with them (that pos-
sibly is a function of the parts).

Chunking can be compared to creating a pointer to
a conventional record (see Fig. 3), which then repre-
sents the record. This is how symbolic (list) struc-
tures are constructed. The main similarity between
the two is uniformity: all chunked records have the
same number of bits, N, and all pointers have the
same number of bits, L. One major difference is that
N is much larger than L (usually L < 30), and the
other, which is related to the first, is that a conven-
tional pointer hides its relation to the contents of the
record, whereas chunking leaves the parts visible.

Visibility of Parts. When K codewords are
chunked, the resulting codeword bears more than
chance resemblance to its constituent parts. The
smaller K is, the greater the similarity. If K = 3 and if
A, B, and C are random and independent and X = [A
+ B + C], how close is X to A, or PSmith to
name�Pat? The expected (Hamming) distance, rela-
tive to N, is the probability that the corresponding
bits of X and A differ, b(X, A) = Pr{Xn & An}. If a bit

PSmith

sexname age

malePAT _ _ _ _ _ _ _ _ _ 66
PSmithF

611 . . . . . . . . . . . . . . . 60 62 . . . . 68
femalePAT _ _ _ _ _ _ _ _ _ 66

Figure 2. Two very different Pat Smiths, two very
similar bit strings.
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Pointer to PSmith,
a memory address

Figure 3. Three representations of PSmith, three
very different bit strings.

359

Figure 2 makes the point that two records that dif-
fer from each other minimally can mean very differ-
ent things. It demonstrates that traditional data
representation is unstable in the same sense as tradi-
tional programs are. Figure 3 shows that the same
information can take very different forms.

3. DISTRIBUTING THE RECORD
In this section we see how the information of a tradi-
tional record, the three-field record of Figure 1c, can
be encoded into a binary vector without fields. Each
field will be distributed fully, over the entire vector,
so that each bit contains some information about
every field. The resulting record is called holo-
graphic or holistic.

Codewords or -vectors. The holistic record is built
of codewords for field names (variables, roles) and
for values that occupy the fields (fillers). All code-
words are long, random bit strings or binary N-vec-
tors; N = 10,000 will be used in our examples. The N
bit positions or coordinates or columns (as in a table
where the vectors are the rows) of a codeword are
independent of each other, and 0s and 1s are equally
probable, p = Pr{1} = 0.5. To encode the record for
Pat Smith, one such codeword is needed for each of
‘name’, ‘Pat’, ‘sex’, ‘male’, ‘age’, and ‘66’. The
codewords are written in boldface: name, Pat, sex,
male, age, and 66.

Binding and chunking. A holistic record is com-
posed in two steps called binding and chunking.
Binding encodes a field, and chunking combines the
fields into a record. Binding is done with coordinate-
wise Boolean Exclusive-OR (XOR, �), so that ‘name
= Pat’ is represented by the 10,000-bit codeword
name�Pat. This corresponds to storing ‘Pat’ in the
name field of a traditional record. Similarly, sex�
male and age�66 encode the other two fields.

The encoded fields are chunked into a holistic
record according to the majority rule. Each bit of the
record will be a 0 or a 1 according to which of them
appears more often in that position, or column, in the
(three) vectors that are being chunked. When the
number of chunked vectors is even and there are ties,
they are broken at random with probability 1/2. The

composed record also has N bits, with 0s and 1s
equally probable, and thus it can, in turn, be assigned
as a value to a field (i.e., bound to a variable) and
chunked into further N-bit records. This property
makes the code recursive.

The majority rule can be realized as a thresholded
sum: by thresholding the columnwise sums at half the
number of chunked vectors. The holistic record for
Pat Smith—the encoding of ‘name = Pat & sex =
male & age = 66’—can then be expressed as

PSmith = [name�Pat + sex�male + age�66]

where the brackets […] indicate thresholding. The
vectors that are combined by chunking are also called
parts. To break ties when the number of parts is even,
we can chunk a random vector R with them (that pos-
sibly is a function of the parts).

