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Abstract

Current techniques for rigid body simulation run slowly on scenes
with many bodies in close proximity. Each time two bodies collide
or make or break a static contact, the simulator must interrupt the
numerical integration of velocities and accelerations. Even for sim-
ple scenes, the number of discontinuities per frame time can rise to
the millions. An efficient optimization-based animation (OBA) al-
gorithm is presented which can simulate scenes with many convex
three-dimensional bodies settling into stacks and other “crowded”
arrangements. This algorithm simulates Newtonian (second order)
physics and Coulomb friction, and it uses quadratic programming
(QP) to calculate new positions, momenta and accelerations strictly
at frame times. Contact points are synchronized at the end of each
frame. The extremely small integration steps inherent to traditional
simulation techniques are avoided. Non-convex bodies are simu-
lated as unions of convex bodies. Links and joints are simulated
successfully with bi-directional constraints. A hybrid of OBA and
retroactive detection (RD) has been implemented as well. A review
of existing work finds no other packages that can simulate similarly
complex scenes in a practical amount of time.
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Linear Programming, Quadratic Programming Methods; I.3.5
[Computer Graphics]: Computational Geometry and Object
Modeling—Physically Based ModelingI.3.7 [Computer Graphics]:
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1 Introduction

The principles of rigid body simulation have been studied inten-
sively, especially during the last decade when computing power
became more available at affordable cost.

Recent research in this area has generated modern techniques,
which have been implemented in commercial software packages.
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Figure 1: Simulating stacked bodies is known to be difficult.

Major areas of application are 3D tools for graphics designers and
for the computer game industry. A very creative group of users is
the movie industry. Computer graphics and animation have enabled
film-makers to achieve unprecedented levels of realism in complex
scenes for which conventional techniques of cinematography would
be impossible or too expensive. Simulation techniques also help in
manufacturing and other areas for which it is desirable to visualize
an irreversible process before it is applied in real life.

The outstanding quality of some of today’s animations can be
seen as an experimental proof that existing techniques work. Yet
there are aspects which suggest improvement. Closer examina-
tion reveals that performance problems arise in current algorithms
when the number of bodies in a simulation grows. Stacks of bod-
ies (Fig. 1) are the canonical example where many techniques “go
down on their knees” computationally. This paper suggests a novel
approach for rigid body simulation. It is able to handle scenes with
several hundreds of concurrent contact points per frame and large
numbers of solids in a single cluster.

Many researchers have developed excellent simulation tech-
niques for various applications. Generally, these techniques must
satisfy the need for physical realism and numerical stability, yet
they should be computationally efficient. We feel that stability is an
important feature of any simulation algorithm. Probabilistic reason-
ing suggests that in a scene with many interacting solids, almost all
frames will have degeneracies in the contact geometry. One can-
not ignore bad or hard to compute cases. Baraff has a series of
papers on different issues found in rigid body simulation [2, 4, 3].
Barzel and Barr [6] propose a constraint-based solution. Mirtich de-
scribes a method of conservative advancement in an impulse-based
simulator [19] and a parallelizable timewarp algorithm with which
he was able to simulate an avalanche of hundreds of rocks [21].
Milenkovic’s position-based physics simulates large numbers of



highly interacting non-rotating spheres in an hourglass by minimiz-
ing gravitational energy using linear programming [18]. Stewart
and Trinkle [25] and similarly Sauer and Schömer [24] show how a
linear complementarity (LCP) approach can be employed to simu-
late realistic motion.

Some of these techniques are specialized for particular domains.
Deeper analysis makes it apparent that there is no general algo-
rithm to solve the forward simulation problem due to the difficul-
ties that are involved. Impulse physics is stalled by small time
steps in crowded scenes with many contact points. Even for sim-
ple scenes, the number of steps per frame time can rise to the mil-
lions. Constraint-based approaches occasionally fail due to solution
non-existence. Position-based physics cannot simulate elastic col-
lisions. LCP still has the notion of simulation integration steps that
are smaller than the frame time. Although it is specifically designed
to address the small time-step problem, timewarp cannot avoid it
if all bodies form one large contact group. In general, efficiency
suffers in these techniques due to small integration time steps and
computations that are done between frames. Huge amounts of com-
putations are used to simulate motion that the human eye does not
even see.

It is true that the micro-steps taken in-between frames affect the
final outcome of a simulation. However, in many cases, it is per-
fectly sufficient to simulateplausiblemotion. The OBA method
presented here allows the use of a fixed time step, which we set
equal to the frame time. Bodies follow their Newtonian trajectories
(second order physics). Collisions are resolved by enforcing non-
overlap constraints. We use optimization to compute new body po-
sitions. For all contact points, impulses and contact forces are com-
puted with Coulomb friction. We have implemented a simulator,
and the results are visually convincing. The method is well suited
to simulate large stacks of bodies with a high number of static con-
tacts.

The following section gives a brief introduction to rigid body
dynamics and simulation methods. Section 3 describes the OBA
method, and Section 4 presents experimental results and some im-
plementation details.

