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Abstract

Current techniques for rigid body simulation run slowly on scenes
with many bodies in close proximity. Each time two bodies collide

or make or break a static contact, the simulator must interrupt the

numerical integration of velocities and accelerations. Even for sim-

ple scenes, the number of discontinuities per frame time can rise to

the millions. An efficient optimization-based animation (OBA) al-

gorithm is presented which can simulate scenes with many convex

three-dimensional bodies settling into stacks and other “crowded”

arrangements. This algorithm simulates Newtonian (second order)

physics and Coulomb friction, and it uses quadratic programming

(QP) to calculate new positions, momenta and accelerations strictly
at frame times. Contact points are synchronized at the end of each

frame. The extremely small integration steps inherent to traditional

simulation techniques are avoided. Non-convex bodies are simu-

lated as unions of convex bodies. Links and joints are simulated
successfully with bi-directional constraints. A hybrid of OBA and
retroactive detection (RD) has been implemented as well. A review
of existing work finds no other packages that can simulate similarly
complex scenes in a practical amount of time.

CR Categories: G.1.6 [Numerical Analysis]: Optimization—
Linear Programming, Quadratic Programming Methodk3.5
[Computer Graphics]: Computational Geometry and Object
Modeling—Physically Based Modelinig3.7 [Computer Graphics]:
Three-Dimensional Graphics and RealisrArimationl.6.8 [Sim-
ulation and Modeling]: Types of SimulationArimation

Keywords:  Animation, Animation w/Constraints, Physically
Based Animation, Physically Based Modeling, Scientific Visual-
ization, Solid Modeling.

1 Introduction

The principles of rigid body simulation have been studied inten-
sively, especially during the last decade when computing power
became more available at affordable cost.

Recent research in this area has generated modern technique
which have been implemented in commercial software packages.
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Figure 1: Simulating stacked bodies is known to be difficult.

Major areas of application are 3D tools for graphics designers and
for the computer game industry. A very creative group of users is
the movie industry. Computer graphics and animation have enabled
film-makers to achieve unprecedented levels of realism in complex
scenes for which conventional techniques of cinematography would
be impossible or too expensive. Simulation techniques also help in
manufacturing and other areas for which it is desirable to visualize
an irreversible process before it is applied in real life.

The outstanding quality of some of today’s animations can be
seen as an experimental proof that existing techniques work. Yet
there are aspects which suggest improvement. Closer examina-
tion reveals that performance problems arise in current algorithms
when the number of bodies in a simulation grows. Stacks of bod-
ies (Fig. 1) are the canonical example where many techniques “go
down on their knees” computationally. This paper suggests a novel

§ppr0ach for rigid body simulation. It is able to handle scenes with

several hundreds of concurrent contact points per frame and large
numbers of solids in a single cluster.

Many researchers have developed excellent simulation tech-
nigues for various applications. Generally, these techniques must
satisfy the need for physical realism and numerical stability, yet
they should be computationally efficient. We feel that stability is an
important feature of any simulation algorithm. Probabilistic reason-
ing suggests that in a scene with many interacting solids, almost all
frames will have degeneracies in the contact geometry. One can-
not ignore bad or hard to compute cases. Baraff has a series of
papers on different issues found in rigid body simulation [2, 4, 3].
Barzel and Barr [6] propose a constraint-based solution. Mirtich de-
scribes a method of conservative advancement in an impulse-based
simulator [19] and a parallelizable timewarp algorithm with which
he was able to simulate an avalanche of hundreds of rocks [21].
Milenkovic’s position-based physics simulates large numbers of



highly interacting non-rotating spheres in an hourglass by minimiz-
ing gravitational energy using linear programming [18]. Stewart
and Trinkle [25] and similarly Sauer and Sicher [24] show how a
linear complementarity (LCP) approach can be employed to simu-
late realistic motion.

Some of these techniques are specialized for particular domains.
Deeper analysis makes it apparent that there is no general algo-
rithm to solve the forward simulation problem due to the difficul-
ties that are involved. Impulse physics is stalled by small time
steps in crowded scenes with many contact points. Even for sim-
ple scenes, the number of steps per frame time can rise to the mil-
lions. Constraint-based approaches occasionally fail due to solution

non-existence. Position-based physics cannot simulate elastic COl"trajectory. Body momenta change when impulies forcesf act
lisions. LCP still has the notion of simulation integration steps that 5 'the body. Impulses directly and instantaneously change the mo-
are smaller than the frame time. Although itis specifically designed menta, whereas forces and their rotational counterpart torques act
to address the small time-step problem, timewarp cannot avoid it gyer time. We adopt the terngsllisionsandstatic contactsor dis-

if all bodies form one large contact group. In general, efficiency continuities. Collisions are contacts with negative normal velocity,
suffers in these techniques due to small integration time steps and; e - interpenetration. They are resolved with impulses to instanta-
computations that are done between frames. Huge amounts of COMneously change the contact normal velocity to non-penetrating (re-
putations are used to simulate motion that the human eye does NOkeding). Forces act at static contacts with zero (or near zero in
even see. _ _ practice) normal velocity. Contact forces must prevent the static
_ Itis true that the micro-steps taken in-between frames affect the contacts from accelerating into each other, i.e. the contact normal
final outcome of a simulation. However, in many cases, it is per- gcceleration must be equal to or greater than zero. The laws of

fectly sufficient to simulateplausiblemption._ The OBA rn_ethod physics are modeled and implemented by any physical simulator.
presented here allows the use of a fixed time step, which we setTne following section summarizes these simulators.

equal to the frame time. Bodies follow their Newtonian trajectories

(second order physics). Collisions are resolved by enforcing non-

overlap constraints. We use optimization to compute new body po- 2.2 Simulation Methods

sitions. For all contact points, impulses and contact forces are com- . . . .

puted with Coulomb friction. We have implemented a simulator, There are different types of simulators, which are sometimes spe-
and the results are visually convincing. The method is well suited Cialized to simulate a certain kind of physical system, such as par-
to simulate large stacks of bodies with a high number of static con- ticles, solids, fluids, deformable objects like cloth, unigue systems

detect
collisions

find new
positions

respond to
collisions

Figure 2: The simulation loop.

tacts.