Chunking can be compared to creating a pointer to
a conventional record (see Fig. 3), which then repre-
sents the record. This is how symbolic (list) struc-
tures are constructed. The main similarity between
the two is uniformity: all chunked records have the
same number of bits, N, and all pointers have the
same number of bits, L. One major difference is that
N is much larger than L (usually L < 30), and the
other, which is related to the first, is that a conven-
tional pointer hides its relation to the contents of the
record, whereas chunking leaves the parts visible.

Visibility of Parts. When K codewords are
chunked, the resulting codeword bears more than
chance resemblance to its constituent parts. The
smaller K is, the greater the similarity. If K = 3 and if
A, B, and C are random and independent and X = [A
+ B + C], how close is X to A, or PSmith to
name�Pat? The expected (Hamming) distance, rela-
tive to N, is the probability that the corresponding
bits of X and A differ, b(X, A) = Pr{Xn & An}. If a bit
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tional programs are. Figure 3 shows that the same
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tional record, the three-field record of Figure 1c, can
be encoded into a binary vector without fields. Each
field will be distributed fully, over the entire vector,
so that each bit contains some information about
every field. The resulting record is called holo-
graphic or holistic.

Codewords or -vectors. The holistic record is built
of codewords for field names (variables, roles) and
for values that occupy the fields (fillers). All code-
words are long, random bit strings or binary N-vec-
tors; N = 10,000 will be used in our examples. The N
bit positions or coordinates or columns (as in a table
where the vectors are the rows) of a codeword are
independent of each other, and 0s and 1s are equally
probable, p = Pr{1} = 0.5. To encode the record for
Pat Smith, one such codeword is needed for each of
‘name’, ‘Pat’, ‘sex’, ‘male’, ‘age’, and ‘66’. The
codewords are written in boldface: name, Pat, sex,
male, age, and 66.

Binding and chunking. A holistic record is com-
posed in two steps called binding and chunking.
Binding encodes a field, and chunking combines the
fields into a record. Binding is done with coordinate-
wise Boolean Exclusive-OR (XOR, �), so that ‘name
= Pat’ is represented by the 10,000-bit codeword
name�Pat. This corresponds to storing ‘Pat’ in the
name field of a traditional record. Similarly, sex�
male and age�66 encode the other two fields.

The encoded fields are chunked into a holistic
record according to the majority rule. Each bit of the
record will be a 0 or a 1 according to which of them
appears more often in that position, or column, in the
(three) vectors that are being chunked. When the
number of chunked vectors is even and there are ties,
they are broken at random with probability 1/2. The

composed record also has N bits, with 0s and 1s
equally probable, and thus it can, in turn, be assigned
as a value to a field (i.e., bound to a variable) and
chunked into further N-bit records. This property
makes the code recursive.

The majority rule can be realized as a thresholded
sum: by thresholding the columnwise sums at half the
number of chunked vectors. The holistic record for
Pat Smith—the encoding of ‘name = Pat & sex =
male & age = 66’—can then be expressed as

PSmith = [name�Pat + sex�male + age�66]

where the brackets […] indicate thresholding. The
vectors that are combined by chunking are also called
parts. To break ties when the number of parts is even,
we can chunk a random vector R with them (that pos-
sibly is a function of the parts).

Chunking can be compared to creating a pointer to
a conventional record (see Fig. 3), which then repre-
sents the record. This is how symbolic (list) struc-
tures are constructed. The main similarity between
the two is uniformity: all chunked records have the
same number of bits, N, and all pointers have the
same number of bits, L. One major difference is that
N is much larger than L (usually L < 30), and the
other, which is related to the first, is that a conven-
tional pointer hides its relation to the contents of the
record, whereas chunking leaves the parts visible.

Visibility of Parts. When K codewords are
chunked, the resulting codeword bears more than
chance resemblance to its constituent parts. The
smaller K is, the greater the similarity. If K = 3 and if
A, B, and C are random and independent and X = [A
+ B + C], how close is X to A, or PSmith to
name�Pat? The expected (Hamming) distance, rela-
tive to N, is the probability that the corresponding
bits of X and A differ, b(X, A) = Pr{Xn & An}. If a bit
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The above expression gives us

Patv = [Pat + name�sex�male + name�age�66]

which shows that, due to its structure, Patv resembles
also the vectors name�sex�male and name�age�
66 (b = 0.25). But these are not valid codewords and

therefore they are not in the clean-up memory. They
act merely as random noise (their distance to valid
codewords is 0.5 ± 0.005).