2 Simulation Basics

In order to provide a good basis for the discussion of our work, this
section briefly reviews simulation basics. Experts in the field may
skim Section 2.1 to acquaint themselves with the notation in our
paper.

2.1 General Rigid Body Dynamics

Any book on theoretical mechanics, e.g. Goldstein [11], provides
the principles of three-dimensional rigid body motion. It is conve-
nient to express some body properties in a fixed coordinate system
that rests in the body’s center of mass. Bodies have linear momen-
tump and angular momentuml, with associated velocitiesv andω.
The relation between them is established by the massm, p = mv,
and the inertia tensorI, l = Iω. Similarly, we have linear accelera-
tion a and angular accelerationα for the bodies. The body transla-
tion with respect to the world coordinate origin is denoted byx, and
the rotation matrixR gives the orientation of the body with respect
to the body’s fixed system. The net positionqworld in world coordi-
nates of a pointqbody in body coordinates on the body is calculated
according toqworld = Rqbody + x. It is sometimes convenient
to express the orientation as a three-dimensional rotation vectorr.
The vectorr points along the rotation axis and has magnitude|r|
equal to the angle of rotation in radians counterclockwise about the
rotation axis.

These are the basics of rigid body physics as they are applied
in rigid body simulation. The body momenta determine the body
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Figure 2: The simulation loop.

trajectory. Body momenta change when impulsesj or forcesf act
on the body. Impulses directly and instantaneously change the mo-
menta, whereas forces and their rotational counterpart torques act
over time. We adopt the termscollisionsandstatic contactsfor dis-
continuities. Collisions are contacts with negative normal velocity,
i.e. interpenetration. They are resolved with impulses to instanta-
neously change the contact normal velocity to non-penetrating (re-
ceding). Forces act at static contacts with zero (or near zero in
practice) normal velocity. Contact forces must prevent the static
contacts from accelerating into each other, i.e. the contact normal
acceleration must be equal to or greater than zero. The laws of
physics are modeled and implemented by any physical simulator.
The following section summarizes these simulators.

2.2 Simulation Methods

There are different types of simulators, which are sometimes spe-
cialized to simulate a certain kind of physical system, such as par-
ticles, solids, fluids, deformable objects like cloth, unique systems
without rotationetc. [2, 4, 19, 18, 5, 23]. Most current simulators
have in common a basic modular construction. One module cal-
culates new positions as a body follows its trajectory according to
Newtonian physics. Another module must detect if any pair of bod-
ies overlaps at any point of the trajectory. A third module resolves
these collisions.

The heart of the simulator is a loop (Fig. 2) that processes the
bodies’ states repeatedly to generate snapshots of individual frames.
When played back, those frames constitute a computer-simulated
movie that displays a system of bodies in motion. In the simula-
tion loop, physical body states are integrated forward in time. If a
collision between a pair of bodies occurs, i.e. their computed dis-
tance diminishes to zero, the simulation is stopped, and impulses
and forces are applied to resolve collisions and static contacts. At
each full frame time, a redraw command is issued and a snapshot
of the new body states is displayed.

When the number of bodies in a scene becomes large or if the
bodies are tightly confined, the number of collisions rises. More
collisions require more iterations of the simulation loop to simulate
the same duration of motion. Actually, a scene does not have to be
very complex to have many collisions: put a single elastic solid into
a container justσ larger. The number of collisions between frames
is proportional to1/σ times the frame time. Asσ → 0, the number
of collisions between frames goes to infinity. Imagine a ping-pong
paddle being brought down over a bouncing ball on a table, causing
the ball to bounce increasingly faster. This “bad” case occurs even
when only a few bodies settle into a stack: each middle body is
caught in a shrinking “container” formed by the body above and
the body below. Hence, the admissible time step goes to zero and
thus slows the simulation. For example, an admissible time step
of 10−6 sec. requires 33,333 iterations of the simulation loop to
advance the system for just one frame of1/30 sec.

Mirtich gave a very comprehensive summary of the problems
with traditional techniques in [21]. In the same paper, he presented
a parallelizable timewarp algorithm that uses contact groups and



desynchronizes the simulation loop for all bodies. Particularly well
suited for multiprocessor implementation, the algorithm makes use
of discrete properties in rigid body simulation to achieve a speed up.
This has been demonstrated to work excellently for a large number
of bodies as long as they form multiple contact groups. If all bodies
are stacked and are therefore members of essentially one group, the
performance gain can no longer be achieved, as the motion of the
individual solids cannot be desynchronized. We will now introduce
the structure of our method and its individual components.

3 OBA Simulation of Rigid Bodies

Our proposed paradigm, optimization-based animation (OBA), also
follows the modular construction of other simulators. It consists
of three stages to update positions, momenta, and forces. Posi-
tion update replaces the first two modules in Figure 2. It finds new
body positions but also provides the contact points at the new po-
sitions. Momentum and force computation resolve collisions and
static contacts at the new positions. A Coulomb friction model is
applied. Each of the stages is implemented as a quadratic program-
ming problem.