The following section gives a brief introduction to rigid body
dynamics and simulation methods. Section 3 describes the OBA
method, and Section 4 presents experimental results and some im
plementation details.

2 Simulation Basics

In order to provide a good basis for the discussion of our work, this
section briefly reviews simulation basics. Experts in the field may
skim Section 2.1 to acquaint themselves with the notation in our

paper.

2.1 General Rigid Body Dynamics

Any book on theoretical mechanics, e.g. Goldstein [11], provides
the principles of three-dimensional rigid body motion. It is conve-

without rotationetc [2, 4, 19, 18, 5, 23]. Most current simulators
have in common a basic modular construction. One module cal-
culates new positions as a body follows its trajectory according to
Newtonian physics. Another module must detect if any pair of bod-
ies overlaps at any point of the trajectory. A third module resolves
these collisions.

The heart of the simulator is a loop (Fig. 2) that processes the
bodies’ states repeatedly to generate snapshots of individual frames.
When played back, those frames constitute a computer-simulated
movie that displays a system of bodies in motion. In the simula-
tion loop, physical body states are integrated forward in time. If a
collision between a pair of bodies occurs, i.e. their computed dis-
tance diminishes to zero, the simulation is stopped, and impulses
and forces are applied to resolve collisions and static contacts. At
each full frame time, a redraw command is issued and a snapshot
of the new body states is displayed.

When the number of bodies in a scene becomes large or if the
bodies are tightly confined, the number of collisions rises. More

nient to express some body properties in a fixed coordinate systemcollisions require more iterations of the simulation loop to simulate

that rests in the body’s center of mass. Bodies have linear momen-
tump and angular momentuinwith associated velocitiesandw.
The relation between them is established by the mags = mv,
and the inertia tensdr, 1 = Iw. Similarly, we have linear accelera-
tion a and angular acceleratienfor the bodies. The body transla-
tion with respect to the world coordinate origin is denoteckbgnd
the rotation matriXR gives the orientation of the body with respect
to the body'’s fixed system. The net positi@Rorg in world coordi-
nates of a poingpedy in body coordinates on the body is calculated
according toquorid Rdpogy + x. It is sometimes convenient
to express the orientation as a three-dimensional rotation vector
The vectorr points along the rotation axis and has magnitiije
equal to the angle of rotation in radians counterclockwise about the
rotation axis.

These are the basics of rigid body physics as they are applied
in rigid body simulation. The body momenta determine the body

the same duration of motion. Actually, a scene does not have to be
very complex to have many collisions: put a single elastic solid into
a container just larger. The number of collisions between frames
is proportional tal /o times the frame time. As — 0, the number
of collisions between frames goes to infinity. Imagine a ping-pong
paddle being brought down over a bouncing ball on a table, causing
the ball to bounce increasingly faster. This “bad” case occurs even
when only a few bodies settle into a stack: each middle body is
caught in a shrinking “container” formed by the body above and
the body below. Hence, the admissible time step goes to zero and
thus slows the simulation. For example, an admissible time step
of 107% sec. requires 33,333 iterations of the simulation loop to
advance the system for just one frame ¢80 sec.

Mirtich gave a very comprehensive summary of the problems
with traditional techniques in [21]. In the same paper, he presented
a parallelizable timewarp algorithm that uses contact groups and



desynchronizes the simulation loop for all bodies. Particularly well

suited for multiprocessor implementation, the algorithm makes use

of discrete properties in rigid body simulation to achieve a speed up.

This has been demonstrated to work excellently for a large number

of bodies as long as they form multiple contact groups. If all bodies

are stacked and are therefore members of essentially one group, the n
performance gain can no longer be achieved, as the motion of the

individual solids cannot be desynchronized. We will now introduce

the structure of our method and its individual components.

3 OBA Simulation of Rigid Bodies

Our proposed paradigm, optimization-based animation (OBA), also

follows the modular construction of other simulators. It consists

of three stages to update positions, momenta, and forces. PosiFigure 3: Separating plane between bodkeand B with normal
tion update replaces the first two modules in Figure 2. It finds new vectorn.

body positions but also provides the contact points at the new po-

sitions. Momentum and force computation resolve collisions and

static contacts at the new positions. A Coulomb friction model is generalization of the rotational compaction algorithm. In con-

applied. Each of the stages is implemented as a quadratic programyast to his position-based approach, our bodies elastically collide
ming problem. (bounce), are subject to friction, and follow Newtonian (parabolic)

OBA uses a fixed time stefat, which we set equal to the frame  trajectories. We therefore achieve a higher level of physical realism.
time (1/30 sec.). For each step, each body héargetpositionand  To do so, we do not minimize gravitational energy in the position
orientation, which is where its trajectory would take it in one time ypdate, but instead we set up arificial energy potential that at-
step in the absence of collisions. An optimization algorithm moves tracts solids to where they want to be at the next frame time: their
the bodiesas close as possibke their target positions and orien-  target positions (and orientations). At timeur, all bodies are at
tations under the constraint that bodies cannot overlap. If bodies their (non-overlapping) positions in the current frame. Target
overlap at their targets, the optimization translates and rotates themposition and orientation of a body is the location where the body
the minimal amount to get rid of the overlap. The overall motion would be at timeftgr = tcur + At, where At is the frame time,
of bodies must be physical within limits where physical realism is if it followed its Newtonian trajectory in the absence of the other
actually visible. bodies. Therefore, two bodieA and B may be overlapping at

In crowded scenes, traditional simulators take extremely many the target timeigt, and this is what we need to prevent from hap-
micro-steps, and thus they require huge amounts of computationpening. The next section describes a non-linear constraint to keep
and simulate motion that is not visible in the final video. Our OBA  hodies separated. Section 3.1.2 describes possible positive-definite
technique can compute plausible visible states at frame times with- gbjectives to attract bodies to their target positions. Section 3.1.3
out executing all the steps in-between. It tends to align neighboring shows how to linearize the non-overlap constraint. Section 3.1.4
solids so they have multiple contact points. In essence, all colli- gives an algorithm using iterated quadratic programming to mini-
sions and static contacts that would have occurred during a time mize the objective under the non-linear separation constraint.
step aresynchronizedat the end of each time step. On the other
hand, body motion islesynchronizeds each body can advance as
much as possible until the next frame. Hence, it becomes tractable3.1.1 Separating Plane Constraints
to simulate large numbers of bodies in close proximity.