Figure 5 summarizes holistic encoding of a con-
ventional record of Figure 1c and extracting a “field”
from the holistic record.

name

Pat

sex

male

66

age

0 0 1 1 1 … 1 1

1 0 0 1 0 … 0 1
1 0 1 0 1 … 1 0 name = Pat�

1 0 0 0 1 … 1 0

1 1 1 1 1 … 0 0
0 1 1 1 0 … 1 0�

1 0 0 1 0 … 0 0

0 1 1 1 0 … 0 0
1 1 1 0 0 … 0 0�

sex = male

age = 66

2 2 3 1 1 … 2 0 (+)

> 3/2

1 1 1 0 0 … 1 0

0 0 1 1 1 … 1 1
1 1 0 1 1 … 0 1 �

PSmith (A)

name
5 Pat

CLEAN-UP
MEMORY

1 0 0 1 0 … 0 1Pat (B)

Figure 5. Holistic encoding and decoding. ‘name = Pat & sex = male & age = 66’ has been composed into the
holistic record PSmith (A), and then the name has been extracted from it (B). Codewords are random 10,000-
bit strings, � is bitwise Boolean XOR, and bitwise sums (+) are thresholded at 3/2, constituting the majority
rule. ‘5 Pat’ means that the result is approximate but close enough for the Clean-up Memory to identify it.

Encode:  (including  compression)

Original  framework:  Plate  1991,  1993;;  figures  from  Kanerva 1997
(here  XOR  example;;  can  also  use  circular  convolution  to  encode)
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Figure 2 makes the point that two records that dif-
fer from each other minimally can mean very differ-
ent things. It demonstrates that traditional data
representation is unstable in the same sense as tradi-
tional programs are. Figure 3 shows that the same
information can take very different forms.

3. DISTRIBUTING THE RECORD
In this section we see how the information of a tradi-
tional record, the three-field record of Figure 1c, can
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field will be distributed fully, over the entire vector,
so that each bit contains some information about
every field. The resulting record is called holo-
graphic or holistic.

Codewords or -vectors. The holistic record is built
of codewords for field names (variables, roles) and
for values that occupy the fields (fillers). All code-
words are long, random bit strings or binary N-vec-
tors; N = 10,000 will be used in our examples. The N
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independent of each other, and 0s and 1s are equally
probable, p = Pr{1} = 0.5. To encode the record for
Pat Smith, one such codeword is needed for each of
‘name’, ‘Pat’, ‘sex’, ‘male’, ‘age’, and ‘66’. The
codewords are written in boldface: name, Pat, sex,
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Binding and chunking. A holistic record is com-
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fields into a record. Binding is done with coordinate-
wise Boolean Exclusive-OR (XOR, �), so that ‘name
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name�Pat. This corresponds to storing ‘Pat’ in the
name field of a traditional record. Similarly, sex�
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record will be a 0 or a 1 according to which of them
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number of chunked vectors is even and there are ties,
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composed record also has N bits, with 0s and 1s
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makes the code recursive.
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sum: by thresholding the columnwise sums at half the
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where the brackets […] indicate thresholding. The
vectors that are combined by chunking are also called
parts. To break ties when the number of parts is even,
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sibly is a function of the parts).

Chunking can be compared to creating a pointer to
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tures are constructed. The main similarity between
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same number of bits, N, and all pointers have the
same number of bits, L. One major difference is that
N is much larger than L (usually L < 30), and the
other, which is related to the first, is that a conven-
tional pointer hides its relation to the contents of the
record, whereas chunking leaves the parts visible.

Visibility of Parts. When K codewords are
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smaller K is, the greater the similarity. If K = 3 and if
A, B, and C are random and independent and X = [A
+ B + C], how close is X to A, or PSmith to
name�Pat? The expected (Hamming) distance, rela-
tive to N, is the probability that the corresponding
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The above expression gives us

Patv = [Pat + name�sex�male + name�age�66]

which shows that, due to its structure, Patv resembles
also the vectors name�sex�male and name�age�
66 (b = 0.25). But these are not valid codewords and

therefore they are not in the clean-up memory. They
act merely as random noise (their distance to valid
codewords is 0.5 ± 0.005).