OBA uses a fixed time step∆t, which we set equal to the frame
time (1/30 sec.). For each step, each body has atargetposition and
orientation, which is where its trajectory would take it in one time
step in the absence of collisions. An optimization algorithm moves
the bodiesas close as possibleto their target positions and orien-
tations under the constraint that bodies cannot overlap. If bodies
overlap at their targets, the optimization translates and rotates them
the minimal amount to get rid of the overlap. The overall motion
of bodies must be physical within limits where physical realism is
actually visible.

In crowded scenes, traditional simulators take extremely many
micro-steps, and thus they require huge amounts of computation
and simulate motion that is not visible in the final video. Our OBA
technique can compute plausible visible states at frame times with-
out executing all the steps in-between. It tends to align neighboring
solids so they have multiple contact points. In essence, all colli-
sions and static contacts that would have occurred during a time
step aresynchronizedat the end of each time step. On the other
hand, body motion isdesynchronizedas each body can advance as
much as possible until the next frame. Hence, it becomes tractable
to simulate large numbers of bodies in close proximity.

OBA alters the positions of bodies and the times at which they
collide. Consequently, it is not suitable for applications that require
microscopically accurate motion. However, it can be employed in
situations where a plausible realistic motion is sufficient. Chen-
ney and Forsyth [8] have shown plausible motion to be useful for
animation. Animating dancing beverage cans is different from sim-
ulating the lunar module landing on the moon. While the accuracy
of the latter might affect a person’s life span, any plausible motion
of the former should be sufficient. For crowded scenes in which
bodies bounce multiple times between frames, the human eye has
no chance of accurately predicting where a body will be at the next
frame time. In this case, a physically plausible solution is as rea-
sonable as true physics. Fortunately, a physically plausible solution
is computationally much less expensive than true physics.

3.1 Position Update

Milenkovic’s position-based physicsused linear programming to
update the positions of bodies [18]. This work was a generalization
of an algorithm for translationalcompactionof two-dimensional
part layouts [14]. He has also generalized the compaction algorithm
to allow rotations in two dimensions [17]. However, the position
update algorithm we present here is not simply a three-dimensional
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Figure 3: Separating plane between bodiesA andB with normal
vectorn.

generalization of the rotational compaction algorithm. In con-
trast to his position-based approach, our bodies elastically collide
(bounce), are subject to friction, and follow Newtonian (parabolic)
trajectories. We therefore achieve a higher level of physical realism.
To do so, we do not minimize gravitational energy in the position
update, but instead we set up anartificial energy potential that at-
tracts solids to where they want to be at the next frame time: their
target positions (and orientations). At timetcur, all bodies are at
their (non-overlapping) positions in the current frame. Thetarget
position and orientation of a body is the location where the body
would be at timettgt = tcur + ∆t, where∆t is the frame time,
if it followed its Newtonian trajectory in the absence of the other
bodies. Therefore, two bodiesA and B may be overlapping at
the target timettgt, and this is what we need to prevent from hap-
pening. The next section describes a non-linear constraint to keep
bodies separated. Section 3.1.2 describes possible positive-definite
objectives to attract bodies to their target positions. Section 3.1.3
shows how to linearize the non-overlap constraint. Section 3.1.4
gives an algorithm using iterated quadratic programming to mini-
mize the objective under the non-linear separation constraint.

3.1.1 Separating Plane Constraints

Suppose that the system hask convex polyhedral bodies. Two con-
vex bodies do not overlap if and only if there exists a separating
plane between them (Fig. 3).1 Specifically, convex bodiesA andB
do not overlap if and only if there exists a unit vectorn and scalar
d such that,

∀qa ∈ A,n · qa ≤ d and ∀qb ∈ B,n · qb ≥ d. (1)

Geometrically,n is the unit vector perpendicular to the separating
plane, andd is the plane’s distance from the origin. Since the bodies
are polyhedral, it suffices to check Equation 1 forverticesqa and
qb of A andB, respectively. The separating plane constraint is
non-linear because bothn andqa (or qb) are variables.

Each body starts at a positionxcur and orientationRcur in the
current frame. The vectorxtgt and orientation matrixRtgt denote
its target position: where the body wants to be in the next frame
if overlaps were ignored. If no pair of bodies overlaps at the tar-
gets, we just set each positionx and orientationR equal toxtgt

andRtgt. However, if some pairs are overlapping at the targets, this
must be resolved. First, all such potentially overlapping pairs of
bodies are detected. We can employ any efficient collision detec-
tion algorithm, such as I-COLLIDE [9], V-Clip [20] or SWIFT [10].

1Two-dimensional figures are sometimes used for simplicity.



Currently, we use bounding boxes for pre-sorting and an exact dis-
tance finding algorithm based on Lin-Canny [15]. It uses witnesses
and Voronoi regions to exploit coherence. If the distance found is
below a threshold and declared as overlapping, we insert the pair
into a list of close pairs.