OBA alters the positions of bodies and the times at which they
collide. Consequently, it is not suitable for applications that require
microscopically accurate motion. However, it can be employed in
situations where a plausible realistic motion is sufficient. Chen-
ney and Forsyth [8] have shown plausible motion to be useful for
animation. Animating dancing beverage cans is different from sim-
ulating the lunar module landing on the moon. While the accuracy
of the latter might affect a person’s life span, any plausible motion
of the former should be sufficient. For crowded scenes in which
bodies bounce multiple times between frames, the human eye ha
no chance of accurately predicting where a body will be at the next
frame time. In this case, a physically plausible solution is as rea-
sonable as true physics. Fortunately, a physically plausible solution
is computationally much less expensive than true physics.

Suppose that the system Hasonvex polyhedral bodies. Two con-
vex bodies do not overlap if and only if there exists a separating
plane between them (Fig. 3)Specifically, convex bodieA andB

do not overlap if and only if there exists a unit vectoand scalar

d such that,

Vao € A)n-q, <d and Vg, € B,n-qp > d. (1)

Geometricallyn is the unit vector perpendicular to the separating
Splane, and is the plane’s distance from the origin. Since the bodies
are polyhedral, it suffices to check Equation 1 Verticesq, and
q» of A andB, respectively. The separating plane constraint is
non-linear because bothandq,, (or qs) are variables.

Each body starts at a positioef"" and orientatiorR"" in the
current frame. The vector'® and orientation matriR'9' denote

its target position: where the body wants to be in the next frame
3.1 Position Update if overlaps were ignored. If no pair of bodies overlaps at the tar-

gets, we just set each positisnand orientatiorR. equal tox'9!

Milenkovic's position-based physicssed linear programming to  andR!9'. However, if some pairs are overlapping at the targets, this
update the positions of bodies [18]. This work was a generalization must be resolved. First, all such potentially overlapping pairs of
of an algorithm for translationatompactionof two-dimensional bodies are detected. We can employ any efficient collision detec-
part layouts [14]. He has also generalized the compaction algorithm tion algorithm, such as I-COLLIDE [9], V-Clip [20] or SWIFT [10].
to allow rotations in two dimensions [17]. However, the position
update algorithm we present here is not simply a three-dimensional  Two-dimensional figures are sometimes used for simplicity.




Currently, we use bounding boxes for pre-sorting and an exact dis- will not generate it, because the simplex method always chooses
tance finding algorithm based on Lin-Canny [15]. It uses witnesses an extreme (vertex) solution of the feasible solution space. Instead,
and Voronoi regions to exploit coherence. If the distance found is the simplex method will generate an “unnatural” solution for which

below a threshold and declared as overlapping, we insert the pairone object sits still and pushes the other one unit to the side, and the

into a list of close pairs. choice of the “winning” object might vary arbitrarily from frame to
frame. The quadratic objective, corresponding to an artificial “en-
3.1.2 Objective ergy” potential, yields positions which are more natural and stable.

This section defines the objective used in the OBA position update.
This objective is a positive-definite quadratic function of the bod-
ies’ current positions and orientations and their target positions and This section describes how to linearize the separation constraints in
orientations. Since Equation 1 is non-linear, we will calculate a Equation 1. Letn andd denote a separating plane for bodyat

3.1.3 Linearizing the Separation Constraints

perturbed positiokP®" and orientatiorRP®". Initially, x = x®" Xq, Rq andB atx;, Ry. If A does not toucB, thenn points in
andR = RS After each perturbation, we sat = x"" and the direction of a shortest line segment franto B. Letn, n,,
R = RP®. The variablesAx and AR denote the perturbations, andn, = n x n, form an orthonormal basis. Vecta®' is the
where perturbed version ah with perturbation,
Ax=xP"—x and AR =RPPR™". 2)

) . ) An =0 —n=~d,n, + Oyny, @)
Thetarget perturbationsare the perturbations which would move
the body to its target: whered,. ands, are scalars. (For small perturbations of unit vector

gt gt - gtey 1 n, An is almost perpendicular ta.) Sinced has no non-linear
Ax¥ =x>—-x and AR =R R . (3) terms, it just appears as a variable.

body - .
Let Ar, ArP®, and Ar'9 denote the vector representation for the If " is the body coordinates of a vertex on bodyA, then

orientation matriceaAR, ARP®, andAR'9!, respectively. Define its unperturbed and perturbed world coordinates are

thetarget deficitsA Ax and A Ar as follows: bod

do = Raqq her =

Y+x, and ¢ = RgerqBOdy—&— xPer,

_ ALl _ _ALdgt
AQX = Ax — Ax and AAr=Ar—Ar=.  (4) Combining these with Equation 2 yields,
These represent the distance from the current perturbations to the
target perturbations. When they are zero (vectors), the body is at its
target position.