Figure 5 summarizes holistic encoding of a con-
ventional record of Figure 1c and extracting a “field”
from the holistic record.
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Original  framework:  Plate  1991,  1993;;  figures  from  Kanerva 1997
(here  use  XOR;;  can  also  use  circular  convolution  inverse)
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Figure 2 makes the point that two records that dif-
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information can take very different forms.
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In this section we see how the information of a tradi-
tional record, the three-field record of Figure 1c, can
be encoded into a binary vector without fields. Each
field will be distributed fully, over the entire vector,
so that each bit contains some information about
every field. The resulting record is called holo-
graphic or holistic.

Codewords or -vectors. The holistic record is built
of codewords for field names (variables, roles) and
for values that occupy the fields (fillers). All code-
words are long, random bit strings or binary N-vec-
tors; N = 10,000 will be used in our examples. The N
bit positions or coordinates or columns (as in a table
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independent of each other, and 0s and 1s are equally
probable, p = Pr{1} = 0.5. To encode the record for
Pat Smith, one such codeword is needed for each of
‘name’, ‘Pat’, ‘sex’, ‘male’, ‘age’, and ‘66’. The
codewords are written in boldface: name, Pat, sex,
male, age, and 66.
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posed in two steps called binding and chunking.
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fields into a record. Binding is done with coordinate-
wise Boolean Exclusive-OR (XOR, �), so that ‘name
= Pat’ is represented by the 10,000-bit codeword
name�Pat. This corresponds to storing ‘Pat’ in the
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male and age�66 encode the other two fields.
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record according to the majority rule. Each bit of the
record will be a 0 or a 1 according to which of them
appears more often in that position, or column, in the
(three) vectors that are being chunked. When the
number of chunked vectors is even and there are ties,
they are broken at random with probability 1/2. The

composed record also has N bits, with 0s and 1s
equally probable, and thus it can, in turn, be assigned
as a value to a field (i.e., bound to a variable) and
chunked into further N-bit records. This property
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The majority rule can be realized as a thresholded
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male & age = 66’—can then be expressed as
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where the brackets […] indicate thresholding. The
vectors that are combined by chunking are also called
parts. To break ties when the number of parts is even,
we can chunk a random vector R with them (that pos-
sibly is a function of the parts).

Chunking can be compared to creating a pointer to
a conventional record (see Fig. 3), which then repre-
sents the record. This is how symbolic (list) struc-
tures are constructed. The main similarity between
the two is uniformity: all chunked records have the
same number of bits, N, and all pointers have the
same number of bits, L. One major difference is that
N is much larger than L (usually L < 30), and the
other, which is related to the first, is that a conven-
tional pointer hides its relation to the contents of the
record, whereas chunking leaves the parts visible.

Visibility of Parts. When K codewords are
chunked, the resulting codeword bears more than
chance resemblance to its constituent parts. The
smaller K is, the greater the similarity. If K = 3 and if
A, B, and C are random and independent and X = [A
+ B + C], how close is X to A, or PSmith to
name�Pat? The expected (Hamming) distance, rela-
tive to N, is the probability that the corresponding
bits of X and A differ, b(X, A) = Pr{Xn & An}. If a bit

PSmith

sexname age

malePAT _ _ _ _ _ _ _ _ _ 66
PSmithF

611 . . . . . . . . . . . . . . . 60 62 . . . . 68
femalePAT _ _ _ _ _ _ _ _ _ 66

Figure 2. Two very different Pat Smiths, two very
similar bit strings.

1 . . . . . . . . . . 32

PSmith
611 . . . . . . . . . . . . . . . 60 62 . . . . 68

sexname age

malePAT _ _ _ _ _ _ _ _ _ 66

PSmith2
1 9 . . . . . . . . . . . . . . 682 . . . . . 8

sex nameage

male PAT _ _ _ _ _ _ _ _ _66

Pointer to PSmith,
a memory address

Figure 3. Three representations of PSmith, three
very different bit strings.

Decode:

361

The above expression gives us

Patv = [Pat + name�sex�male + name�age�66]

which shows that, due to its structure, Patv resembles
also the vectors name�sex�male and name�age�
66 (b = 0.25). But these are not valid codewords and

therefore they are not in the clean-up memory. They
act merely as random noise (their distance to valid
codewords is 0.5 ± 0.005).