3.1.2 Objective

This section defines the objective used in the OBA position update.
This objective is a positive-definite quadratic function of the bod-
ies’ current positions and orientations and their target positions and
orientations. Since Equation 1 is non-linear, we will calculate a
perturbed positionxper and orientationRper. Initially, x = xcur

and R = Rcur. After each perturbation, we setx = xper and
R = Rper. The variables∆x and∆R denote the perturbations,
where

∆x = xper− x and ∆R = RperR−1. (2)

The target perturbationsare the perturbations which would move
the body to its target:

∆xtgt = xtgt − x and ∆Rtgt = RtgtR−1. (3)

Let ∆r, ∆rper, and∆rtgt denote the vector representation for the
orientation matrices∆R, ∆Rper, and∆Rtgt, respectively. Define
thetarget deficits∆∆x and∆∆r as follows:

∆∆x = ∆x−∆xtgt and ∆∆r = ∆r−∆rtgt. (4)

These represent the distance from the current perturbations to the
target perturbations. When they are zero (vectors), the body is at its
target position.

We want to move each body as close as possible to its desired
target position, i.e. minimize its distance to the target. The diameter
D of a body is the largest distance between two vertices on the body.
The objective fork bodies is

k∑
i=1

∆∆xi ·∆∆xi +D2
i∆∆ri ·∆∆ri, (5)

where the subscripti refers to that property of theith body. We
have to weight the rotational part byD so that it has the same units
as the translational part. A rotation∆r moves a pointq on the body
by at most a distance|∆r| |q|, andD is an upper bound on|q|.

We also tested the following objective:

k∑
i=1

mi∆∆xi ·∆∆xi + ∆∆rTi Ii∆∆ri. (6)

The linear and angular parts are weighted by the body mass and in-
ertia respectively. This way, a heavier body pushes a lighter body
out of the way. One might argue this makes more sense physically.
Both methods work well in practice with slight differences in sim-
ulation stability in favor of (5). If the bodies in a scene vary greatly
in size, shape, and density, (6) might be a better choice.

Note: we use a quadratic objective because a linear objective can
perturb the bodies in a highly unrealistic manner. To see why, con-
sider a simple one-dimensional scene with two unit line segment
objects centered atx = 0. If x1 andx2 represent the translations of
these objects, the non-overlap constraint isx2 − x1 ≥ 1. Minimiz-
ing the quadratic objectivex2

1 + x2
2 yields(x1, x2) = (−0.5, 0.5):

each object moves0.5 unit. If we use a non-quadratic objective
such as|x1| + |x2|, then(x1, x2) = (−1, 0) or (x1, x2) = (0, 1)
are both equally valid solutions which minimize the objective.
While (x1, x2) = (−0.5, 0.5) is also a valid solution for this lin-
ear objective, the simplex method for solving linear programs (LP)

will not generate it, because the simplex method always chooses
an extreme (vertex) solution of the feasible solution space. Instead,
the simplex method will generate an “unnatural” solution for which
one object sits still and pushes the other one unit to the side, and the
choice of the “winning” object might vary arbitrarily from frame to
frame. The quadratic objective, corresponding to an artificial “en-
ergy” potential, yields positions which are more natural and stable.

3.1.3 Linearizing the Separation Constraints

This section describes how to linearize the separation constraints in
Equation 1. Letn andd denote a separating plane for bodyA at
xa,Ra andB at xb,Rb. If A does not touchB, thenn points in
the direction of a shortest line segment fromA to B. Let n, nx,
andny = n × nx form an orthonormal basis. Vectornper is the
perturbed version ofn with perturbation,

∆n = nper− n ≈ δxnx + δyny, (7)

whereδx andδy are scalars. (For small perturbations of unit vector
n, ∆n is almost perpendicular ton.) Sinced has no non-linear
terms, it just appears as a variable.

If q
body
a is the body coordinates of a vertexqa on bodyA, then

its unperturbed and perturbed world coordinates are

qa = Raq
body
a + xa and qper

a = Rper
a qbody

a + xper
a .

Combining these with Equation 2 yields,

qper
a = ∆Ra(qa − xa) + xper

a . (8)

We linearize this formula using the small-angle approximation
∆Rw ≈ w + ∆r×w:

qper
a ≈ qa + ∆xa + ∆ra × (qa − xa). (9)

Plugging Equations 7 and 9 into Equation 1 (nper · qper≤ d),

(n + δxnx + δyny) · (qa + ∆xa + ∆ra× (qa−xa)) ≤ d. (10)

In this inequality, the variables (unknowns) are∆xa, ∆ra, δx, δy,
andd. We carry out the multiplication, throw away quadratic terms,
move all terms with variables to the left and terms with constants to
the right, and apply the identity,a · (b× c) = −(a× c) · b. This
yields the linearized constraint,

n ·∆xa − (n× (qa − xa)) ·∆ra
+(nx · qa)δx + (ny · qa)δy − d ≤ −n · qa. (11)

Similarly, for a vertexqb on bodyB from the second part of Equa-
tion 1,

n ·∆xb − (n× (qb − xb)) ·∆rb
+(nx · qb)δx + (ny · qb)δy − d ≥ −n · qb. (12)

3.1.4 Iterative Update

For each body, the initial values ofx and R are xcur and Rcur.
After each perturbation, we setx = x + ∆x andR = ∆R R,
where∆R is the matrix format of∆r. To calculate∆x and∆r, we
solve a QP. Each body has twelve variables, the components of∆x,
∆∆x, ∆r, and∆∆r. Each close pair has three variables,δx, δy,
andd. Each body requires six linear equality constraints to enforce
Equation 4. Each close pair has the two linear inequality constraints
of Equations 11 and 12. The objective is given by Equation 5 or 6.
Note: we do not use the computed values ofδx andδy to update
n. Instead, the separating plane normal is calculated from the new
positions and orientations of the bodies.
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Figure 4: Explanation of critical vertices.