We want to move each body as close as possible to its desired
target position, i.e. minimize its distance to the target. The diameter
D ofapody isthe Iarggstdistance between two vertices on the body. &P~ Qo + Axa + ATy X (qa — Xa). 9)
The objective fork bodies is

q*" = AR, (da — Xa) + xPer (8)

We linearize this formula using the small-angle approximation
ARw ~ w + Ar X w:

N Plugging Equations 7 and 9 into EquationdP§" - ' < d),

Z AAX; - AAX; + DI AAr; - AAr;, (5) (n+0zn5 +dyny) - (da + AXq + Arg X (qa — Xa)) < d. (10)

=1

o ) In this inequality, the variables (unknowns) ak&,, Arg, 0z, dy,
where the subscript refers to that property of thith body. We  andd. We carry out the multiplication, throw away quadratic terms,
have to weight the rotational part iy so that it has the same units  move all terms with variables to the left and terms with constants to
as the translational part. A rotatidkr moves a poing on the body the right, and apply the identity, - (b x ¢c) = —(a x ¢) - b. This
by at most a distanc@r| |q|, andD is an upper bound ofy|. yields the linearized constraint,
We also tested the following objective:

n-Axqg — (n X (ga — Xa)) - Arg

k T +(n’1‘ . Cla)(sac + (ny . qa)5y —d < —-n-qa. (11)
Z miAAx; - AAx; + AArTT, AAr;. (6)
i—1 Similarly, for a vertexq, on bodyB from the second part of Equa-
tion 1,
The linear and angular parts are weighted by the body mass and in-
ertia respectively. This way, a heavier body pushes a lighter body n-Axy — (n x (qp — xp)) - Ary (12)
out of the way. One might argue this makes more sense physically. 4Nz Q)+ (ny - qQp)0y —d > —n-qp.

Both methods work well in practice with slight differences in sim-
ulation stability in favor of (5). If the bodies in a scene vary greatly 31.4
in size, shape, and density, (6) might be a better choice.

Note: we use a quadratic objective because a linear objective canFor each body, the initial values of and R are x®" and R°Y".
perturb the bodies in a highly unrealistic manner. To see why, con- After each perturbation, we s&t = x + Ax andR = ARR,
sider a simple one-dimensional scene with two unit line segment whereAR is the matrix format ofAr. To calculateAx andAr, we
objects centered at= 0. If 1 andx represent the translations of  solve a QP. Each body has twelve variables, the componerts of

Iterative Update

these objects, the non-overlap constraintds— z; > 1. Minimiz- AAx, Ar, andAAr. Each close pair has three variablés, ¢,

ing the quadratic objective? 4 3 yields (z1, z2) = (—0.5,0.5): andd. Each body requires six linear equality constraints to enforce
each object move8.5 unit. If we use a non-quadratic objective  Equation 4. Each close pair has the two linear inequality constraints
such adz1| + |z2|, then(z1,z2) = (—1,0) or (z1,z2) = (0,1) of Equations 11 and 12. The objective is given by Equation 5 or 6.
are both equally valid solutions which minimize the objective. Note: we do not use the computed valuesigfandd, to update
While (z1,z2) = (—0.5,0.5) is also a valid solution for this lin- n. Instead, the separating plane normal is calculated from the new

ear objective, the simplex method for solving linear programs (LP) positions and orientations of the bodies.



Input: current and target positions for each body
Output: new current position for each body

S—0
repeat
find current close pairs and add.$o
for all close pairs? = (A, B,C) € S
calculate the separating plate, d) for A andB
find current critical vertices cA andB with respect
to (n, d) and add them t@”
solve QP
if infeasible
rollback all body positions
else
update the current positions
while QP was infeasibler
critical vertices were addear
objective was improved

Figure 4: Explanation of critical vertices.

Table 1: Position update algorithm.

The objective is nicely quadratic and positive-definite, but the
original non-overlap constraints are non-linear and non-convex.
Solving this particular optimization is NP-hard in general. How- setC of critical vertices for that pair. Once a vertex Af or B is
ever, after linearizing our constraints, we can solve a series of QPsadded taC, it is never removed. Similarly, close pairs are added to
that converge to a local minimum of the objective. The original but never removed from a sétof close pairs.
objective (3.1.2) and the linearized constraints (3.1.3) yield a QP,
which when solved produces perturbations on the current positions3 1 5 Bounds
that move the system towards a local minimum of the objective.
When the system reaches a local minimum, the perturbation goes toBecause of the linearization, the solution to an individual QP may
zero (numerically), and the algorithm stops the iteration. Since the result in positions and orientations that slightly overlap the solids,
last perturbation is zero, the small-angle approximations and othereven if all close pairs and critical vertices are known. However,
linearizations become exact, and thus the system is non-overlappingeach subsequent QP re-asserts the non-overlap constraints. If the it-
at a local minimum. erated QPs converge, then they must converge to a non-overlapping
configuration. Hence, the position update preserves the non-overlap
constraint. Note: in the overlapping case, the “separating plane”
normaln points in the direction thaB could translate, to most

In order to do the position update efficiently, we have to keep the SWiftly eliminate the overlap (equivalently;n points in the direc-
size of each QP as small as possible. Each constraint in the thlon that A could translate, to most swiftly ellmlna}te the overlap).
refers to a vertex on a body and a separating plane with respectThe same formula for the distandeof the separating plane from

to another body. We cannot simply add constraints for every ver- the origin,

tex with respect to every separating plane. Instead, we employ

Milenkovic's reckless dynamic update approach [17]. For each d= 1 (max n-ge -+ min n- CIb> , (13)
close pair of bodies, we first findritical verticesand add con- 2 \aa€A a,€B

straints (Equation 11 or 12) only for these. Critical vertices are ) . i
those which lie within a slab of the separating plane at the current WOrks in all three cases: separated, touching, overlapping.

positions. In Figure 4, only one true contact is present, but four  DUe to the linearized constraints, it is possible that the solution
vertices &, b, ¢ andd) lie within a critical slab. to a QP would be so badly overlapped that the next QP would be

This approach is indeed reckless because a non-critical VerteXinfeasible. If all critical vertices are known, then even rolling back
might move past the separating plane and result in an overlap. How-"ill not help. ‘In practice, for each iteration we limit the coordi-
ever, this vertex is added as a critical veftéar the next iteration, ~ Nates of each bodyar, the perturbation of the orientation, to lie

and thus we “learn” from our mistakes. Usually, the overlap is not Within the interval[—0.1, +0.1] in radians. This has so far pre-
too bad and solving the next QP will remove it. There is a chance, VeNted an infeasible configuration and has ensured convergence to
however, for the algorithm to paint itself into a corner. If it gets & local minimum of the objective.