Figure 5 summarizes holistic encoding of a con-
ventional record of Figure 1c and extracting a “field”
from the holistic record.

name

Pat

sex

male

66

age

0 0 1 1 1 … 1 1

1 0 0 1 0 … 0 1
1 0 1 0 1 … 1 0 name = Pat�

1 0 0 0 1 … 1 0

1 1 1 1 1 … 0 0
0 1 1 1 0 … 1 0�

1 0 0 1 0 … 0 0

0 1 1 1 0 … 0 0
1 1 1 0 0 … 0 0�

sex = male

age = 66

2 2 3 1 1 … 2 0 (+)

> 3/2

1 1 1 0 0 … 1 0

0 0 1 1 1 … 1 1
1 1 0 1 1 … 0 1 �

PSmith (A)

name
5 Pat

CLEAN-UP
MEMORY

1 0 0 1 0 … 0 1Pat (B)

Figure 5. Holistic encoding and decoding. ‘name = Pat & sex = male & age = 66’ has been composed into the
holistic record PSmith (A), and then the name has been extracted from it (B). Codewords are random 10,000-
bit strings, � is bitwise Boolean XOR, and bitwise sums (+) are thresholded at 3/2, constituting the majority
rule. ‘5 Pat’ means that the result is approximate but close enough for the Clean-up Memory to identify it.

Compare  to  clean  items  we  have
in  memory  (Pat,  Bob,  etc)

Original  framework:  Plate  1991,  1993;;  figures  from  Kanerva 1997



See  supplementary  material  (can  be  learned  within
a  spiking  neural  network)

In  Eliasmith paper:

the working memory hierarchy in Spaun cover large portions of prefrontal and parietal cortex

(36,37).

The networks that employ compression use circular convolution to perform compression

(29). This is an example of a defined compression operator for generating semantic pointers

(this operator can also be learned in a spiking network (29)). This operator can be thought of

binding two vectors together (38). Consequently, serial memories are constructed by binding

the semantic pointer of the current input with its appropriate position, e.g.,

MemoryTrace = Position1⌦ Item1 + Position2⌦ Item2 + ... (7)

where Item semantic pointers are the semantic pointers to be stored (numbers in Spaun), and

Position semantic pointers are internally generated position index semantic pointers. Posi-

tion indices are generated using random unitary base semantic pointers, Base, where the next

position index is generated by successive convolution, e.g.,

Position1 = Base

Position2 = Position1⌦ Base

Position3 = Position2⌦ Base

... .

This allows for the generation of as many positions as needed to encode a given list. A unitary

vector is one which does not change length when it is convolved with itself. In the figures in the

main text Position1 is written as P1, and so on.

The overall memory trace is a sum of this encoding through two memory pathways, which

have different decay dynamics. In our past work, this approach to working memory has been

shown to reproduce human results on 7 different working memory experiments (including free

13

The  items  are  numbers  (digits)  in  SPAUN
Positions  are  for  instance  positions  in  list  



SPAUN:  main  approaches  used

• Sematic  pointer  architecture  and  firing  patterns

• Neural  Engineering  Framework

• Implemented  as  Integrate  and  Fire  neurons



• Neural  Engineering  Framework

A  group  of  neurons  can  represent  a  vector  space  
over  time,  and  connections  between  neurons  can  
compute  functions  on  those  vectors.  Provides  
methods  to  determine  what  these  connections  
should  be  to  compute  a  given  function.

Ex:  Visual  model  includes  receptive  fields  that  are
essentially  learned  (like  V1  filters).  Spiking  activity
can  be  specified  on  the  neural  population



SPAUN:  main  approaches  used

• Sematic  pointer  architecture  and  firing  patterns

• Neural  Engineering  Framework

• Implemented  as  Integrate  and  Fire  neurons



Leaky  Integrate  and  Fire  Model

• Describes  some  properties  of  voltage  change  over  time
and  spiking  activity

• Parameters  correspond  to  known  properties  of  neurons
(and  electrical  circuits)

• Simple  (doesn’t  model  biophysical  detail;;  compare  to
Hodgkin  Huxley)

• Simple  (DE  can  be  solved,  example,  in  simple  version  using    
separable  DE!)

