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arge-scale neural simulations are becom-
I ing increasingly common [see (/) for a
review]. These include the ambitious Blue
Brain Project (2), which has simulated about
1 million neurons m cortical columns and mcludes
considerable biological detail, accurately reflect-
Ing spatial structure, connectivity statistics, and
other neural properties. More recent work has sim-
ulated many more neurons, such as the 1 billion
neurons simulated i the Cognitive Computa-
tion Project (3), which has been hailed as a cat-
scale simulation. A human-scale simulation of
100 billion neurons has also been reported (4).



Although mmpressive scaling has been achieved,
no previous large-scale spiking neuron models have
demonstrated how such simulations connect to a

variety of specific observable behaviors.

Unfortunately, ssmulating a complex brain alone
does not address one of the central challenges for

neuroscience: explammg how complex brain activity
generates complex behavior.
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Bridge gap between complex behaviors
and complex neural activity

Performs whole set of simulated tasks
associated with human cognition

Large scale: 2.5 million neurons
Uses spiking models of neurons

Summarizes a lot of papers/work in lab



Inputs to model: 28 by 28 images of typed
characters

Outputs: movements of physically modeled arm

8 tasks (some modeled more extensivelyin their
other papers)

Refer to model as SPAUN (Semantic Pointer
Architecture Unified Network)



PREFRONTAL
ORTEX CORTEX

Korking memory)



. L u
= Information = Transform = Information & Motor Motor
= Encoding = Calculation = Decoding = Processing & Output
.IIII.IIII.: mussnnnnnnnl IIIIII IIII'

N NN BN BN BN B BB

Action Selection

= hierarchy



Working Memory

.-..- EEEEN :... -...= I..-.......I
. om

a Information = Transform ¥ Information & = Motor =

= Encoding & Calculation = Decoding = " Processing =

l..........-. muessnnnnnnl l..........l

L S N | Y N SR |

|
. . |
i Action Selection = hierarchy



Spiking neurons

Form compressed representation

The specific compression hierarchies in Spaun are
(see Fig. 1B): (1) a visual hierarchy, which com-
presses 1mage mput into lower-dimensional firing
patterns; (1) a motor hierarchy that decompresses
firing patterns m a low-dimensional space to drive
a simulated arm; and (1) a WM, which constructs
compressed firing patterns to store serial position
information.



* Spiking neurons
 Form compressed representation

« 2.5hours to simulate 1 second of data!



https://www.youtube.com/watch?v=g2HHJfovb5E

TEDx talk



https://www.youtube.com/watch?v=dKagFz Wolw&f
eature=youtu.be

Intro video



Motor Cortex

Visual Cortex

WJ

red highly active; blue low



https://youtu.be/vuGDYajWyhU

Reinforcement learning task



https://youtu.be/XxlzmkWyqjY

Serial working memory task



Motor Cortex

Serial working memory task (red highly active;
blue low)



Numbers
WM Task presented Recall numbers

ASP 32647

Visual input: A3 indicated working memory task



Numbers
WM Task presented Recall numbers

A3P 432647

arm

Motor output



Storage
“TWQ”

. 1D | | DLPFC
compress

map compress

image visual FP  concept FP trace FP

Information flow through Spaun during the WM task.
Storage in memory. FP = Firing pattern



Storage Recall
“TWO” “TWO”

Delay
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Information flow through Spaun during the WM task.
Storage in memory. FP = Firing pattern
Delay = delay during task (need working memory)
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Similarity plots (solid colored lines) show the dot product
(i.e., similarity) between the decoded representation
from the spike raster plot and concepts in Spaun’s
vocabulary. These plots provide a conceptual decoding

of the spiking activity
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Fig. 4. Population-level behavioral data for the WM task. Accuracy is shown as a function of position and list
length for the serial WM task. Error bars are 95% confidence intervals over 40 runs per list length. (A) Human
data taken from (18) (only means were reported). (B) Model data showing similar primacy and recency effects.