stuck in an overlapping configuration which it cannot resolve, it

will produce aninfeasibleQP. If this happens, we roll back a per- 3.2 Collisions and Static Contact Response

turbation (ofall the bodies). In theory, it might be necessary to roll . . ) )

all the way back to the initial non-overlapping (and thus feasible) Section 3.1 described how to construct and use QPs to find feasible
starting configuration of the current frame (although this never hap- Solutions for the positions of solids in animation. When all current
pens in practice)Note: even if the algorithm rolls back, it main-  POsitions are updated, resulting contact points are determined and
tains the current set of close pairs and critical vertices; otherwise, résolved with appropriate bounces and forces. Our position update
it would keep repeating the same mistake. The pseudo-code in Ta-has the tendency to align bodies, and therefore we will have many
ble 1 summarizes the position update algorithm. In the algorithm, Simultaneous contact points. A feature (vertex, edge, or faca) of

a close paitP = (A, B, C) consists of a body, a bodyB, and a and a feature oB touch the separating plane, and these features
intersect at a point, line segment, or convex polygon. That point,

2A vertex is critical if it is on the wrong side of the separating plane even the endpoints of the line segment, or the vertices of that polygon
if it is not in the slab. are the contact points. Under this definition, two cubes can have up

3.1.5 Reckless Dynamic Update




for h = 0,1,2,...,7.* The impulsej lies inside the linearized
cone if and only if it lies inside all these sides:

u,-j>0, for h=0,1,2,...,7. (16)

We calculate the (scalar) relative contact normal veloeity)
of bodiesA andB at contacig as [2],

(© v(q) =n-((vo+wp X (q—%3)) = (Va +wa X (q—%a))). (17)

The impulsg is applied positively td and negatively ta\. It acts

on the bodies linearly by adding it to the bodies’ linear momenta.
In the same fashion, the resulting torsional impulge— x) x j

is added to the body’s angular momenta. Hence, the imguide

] o ) contactq between bodie& andB adds
to eight contact points if one is rotated and stacked on top of the

Figure 5: Friction cone and regular octagonal approximation. Ratio
r/R of inner to outer radius isos 7 /8.

other. In practice, a tolerance must be used to determine if a feature my'j and I, '((q—xp) xJ) (18)
lies “on” the separating plane, and the features must be projected
onto the separating plane before intersection. to v, andwy, and subtracts
We can use the contact points as input to any analytic algo- ) L
rithm [12, 22, 7, 2, 3, 19] for calculating the new body velocities mg j and I, ((q—xa) xj) (19)

(momenta), and accelerations (forces). In this manner, the bodies

in a scene will continue to follow their trajectories. However, this from va andw,. _ _

section presents new optimization-based (in particular, QP-based) Letv™ denote the contact normal velocityq) (Equation 17)
algorithms to update velocities and accelerations of contacting bod- before any impulses are applied andiétdenote the contact nor-
ies with friction. It is for most cases vital to model friction, because mal velocityv(q) after all the impulses are applied and, wa, vs,

it is such a substantial part of reality. Without friction in the real andw, have been updated. If the bodies were not really colliding

world, every object would be even harder to pick up than a wet (v~ > 0) before the collision, then they must still not be colliding
piece of soap. after the collision, else they must semi-elastically “bounce” [2]:

3.2.1 Momentum Update if v~ >0 thenvt >0 elsev’ > —¢-v™. (20)
Although it is true that any analytic algorithm for momentum cal- _Using quadratic programming, we simultaneously solve for each
culation would work, we feel that our QP-based solution for a si- IMPulsej at each contact. The QP has six variables per body: the

multaneous impact model with Coulomb friction is very well suited €OmMponents ot andw. It has four variab|¢s+per contact: the com-
for our needs. A simultaneous model fits in well with the resulting POnents of and the collision normal velocity™ . It has six equality

contact geometry, since there will be so many simultaneous contactcOnStraints per body to express how each bogyandw change
points due to the synchronization of collisions and static contacts &S @ result of impulses according to Equations 18 and 19. It has
after the position update. Our experiments with a propagation im- ON€ equality constraint per contact to relateto the updated body
pact model were also satisfactory. We opted for simultaneous im- Velocities according to Equation 17. It has eight inequalities per
pulses to avoid the high computational effort for dealing with large CONtact to constraig to the linearized friction cone according to
numbers of collisions in a propagation model. As mentioned by Equation 16. Finally, it has one more linear inequality per contact

Baraff [2], we also experienced that the computational effort for POint to implement the bounce according to Equation 20.

propagation models could be over 90% of the running time. The objective of the QP is the total kinetic energy, which is a
Among others, Brach [7] has investigated collisions with positive definite q’ua_dratlc functlo_n of thés andw s._Wlthout this

Coulomb friction. Letq be a contact point for bodieA and B, objective, the QP's linear constraints permit energintmease We

and letn be the normal to the separating plane. The veatots,, assume that the phy_sncql system satisfies all the cqnstraln_ts_ar_ld_ also

andn, (Section 3.1.3) form a right-handembllision frame The converts as much kinetic energy to he_at as possible. Minimizing

normaln points up along the cone axis in Figure 5a, and ¢, and the kmgtlc energy moves a slc_nwly moving system to rest and thus

the coordinate origin is at the cone tip. The two parameters for our r€sults in a very stable simulation.

impulses are the friction coefficieptand the coefficient of restitu-

tion e. Both can be understood as material constants. Any collision 3.2.2 Force or Acceleration Calculation

impulsej must satisfy the Coulomb friction law, stating that the

tangential frictional impulse at a contact point is (at mast)mes

the non-negative (no “stickiness”) normal component,

After collisions are resolved with bounces, resulting static contacts
(vt = 0) must have contact forces computed. As with the mo-
mentum update, any algorithm for contact force calculation can be
employed, e.g. Baraff’s pivoting scheme [3]. It has been stated [16]
that problems with the mathematics of static contacts with friction
make determining the right contact force sometimes hard. Problems

(e §)?+(ny-j)* <p’n-j)? and n-j>0. (14)