The objective is nicely quadratic and positive-definite, but the
original non-overlap constraints are non-linear and non-convex.
Solving this particular optimization is NP-hard in general. How-
ever, after linearizing our constraints, we can solve a series of QPs
that converge to a local minimum of the objective. The original
objective (3.1.2) and the linearized constraints (3.1.3) yield a QP,
which when solved produces perturbations on the current positions
that move the system towards a local minimum of the objective.
When the system reaches a local minimum, the perturbation goes to
zero (numerically), and the algorithm stops the iteration. Since the
last perturbation is zero, the small-angle approximations and other
linearizations become exact, and thus the system is non-overlapping
at a local minimum.

3.1.5 Reckless Dynamic Update

In order to do the position update efficiently, we have to keep the
size of each QP as small as possible. Each constraint in the QP
refers to a vertex on a body and a separating plane with respect
to another body. We cannot simply add constraints for every ver-
tex with respect to every separating plane. Instead, we employ
Milenkovic’s reckless dynamic update approach [17]. For each
close pair of bodies, we first findcritical verticesand add con-
straints (Equation 11 or 12) only for these. Critical vertices are
those which lie within a slab of the separating plane at the current
positions. In Figure 4, only one true contact is present, but four
vertices (a, b, c andd) lie within a critical slab.

This approach is indeed reckless because a non-critical vertex
might move past the separating plane and result in an overlap. How-
ever, this vertex is added as a critical vertex2 for the next iteration,
and thus we “learn” from our mistakes. Usually, the overlap is not
too bad and solving the next QP will remove it. There is a chance,
however, for the algorithm to paint itself into a corner. If it gets
stuck in an overlapping configuration which it cannot resolve, it
will produce aninfeasibleQP. If this happens, we roll back a per-
turbation (ofall the bodies). In theory, it might be necessary to roll
all the way back to the initial non-overlapping (and thus feasible)
starting configuration of the current frame (although this never hap-
pens in practice).Note: even if the algorithm rolls back, it main-
tains the current set of close pairs and critical vertices; otherwise,
it would keep repeating the same mistake. The pseudo-code in Ta-
ble 1 summarizes the position update algorithm. In the algorithm,
a close pairP = 〈A,B, C〉 consists of a bodyA, a bodyB, and a

2A vertex is critical if it is on the wrong side of the separating plane even
if it is not in the slab.

Input : current and target positions for each body
Output : new current position for each body

S ← ∅
repeat

find current close pairs and add toS
for all close pairsP = 〈A,B, C〉 ∈ S

calculate the separating plane〈n, d〉 for A andB
find current critical vertices ofA andB with respect
to 〈n, d〉 and add them toC

solve QP
if infeasible

rollback all body positions
else

update the current positions
while QP was infeasibleor

critical vertices were addedor
objective was improved

Table 1: Position update algorithm.

setC of critical vertices for that pair. Once a vertex ofA or B is
added toC, it is never removed. Similarly, close pairs are added to
but never removed from a setS of close pairs.

3.1.6 Bounds

Because of the linearization, the solution to an individual QP may
result in positions and orientations that slightly overlap the solids,
even if all close pairs and critical vertices are known. However,
each subsequent QP re-asserts the non-overlap constraints. If the it-
erated QPs converge, then they must converge to a non-overlapping
configuration. Hence, the position update preserves the non-overlap
constraint. Note: in the overlapping case, the “separating plane”
normal n points in the direction thatB could translate, to most
swiftly eliminate the overlap (equivalently,−n points in the direc-
tion thatA could translate, to most swiftly eliminate the overlap).
The same formula for the distanced of the separating plane from
the origin,

d =
1

2

(
max
qa∈A

n · qa + min
qb∈B

n · qb
)
, (13)

works in all three cases: separated, touching, overlapping.
Due to the linearized constraints, it is possible that the solution

to a QP would be so badly overlapped that the next QP would be
infeasible. If all critical vertices are known, then even rolling back
will not help. In practice, for each iteration we limit the coordi-
nates of each body’s∆r, the perturbation of the orientation, to lie
within the interval[−0.1,+0.1] in radians. This has so far pre-
vented an infeasible configuration and has ensured convergence to
a local minimum of the objective.