• Simple  (widely  used  in  brain  modeling,  scales  up  to  networks
of  neurons)



Leaky  Integrate  and  Fire

)(tI
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Leaky  Integrate  and  Fire

RC=τ

Assume  constant  current



Leaky  Integrate  and  Fire  DE

C
Iv

dt
dv

+
−

=
τ

• Solving:

)1()0()( // ττ tt eRIetvtv −− −+==

• DE

RC=τ

• Change  with  time:  v(t),  t

• Assume  constants:  I,  R,  C,



Back  to  SPAUN  and  tasks…



Copy  drawing  task

https://youtu.be/WNnMhF7rnYo



Copy  Drawing  Task.  Captures  in  drawing  the  particular  digit  style  
(eg,  of  the  2)  shown

changes do not adversely affect the performance
of the model on other tasks. Smaller-scale models
cannot provide even this minimal demonstration,
because they lack the variety of tasks necessary
to demonstrate robustness. As such, Spaun pro-
vides a distinct opportunity to test learning algo-
rithms in a challenging but biologically plausible
setting. More generally, Spaun provides an op-
portunity to test any neural theory that may be
affected by being embedded in a complex, dynam-
ical context, reminiscent of a real neural system.

However, Spaun has little to say about how
that complex, dynamical system develops from
birth. Furthermore, Spaun has many other limi-
tations that distinguish it from developed brains.
For one, Spaun is not as adaptive as a real brain,
as the model is unable to learn completely new
tasks. In addition, both attention and eye position
of the model is fixed, making Spaun unable to
control its own input. Also, its perceptual and con-
ceptual representations are largely limited to the
space of digits from 0 to 9. Anatomically, many

areas of the brain are missing from the model.
Those that are included have too few neurons and
perform only a subset of functions found in their
respective areas. Physiologically, the variability of
spiking in the model is not always reflective of
the variability observed in real brains (table S3).
However, we believe that, as available computa-
tional power increases, many of these limitations can
be overcome via the same methods as those used
to construct Spaun (supplementary section S2.4).

Even in its current form, Spaun offers a dis-
tinctly functional view and set of hypotheses
regarding the neural mechanisms and organi-
zation that may underlie basic cognitive functions.
Consequently, Spaun opens new avenues for test-
ing ideas about biological cognition under bi-
ologically plausible, more complex, and more
functional settings than previously available.
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Fig. 4. Population-level behavioral data for the WM task. Accuracy is shown as a function of position and list
length for the serial WM task. Error bars are 95% confidence intervals over 40 runs per list length. (A) Human
data taken from (18) (onlymeans were reported). (B) Model data showing similar primacy and recency effects.
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Fig. 3. Time-course plots for two Spaun tasks. (A) Results of the copy-drawing task. The input/output
pairs for 20 additional runs are shown to the right. (B) Results of an example run of the RPM task,
plotted using the same method as described in Fig. 2C. See text for details.
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Raven’s  progressive  matrix  task

https://youtu.be/qcZe-2eWaeM



Raven’s  Progressive  Memory  Task

Learn:  1  11  111
4  44  444

Show  input:  5  55

Output?  555

(also  other  patterns:  1  2  3;;  5  6  7..
learns  the  “rules”:  3  4  ?)



• Bridge  gap  between  complex  behaviors
and  complex  neural  activity

• Performs  whole  set  of  simulated  tasks  
associated  with  human  cognition

• Large  scale:  2.5  million  neurons

• Principles  of  encoding  decoding  
(and  compression)

• Uses  spiking  models  of  neurons



Limitations?  …



Limitations?  …

• “Little  to  say  about  how  that  complex,  dynamical  
system  develops  from  birth”

• “Not  as  adaptive  as  a  real  brain  …  ”

• “attention,  eye  position  fixed”

• “limited  to  space  of  digits  from  0  to  9”

• “missing  areas  of  the  brain…”



“Even  in  its  current  form,  Spaun offers  a  
distinctly  functional  view  and  set  of  
hypotheses  regarding  the  neural  
mechanisms  and  organization  that  may  
underlie  basic  cognitive  functions.”





Leaky  Integrate  and  Fire  Circuit
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Membrane  voltage  and  spiking