This constraint is convex but non-linear. It confineto a fric-

tion conewhose axis isn and which has slopé/. (Fig. 5a)° can have _mlore t?an one;,olutlion or ct?n be unblour)c:]ed.h "
To linearize, we approximate this cone by an eight-sided inscribed _ QUr initial goal was to develop a robust QP algorithm that avoids

polygonal cone whose sides have slopecos/8)~! > =t problems with un-boundedness, but also avoids heuristic pivoting

(Fig. 5b and c). Inward pointing normal vectors to these sides are s_trategies. Cor_1tact for(_:es and resulting torques char_lge a body’s
linear acceleratiom and its angular acceleratienrespectively. If

we know these accelerations, we can calculate the contact accel-

T mh . mh f | ! : !
U = pcoson + cos 7 P + sin 7 P (15) eration similarly to the contact velocity (Equation 17). We again

3The right circular cone? = s2(z2 + y2) has slops. 4For conveniencey;, is not unit-length, but its1;, n, component is.
g Y p 9 y p
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Figure 6: Acceleration cone vs. friction cone.alfies on side of
cone, newa is projection ton,, n, plane.

use the collision frame from Section 3.1.3. lty) be the relative
contact acceleration of bodigs andB at contact pointy:

a(q) = (ap + ap X (@ — %)) — (A + @a X (@ — %a)). (21)

In the frictionless case, the only additional constraint is the bodies
do not accelerate into each other,

n-a(q) > 0. (22)

We formulate a QP. It has six variables per body: the components
of a anda. It has three variables per contact point: the components
of a(q). Equation 21 adds three linear equality constraints per con-
tact point. Equation 22 adds one linear inequality constraint per
contact point. We investigated the use of several quadratic objec-
tives, and came up with the following. For each body, pium
place of thex in the formula for potential energy. Pluganda in
place ofv andw in the formula for kinetic energy. Fdt bodies,
take the sum,

k
1 1
Z —m;g - a+ Emia -a—+ 50&?17011

i=1

(23)

Our experiments indicate that solving this QP gives a plausible set
of accelerations for the frictionless caddote: the contact forces
are implicit and do not appear as variables.

Given our success with the frictionless case, we tried to come up
with an artificial frictionless system which modeled the system with
friction. We wanted a solution with implicit forces that satisfied
Coulomb’s law. This led us to the following. First, for each body,
seta = —At v anda = —At 'w. This is the acceleration
that will bring all bodies to a halt in one time-stép = 1/30 sec.

For each contaaf, plug these values into Equation 21 to calculate
a(q). Seta(q) = a(q). Add to the system aacceleration cone
constraint (Fig. 6a): find a solution far(q) which lies in a cone

of slopey with axisn and tipa(q). This acceleration cone (outer
cone in Figure 6a) is perpendicular to the friction force cone (inner
cone in Figure 6a).

Figure 7: Simple multi-body pendulum made of six sticks.

system a bit more local freedora(q) was “pressed up against the
side” and then the tip of the cone is moved beneath it in the direction
of the “pressure”. Therefore, each system will have a smaller value
of the objective (23) and this iteration must converge.

In practice, we must linearize the acceleration cone constraint as
in the impulse calculation: fat = 0,1,2,...,7,
1

coszn—&—cosﬂ-—hn —&—sinﬂ
8 4" 4

n, ) - (ala) - a(a)) > 0.

(25)
We add to the QP these eight linear inequality constraints per con-
tact and solve. For each resultingq), we want strict equality for
each constraint in Equation 25 (a# 0) (tip case) or we want strict
inequality for each constraint (a+ 0) (interior case). For each
contactq with mixed inequalities (some- 0 and some> 0) (side
case), we mové(q) directly “underneath’a(q) (Equation 24).
Then we solve a new QP. We repeatedly adii(gf) and solve the
resulting QP until there are no mixed inequalities.

Unfortunately, the method often requires many iterations to con-
verge and is therefore not superior to pivoting as we had hoped.
However, we found it to produce very good results if we used a
limit of three iterations. Some of the contact forces/accelerations
are non-physical but not visibly so.

After having now introduced the components of our OBA algo-
rithm, we would like to summarize its overall structure in pseudo-
code:

(v

for each frame
update positions and find contact points
apply impulses
calculate new body accelerations

Since this acceleration cone is curved, the acceleration cone con-

straint on eacla(q) is non-linear, and we cannot solve the system
using quadratic programming. Suppose for the moment that we

3.3 Joints

can solve this system. Figure 6b indicates the the possible types\yie handle joints (Fig. 7) or, more generally, links between bodies,

of position for the contact acceleratiaiiq): at the tip, in the in-
terior (Fig. 6b, left contact), or on the side (Fig. 6b, right contact).

as bhi-directional constraints. There is a good introduction to multi-
body physics in [1]. A joint connects two bodies in a way such

The tip case corresponds to a contact which feels a force satisfyingihat they can revolve around the joint, but they cannot stretch it out.

Coulomb’s law, although this force is implicit. The interior case

In our algorithm, two linked bodies are not regarded as a close pair.

corresponds to a contact which has broken free. The side case ignstead, we add a simple constraint to our position update algorithm

non-physical: the contact has both positive normal force and accel-
eration. In the side case, we ma¥fy) directly “underneatha(q)
(Fig. 6b), i.e. we project it straight down onto the, n, plane:

a(q) = a(q) — (n-a(q))n. (24)

Then we solve again. We repeatedly adjaiét) and solve until

to ensure that points on bodies where they are linked together are
perturbed to the same coordinate in space:

Qat+AXe+Are X (Qa—Xa) = go+Axp+Ars X (qo—%s), (26)

whereq, = qp is the common link point of bodieA andB. This
way, they will stay connected. Attachment impulses are calculated

there are no side cases. Each time we move a cone, we give theas in [22] to simulate realistic motion of multi-bodies.



selectingumin, We avoid any extra computation for these pairs of
bodies.