3.2 Collisions and Static Contact Response

Section 3.1 described how to construct and use QPs to find feasible
solutions for the positions of solids in animation. When all current
positions are updated, resulting contact points are determined and
resolved with appropriate bounces and forces. Our position update
has the tendency to align bodies, and therefore we will have many
simultaneous contact points. A feature (vertex, edge, or face) ofA
and a feature ofB touch the separating plane, and these features
intersect at a point, line segment, or convex polygon. That point,
the endpoints of the line segment, or the vertices of that polygon
are the contact points. Under this definition, two cubes can have up
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Figure 5: Friction cone and regular octagonal approximation. Ratio
r/R of inner to outer radius iscosπ/8.

to eight contact points if one is rotated and stacked on top of the
other. In practice, a tolerance must be used to determine if a feature
lies “on” the separating plane, and the features must be projected
onto the separating plane before intersection.

We can use the contact points as input to any analytic algo-
rithm [12, 22, 7, 2, 3, 19] for calculating the new body velocities
(momenta), and accelerations (forces). In this manner, the bodies
in a scene will continue to follow their trajectories. However, this
section presents new optimization-based (in particular, QP-based)
algorithms to update velocities and accelerations of contacting bod-
ies with friction. It is for most cases vital to model friction, because
it is such a substantial part of reality. Without friction in the real
world, every object would be even harder to pick up than a wet
piece of soap.

3.2.1 Momentum Update

Although it is true that any analytic algorithm for momentum cal-
culation would work, we feel that our QP-based solution for a si-
multaneous impact model with Coulomb friction is very well suited
for our needs. A simultaneous model fits in well with the resulting
contact geometry, since there will be so many simultaneous contact
points due to the synchronization of collisions and static contacts
after the position update. Our experiments with a propagation im-
pact model were also satisfactory. We opted for simultaneous im-
pulses to avoid the high computational effort for dealing with large
numbers of collisions in a propagation model. As mentioned by
Baraff [2], we also experienced that the computational effort for
propagation models could be over 90% of the running time.

Among others, Brach [7] has investigated collisions with
Coulomb friction. Letq be a contact point for bodiesA andB,
and letn be the normal to the separating plane. The vectorsn, nx,
andny (Section 3.1.3) form a right-handedcollision frame. The
normaln points up along the cone axis in Figure 5a, and c, and
the coordinate origin is at the cone tip. The two parameters for our
impulses are the friction coefficientµ and the coefficient of restitu-
tion ε. Both can be understood as material constants. Any collision
impulsej must satisfy the Coulomb friction law, stating that the
tangential frictional impulse at a contact point is (at most)µ times
the non-negative (no “stickiness”) normal component,

(nx · j)2 + (ny · j)2 ≤ µ2(n · j)2 and n · j ≥ 0. (14)

This constraint is convex but non-linear. It confinesj to a fric-
tion conewhose axis isn and which has slope1/µ (Fig. 5a).3

To linearize, we approximate this cone by an eight-sided inscribed
polygonal cone whose sides have slope(µ cosπ/8)−1 > µ−1

(Fig. 5b and c). Inward pointing normal vectors to these sides are

uh = µ cos
π

8
n + cos

πh

4
nx + sin

πh

4
ny, (15)

3The right circular conez2 = s2(x2 + y2) has slopes.

for h = 0, 1, 2, . . . , 7.4 The impulsej lies inside the linearized
cone if and only if it lies inside all these sides:

uh · j ≥ 0, for h = 0, 1, 2, . . . , 7. (16)

We calculate the (scalar) relative contact normal velocityv(q)
of bodiesA andB at contactq as [2],

v(q) = n · ((vb+ωb× (q−xb))− (va+ωa× (q−xa))). (17)

The impulsej is applied positively toB and negatively toA. It acts
on the bodies linearly by adding it to the bodies’ linear momenta.
In the same fashion, the resulting torsional impulse(q − x) × j
is added to the body’s angular momenta. Hence, the impulsej at
contactq between bodiesA andB adds

m−1
b j and I−1

b ((q− xb)× j) (18)

to vb andωb and subtracts

m−1
a j and I−1

a ((q− xa)× j) (19)

from va andωa.
Let v− denote the contact normal velocityv(q) (Equation 17)

before any impulses are applied and letv+ denote the contact nor-
mal velocityv(q) after all the impulses are applied andva, ωa, vb,
andωb have been updated. If the bodies were not really colliding
(v− ≥ 0) before the collision, then they must still not be colliding
after the collision, else they must semi-elastically “bounce” [2]:

if v− ≥ 0 then v+ ≥ 0 else v+ ≥ −ε · v−. (20)

Using quadratic programming, we simultaneously solve for each
impulsej at each contact. The QP has six variables per body: the
components ofv andω. It has four variables per contact: the com-
ponents ofj and the collision normal velocityv+. It has six equality
constraints per body to express how each body’sv andω change
as a result of impulses according to Equations 18 and 19. It has
one equality constraint per contact to relatev+ to the updated body
velocities according to Equation 17. It has eight inequalities per
contact to constrainj to the linearized friction cone according to
Equation 16. Finally, it has one more linear inequality per contact
point to implement the bounce according to Equation 20.