Things learned earlier and later remembered better; and effect of
number items; have papers with better compatibility — here chose data
best matches the Spaun task



SPAUN: main approaches used
« Semantic pointer architecture and firing patterns
* Neural Engineering Framework

 Implemented as Integrate and Fire neurons



SPAUN: main approaches used
« Sematic pointer architecture and firing patterns
* Neural Engineering Framework

 Implemented as Integrate and Fire neurons



Encode: (including compression)

PSmith = [name®Pat + sex®male + age®66]

sex age name

PSmith male 66 PAT

Pointer to PSmith,
1T 35 a memory address

(But carries semantic information that is
similar but compressed version of original)

Original framework: Plate 1991, 1993; figures from Kanerva 1997



Encode: (including compression)

PSmith = [name®Pat + sex®male + age®66 ]

name

Pat

SeX

male

age

66

10101...10

01110...10

oo111..11
10010...01
10001...10
11111...00
10010...00
01110...00

11100...00

name = Pat

sex = male

22311...20
1

Original framework: Plate 1991, 1993; figures from Kanerva 1997
(here XOR example; can also use circular convolution to encode)



Decode:
PSmith = [name®Pat + sex®male + age®66 ]

11100...10| PSmith (A)
~ Pat 11011...014—@(
+ 00111..11| name

In decoding, we reverse the operation. Due to
compression we retrieve noisy version of original

Original framework: Plate 1991, 1993; figures from Kanerva 1997
(here use XOR; can also use circular convolution inverse)



Decode:
PSmith = [name®Pat + sex®male + age®66 ]

~ Pat

Pat

11011...01

11100...10

Y

~®C

O0O111...11

CLEAN-UP
MEMORY

Y

10010...01

(B)

PSmith (A)

name

Compare to clean items we have
in memory (Pat, Bob, etc)

Original framework: Plate 1991, 1993; figures from Kanerva 1997



In Eliasmith paper:

Memorylrace = Positionl ® Iteml + Position2 Q Item?2 + ...

The items are numbers (digits) in SPAUN
Positions are for instance positions in list

See supplementary material (can be learned within
a spiking neural network)



SPAUN: main approaches used
« Sematic pointer architecture and firing patterns
* Neural Engineering Framework

 Implemented as Integrate and Fire neurons



* Neural Engineering Framework

A group of neurons can represent a vector space
over time, and connections between neurons can
compute functions on those vectors. Provides
methods to determine what these connections
should be to compute a given function.

Ex: Visual model includes receptive fields that are
essentially learned (like V1 filters). Spiking activity
can be specified on the neural population



SPAUN: main approaches used
« Sematic pointer architecture and firing patterns
* Neural Engineering Framework

* Implemented as Integrate and Fire neurons



Leaky Integrate and Fire Model

 Describes some properties of voltage change over time
and spiking activity

« Parameters correspond to known properties of neurons
(and electrical circuits)

« Simple (doesn’t model biophysical detail; compare to
Hodgkin Huxley)

« Simple (DE can be solved, example, in simple version using
separable DE!)

« Simple (widely used in brain modeling, scales up to networks
of neurons)



Leaky Integrate and Fire
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Leaky Integrate and Fire

spike

vV>threshold?- - - - 4 - J4-4J-4-4—- 44— — — — —

membrane
voltage v

Current
Leak
1 Assume constant current
av -v I

dad v C



Leaky Integrate and Fire DE

'DE - dv _-v 1
dd 1©v C

« Change with time: v(t), t
RC

 Assume constants: |, R, C, T

* Solving:

v(t)=v(t=0)e"" +RI(1-e"'")



Back to SPAUN and tasks...



https://youtu.be/WNnMhF7rnYo

Copy drawing task
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Copy Drawing Task. Captures in drawing the particular digit style
(eg, of the 2) shown



https://youtu.be/qcZe-2e\WWaeM

Raven’s progressive matrix task



Learn: 111 111
4 44 444

Show input: 5 55

Output? 555

(also other patterns: 12 3; 56 7..
learns the “rules™ 3 4 7?)

Raven’s Progressive Memory Task



Bridge gap between complex behaviors
and complex neural activity

Performs whole set of simulated tasks
associated with human cognition

Large scale: 2.5 million neurons

Principles of encoding decoding
(and compression)

Uses spiking models of neurons



Limitations? ...



Limitations? ...

“Little to say about how that complex, dynamical
system develops from birth”

* “Not as adaptiveas areal brain ...~
« “attention, eye position fixed”
 “limited to space of digits from 0 to 9”

* “missing areas of the brain...”



“Evenin its current form, Spaun offers a
distinctly functional view and set of
hypotheses regarding the neural
mechanisms and organization that may
underlie basic cognitive functions.”






Leaky Integrate and Fire Circuit
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WITH CURRENT | and V(t=0)=0
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Membrane voltage and spiking

spike
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