4 Experiments and Results

Our experiments are set up to reflect the advantages of OBA. We
examine the challenge in simulating stacks of bodies or other ar-
rangements where bodies are very densely packed. When contacts
become static and when all bodies in a simulation form essentially
one contact group as in a stack, our approach becomes very useful.
The stack simulation simply shows how 10 cubes get stacked
on top of each other in a vertical shaft until they come to a com-
plete rest. Cubejamshows a large group of cubes in contact as
they squeeze around obstacles. It resembles somewhat a winding
river. Inwall, we see how two blast waves cause a wall to collapse.
The jacks simulation shows an example with non-convex bodies.
Each jack is a collection of three convex boxes. The effective num-
ber of bodies in the scene is therefore three times the number of
jacks. Pendulumss a simple example of linked bodies, and the
brid scene shows a simulation where a mix of OBA and RD was
used. The bodies here are tiny enough to pass through each other if
. the penetration velocity is large. However, with the hybrid method,
3.4 Non-Convex Solids we have a reliable way to prohibit just that. In this particular sim-
ulation, we bounced each pair of bodies one time until OBA takes

Non-convex bodies (Fig. 8) are implemented as collections of con- .
: over. Note how the cubes get wedged between the thin walls. The
vex parts. Any polyhedron can be expressed as the union of Convexhourglassscene (actually “?ninute“ %Iass) has 1000 spheres with-

polyhedra. These can be rigidly attached to each other simply by e : o :
giving them all the same position. All constraints must be con- gua_frlctlo_r:r.] Idn our I_ast_scelntta_, vnv?e ct,;omblned tra(_jltlotn?jlly Enltmatded
structed with respect to the convex components. The rest of thea(z:lg\:ﬁiwgerac);ir;lamv:/?tslgwo%;%f' c%n(\J/ e;(i gr? (;] r? c?r:r-]::%r?ve;obgdizg
calculations can be made with respect to the non-convex solids. T acting P . ;
able 2 gives information about the complexity of the scenes and
provides insight into running time and efficiency related data. We
3.5 Hybrid Algorithm achieve good performance: the time spent to calculate one frame
stays reasonable even for scenes with many solids, collisions, and
Pure OBA is not suited for extremely fast bodies moving more than static contacts. Theendulunscene illustrates that OBA can handle
their own width in a single frame time. When two solids approach links. Although thependulunis not very complicated, the running
each other at very high velocity, their target positions might be time is 3x real time. This is due to the computational overhead in
highly overlapping, or they may even go completely past each other. solving small QPs. Our experiments show that OBA has its strength
In this case, the OBA method chooses very unrealistic positions for in solving large and crowded systems rather than small systems
the solids. We implemented a hybrid algorithm of OBA and RD to  with few collisions. As expected, theybrid method has a higher
solve this problem. running time than the otherwise similarly comptbejam since it
The hybrid algorithm takes as input a maximugi.x on the makes partial use of RD. ThH®urglassscene illustrates that OBA
number of times each pair of bodies may collide and a minimum runs fast even for 1000 bodies. It is frictionless but, unlike position-
collision velocity vmin. The algorithm first runs the standard RD  based physics [18], it has bouncing and parabolic trajectories. Our
algorithm with the following modification. If a pair of bodies has experiments show that our iterated position QP method does not
collided cmax times or if the pair collides with velocity less than  require excessive numbers of QPs to be solved. Also the number
Umin, then the modified algorithm does not enqueue the collision as of rollbacks due to infeasibilities which result from constraint lin-
an event. In other words, that pair of bodies no longer “sees” each earization is mostly zeroRobotis an exception here. The robot
other. This modified RD is run until the next frame time. The output and claw move on paths given by the animator. These paths are not
is a set of possibly overlapping positions. The hybrid algorithm then necessarily physical. They were generated by a human and can po-
runs the OBA position update step with these positions as targets. tentially lead to infeasibilities. Therefore, the number of rollbacks
First, note that the hybrid algorithm is the same as pure OBA if is higher as is the number of QPs solved. The algorithm needs
Cmax = 0 (Or vmin = 00): bodies simply follow their Newtonian  to do more optimization work to accommodate non-overlap con-
trajectories without regard to collisions. F@f.x = oo, the hybrid straints when animated bodies are present. All scenes are visually
algorithm is the same as pure RD. For finite but non-zgrg., the extremely stable. Stability is an important feature of any simulator.
algorithm is a compromise between OBA and RD. The modified  The complexity of the algorithm is governed by the position up-
RD only executes the loop in Figure 2 a number of times equal to date. It takes up over 50% of the running time. The momentum and
cmax times the number of colliding pairs. force calculation each take up about 20-25% of the running time.
By specifyingemax @anduvmin, We can perform a simulationthatis ~ The remainder goes into other tasks like maintaining data structures
sufficiently realistic yet is as computationally efficient as possible. and general bookkeeping. Each of the three stages of our algorithm
The more we allow a pair of bodies to bounce between frames, the solves QPs, and the running time is determined by how fast we can
higher the physical realism will be. Unfortunately also the running solve these QPs. Typically, this time depends on the number of con-
time will rise. Allowing fast bodies to bounce before OBA picks up straintsm in a QP. Momentum and force updates havgerfectly
will ensure that they do not just pass through each other. Instead,proportional to the number of contacts per frame. In the position
they will bounce “a few times” until they reach a point where our updaten is proportional to the number of close pairs. Finding the
optimization method is realistic enough to generate a plausible mo- close pairs is minor as far as running time goes. Each solid can have
tion. For all slow collisions, OBA is a good choice to start with. By up to a constant number of neighbors depending on the body geom-

Figure 8:Jacks an example of non-convexity.