The objective of the QP is the total kinetic energy, which is a
positive definite quadratic function of thev’s andω’s. Without this
objective, the QP’s linear constraints permit energy toincrease. We
assume that the physical system satisfies all the constraints and also
converts as much kinetic energy to heat as possible. Minimizing
the kinetic energy moves a slowly moving system to rest and thus
results in a very stable simulation.

3.2.2 Force or Acceleration Calculation

After collisions are resolved with bounces, resulting static contacts
(v+ = 0) must have contact forces computed. As with the mo-
mentum update, any algorithm for contact force calculation can be
employed, e.g. Baraff’s pivoting scheme [3]. It has been stated [16]
that problems with the mathematics of static contacts with friction
make determining the right contact force sometimes hard. Problems
can have more than one solution or can be unbounded.

Our initial goal was to develop a robust QP algorithm that avoids
problems with un-boundedness, but also avoids heuristic pivoting
strategies. Contact forces and resulting torques change a body’s
linear accelerationa and its angular accelerationα respectively. If
we know these accelerations, we can calculate the contact accel-
eration similarly to the contact velocity (Equation 17). We again

4For convenience,uh is not unit-length, but itsnx,ny component is.
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Figure 6: Acceleration cone vs. friction cone. Ifa lies on side of
cone, neŵa is projection tonx,ny plane.

use the collision frame from Section 3.1.3. Leta(q) be the relative
contact acceleration of bodiesA andB at contact pointq:

a(q) = (ab + αb × (q− xb))− (aa + αa × (q− xa)). (21)

In the frictionless case, the only additional constraint is the bodies
do not accelerate into each other,

n · a(q) ≥ 0. (22)

We formulate a QP. It has six variables per body: the components
of a andα. It has three variables per contact point: the components
of a(q). Equation 21 adds three linear equality constraints per con-
tact point. Equation 22 adds one linear inequality constraint per
contact point. We investigated the use of several quadratic objec-
tives, and came up with the following. For each body, pluga in
place of thex in the formula for potential energy. Pluga andα in
place ofv andω in the formula for kinetic energy. Fork bodies,
take the sum,

k∑
i=1

−mig · a +
1

2
mia · a +

1

2
αTi Iiαi. (23)

Our experiments indicate that solving this QP gives a plausible set
of accelerations for the frictionless case.Note: the contact forces
are implicit and do not appear as variables.

Given our success with the frictionless case, we tried to come up
with an artificial frictionless system which modeled the system with
friction. We wanted a solution with implicit forces that satisfied
Coulomb’s law. This led us to the following. First, for each body,
set a = −∆t−1v andα = −∆t−1ω. This is the acceleration
that will bring all bodies to a halt in one time-step∆t = 1/30 sec.
For each contactq, plug these values into Equation 21 to calculate
a(q). Setâ(q) = a(q). Add to the system anacceleration cone
constraint (Fig. 6a): find a solution fora(q) which lies in a cone
of slopeµ with axisn and tipâ(q). This acceleration cone (outer
cone in Figure 6a) is perpendicular to the friction force cone (inner
cone in Figure 6a).

Since this acceleration cone is curved, the acceleration cone con-
straint on eacha(q) is non-linear, and we cannot solve the system
using quadratic programming. Suppose for the moment that we
can solve this system. Figure 6b indicates the the possible types
of position for the contact accelerationa(q): at the tip, in the in-
terior (Fig. 6b, left contact), or on the side (Fig. 6b, right contact).
The tip case corresponds to a contact which feels a force satisfying
Coulomb’s law, although this force is implicit. The interior case
corresponds to a contact which has broken free. The side case is
non-physical: the contact has both positive normal force and accel-
eration. In the side case, we moveâ(q) directly “underneath”a(q)
(Fig. 6b), i.e. we project it straight down onto thenx, ny plane:

â(q) = a(q)− (n · a(q))n. (24)

Then we solve again. We repeatedly adjustâ(q) and solve until
there are no side cases. Each time we move a cone, we give the

Figure 7: Simple multi-body pendulum made of six sticks.

system a bit more local freedom:a(q) was “pressed up against the
side” and then the tip of the cone is moved beneath it in the direction
of the “pressure”. Therefore, each system will have a smaller value
of the objective (23) and this iteration must converge.

In practice, we must linearize the acceleration cone constraint as
in the impulse calculation: forh = 0, 1, 2, . . . , 7,(
µ−1 cos

π

8
n + cos

πh

4
nx + sin

πh

4
ny

)
· (a(q)− â(q)) ≥ 0.

(25)
We add to the QP these eight linear inequality constraints per con-
tact and solve. For each resultinga(q), we want strict equality for
each constraint in Equation 25 (all= 0) (tip case) or we want strict
inequality for each constraint (all> 0) (interior case). For each
contactq with mixed inequalities (some= 0 and some> 0) (side
case), we movêa(q) directly “underneath”a(q) (Equation 24).
Then we solve a new QP. We repeatedly adjustâ(q) and solve the
resulting QP until there are no mixed inequalities.

Unfortunately, the method often requires many iterations to con-
verge and is therefore not superior to pivoting as we had hoped.
However, we found it to produce very good results if we used a
limit of three iterations. Some of the contact forces/accelerations
are non-physical but not visibly so.