#solids | close pairs/fr.| collisions/fr. | contacts/fr.| #frames| sec./fr. | avg. #qp/fr. | rollbacks [%]
Stack 10 6.6 29 25.7 600 0.9 3 0
Cubejam 100 172 411.7 278.4 1500 22.2 4.8 0
Wall 90 129.2 404.3 220.6 600 12.3 4 0
Jacks 50(150) 123.3 167.1 94 1500 15.5 4.6 0.03
Pendulum 6 0 0 0 1000 0.1 2.1 0
Hybrid 100 159.1 518.7 497.6 1500 25.9 4.8 0.07
Hourglass| 1000 1723.4 1673.6 1673.6 2000 135 2.6 0
Robot 306 308 507.7 507.7 580 75.5 6 2.7

Table 2: Complexity of scenes and efficiency issues.

etry. The physics of crystals provides theory and different models  soooo ; ; ;

0.688551°x"% ———

for such tightest packing problems. datandt
It is therefore clear that the overall running time will depend on ™7 ]
the particular scene, the shape of its bodies, and how crowded the +
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bodies are. Itis hard to compare stacksimulation with thgacks
Ourwall can be simulated much faster theubejam although the
number of solids is only moderately smaller. This is due to the dif-
ference in number of contacts and close pairs. During large parts
of thewall simulation, the bricks are flying through the air, and in-
teraction is rather dynamic. There are not so many contact points.  su00
Thejackshave a lower number of contacts overall. This is at first
surprising, but a closer look reveals that the jacks in our video end 20000 |-
up in a very unordered fashion like tumbleweed. In many instances,
a pair of jacks will have as few as three contact points. However, 1000 -
a pair of cubes has in most instances at least four and up to eight
contact points. The two simulatiojecksandwall still run in com- %
parable time since there are multiple convex components in each close pairs (n)
jack. Robothas a relatively high number of close pairs, collisions,
and contacts. These and the higher number of iterations in the posi-Figure 9: Solution time of one QP vs. number of close pairs for the
tion update are responsible for its higher simulation time per frame. position update.

For these reasons, we ran a separate simulation to analyze the
efficiency of OBA. We dropped 200 cubes in packages of nine at
every ten frames into a vertical shaft from a small height. The cubes hibits some noise. This is due to somewhat unpredictable changes
settle into a stable, tightly packed arrangement. We record the timein the number of iterations. At any rate, the number of iterations
that it takes to solve each QP, the number of constraints in the QP,stays reasonable. It is mostly as low as 2-4, and it goes only in
the number of close pairs or contacts, and the number of iterations.some cases up to 8. Another more important reason for noise are
We verified that the position update takes the majority of the run- the QPs which are outlying regarding their solution time.
ning time. Since position update is done by iterating QPs, the time  There is a possibility to improve the running time by decom-
spent is number of iterations times the time for solving each indi- posing the position update. It has been investigated for two-
vidual QP. The number of iterations varies slightly with the number dimensional polygonal compaction problems [13], and we intend
of close pairs, but not in a strictly monotone fashion: overall and to generalize this work to three dimensions. The decomposition
on average, it seems to grow very slowly with the number of close of a large problem into smaller sub-problems can even be done for
pairs. The number of close pairs is proportional to the number of scenes where the bodies form a single cluster, and a speed-up can be
bodies, and therefore the number of constraints in a QP is also pro-achieved even in a sequential uni-processor environment. Distribut-
portional to the number of bodies. The time to solve a QP dependsing the sub-problems in a parallel fashion further improves running
heavily on the complexity of the problem at hand. time.

The theoretical time to solve a QP is a polynomial of high degree, ~ We would like to provide some implementation details at this
if the objective is positive semi-definite, as it is in our case. How- point. All simulations use the CPLEX 7.0 run-time library to solve
ever, CPLEX software uses a variety of techniques to obtain good quadratic programs. All examples except timairglasswere coded
running times in practice. In our case, we verified that the time to in Java on a 450MHz Pentium Il processor running Windows NT.
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T

40000

T

time (ms)

T

solve an individual QP using CPLEX is roughty(m?), with m Thehourglasswas implemented in C++ on a 933MHz Pentium Il
the number of constraints. This running time has occasional out- running Redhat Linux 7.0. Java programs have been reported to be
liers that take four to five times as long as predicted. as fast or almost as fast for arithmetical operations as compiled lan-

The number of iterations grows extremely slowly with the num- guages. The major performance differences are to be found in out-
ber of close pairs.. There is no clear pattern, but it seems safe to put routines, such as for drawing. Our simulator uses these output
assume it is not more tha®(logn). The numbenr of close pairs routines very sparingly, and we do not see a significant performance
is bounded, and dependent on the body geometry and complexitydisadvantage in using Java for some of our experiments. The main
of the scene. We mentioned that there is proportionality between reason for the better simulation speechofirglasscan be seen in
m andn, and thus also the numbet of constraints is bounded. the absence of friction in this simulation, and in the particular na-
Essentially, we expect an overall running time(fn?). Figure 9 ture of the contact geometry of spheres. Two spheres have only one
shows the total time spent in the position update versus the numbercontact point, whereas two cubes can have up to eight.
of close pairsn. For larger numbers of close pairs, the graph ex- We used the usual value for gravigg| = 10 m/seé throughout



our experiments. The coefficient of restitution for the hourglass was [9] Jonathan C. Cohen, Ming C. Lin, Dinesh Manocha, and Mad-

e = 0.7 and for all other simulations was= 0.3. Except for the
frictionlesshourglass the Coulomb friction coefficient wag =

0.3. The bodies have density8 g/cn?. These values correspond

to some “normal” types of wood, and changing them has no effect

on the performance of the algorithm.

5 Conclusions and Future Work

L 11
We presented a new method for animation of large systems of con-

vex bodies. OBA is efficient, very stable, and realistic where it

matters within visual limits. It can be perfectly employed for scenes [12]

whereplausibleanimations are adequate. Bodies follow Newtonian

trajectories, and optimization makes it possible to simulate stacks of
many bodies or otherwise “crowded” scenes. Stacks are the canoni{13]
cal example where traditional simulation techniques have problems,

and we feel that our method is superior in this particular application.

We have shown that we can handle links and non-convexity, and we [14]
have devised a hybrid method that allows a trade-off between speed
and physical accuracy. The beauty of mathematical programming
software is that it has been well researched, and is readily available.
People who are not necessarily experts in the field of mathematical
programming can make use of it in their programs as we have done.

We feel that further development of OBA should point towards a
parallel implementation.
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