After having now introduced the components of our OBA algo-
rithm, we would like to summarize its overall structure in pseudo-
code:

for each frame
update positions and find contact points
apply impulses
calculate new body accelerations

3.3 Joints

We handle joints (Fig. 7) or, more generally, links between bodies,
as bi-directional constraints. There is a good introduction to multi-
body physics in [1]. A joint connects two bodies in a way such
that they can revolve around the joint, but they cannot stretch it out.
In our algorithm, two linked bodies are not regarded as a close pair.
Instead, we add a simple constraint to our position update algorithm
to ensure that points on bodies where they are linked together are
perturbed to the same coordinate in space:

qa+∆xa+∆ra×(qa−xa) = qb+∆xb+∆rb×(qb−xb), (26)

whereqa = qb is the common link point of bodiesA andB. This
way, they will stay connected. Attachment impulses are calculated
as in [22] to simulate realistic motion of multi-bodies.



Figure 8:Jacks: an example of non-convexity.

3.4 Non-Convex Solids

Non-convex bodies (Fig. 8) are implemented as collections of con-
vex parts. Any polyhedron can be expressed as the union of convex
polyhedra. These can be rigidly attached to each other simply by
giving them all the same position. All constraints must be con-
structed with respect to the convex components. The rest of the
calculations can be made with respect to the non-convex solids.

3.5 Hybrid Algorithm

Pure OBA is not suited for extremely fast bodies moving more than
their own width in a single frame time. When two solids approach
each other at very high velocity, their target positions might be
highly overlapping, or they may even go completely past each other.
In this case, the OBA method chooses very unrealistic positions for
the solids. We implemented a hybrid algorithm of OBA and RD to
solve this problem.

The hybrid algorithm takes as input a maximumcmax on the
number of times each pair of bodies may collide and a minimum
collision velocityvmin. The algorithm first runs the standard RD
algorithm with the following modification. If a pair of bodies has
collided cmax times or if the pair collides with velocity less than
vmin, then the modified algorithm does not enqueue the collision as
an event. In other words, that pair of bodies no longer “sees” each
other. This modified RD is run until the next frame time. The output
is a set of possibly overlapping positions. The hybrid algorithm then
runs the OBA position update step with these positions as targets.

First, note that the hybrid algorithm is the same as pure OBA if
cmax = 0 (or vmin = ∞): bodies simply follow their Newtonian
trajectories without regard to collisions. Forcmax =∞, the hybrid
algorithm is the same as pure RD. For finite but non-zerocmax, the
algorithm is a compromise between OBA and RD. The modified
RD only executes the loop in Figure 2 a number of times equal to
cmax times the number of colliding pairs.

By specifyingcmax andvmin, we can perform a simulation that is
sufficiently realistic yet is as computationally efficient as possible.
The more we allow a pair of bodies to bounce between frames, the
higher the physical realism will be. Unfortunately also the running
time will rise. Allowing fast bodies to bounce before OBA picks up
will ensure that they do not just pass through each other. Instead,
they will bounce “a few times” until they reach a point where our
optimization method is realistic enough to generate a plausible mo-
tion. For all slow collisions, OBA is a good choice to start with. By

selectingvmin, we avoid any extra computation for these pairs of
bodies.

4 Experiments and Results

Our experiments are set up to reflect the advantages of OBA. We
examine the challenge in simulating stacks of bodies or other ar-
rangements where bodies are very densely packed. When contacts
become static and when all bodies in a simulation form essentially
one contact group as in a stack, our approach becomes very useful.

The stacksimulation simply shows how 10 cubes get stacked
on top of each other in a vertical shaft until they come to a com-
plete rest. Cubejamshows a large group of cubes in contact as
they squeeze around obstacles. It resembles somewhat a winding
river. In wall, we see how two blast waves cause a wall to collapse.
The jackssimulation shows an example with non-convex bodies.
Each jack is a collection of three convex boxes. The effective num-
ber of bodies in the scene is therefore three times the number of
jacks. Pendulumis a simple example of linked bodies, and thehy-
brid scene shows a simulation where a mix of OBA and RD was
used. The bodies here are tiny enough to pass through each other if
the penetration velocity is large. However, with the hybrid method,
we have a reliable way to prohibit just that. In this particular sim-
ulation, we bounced each pair of bodies one time until OBA takes
over. Note how the cubes get wedged between the thin walls. The
hourglassscene (actually “minute” glass) has 1000 spheres with-
out friction. In our last scene, we combined traditionally animated
bodies with dynamic simulation.Robothas an animated robot and
a claw interacting with a pool of convex and non-convex bodies.

Table 2 gives information about the complexity of the scenes and
provides insight into running time and efficiency related data. We
achieve good performance: the time spent to calculate one frame
stays reasonable even for scenes with many solids, collisions, and
static contacts. Thependulumscene illustrates that OBA can handle
links. Although thependulumis not very complicated, the running
time is 3x real time. This is due to the computational overhead in
solving small QPs. Our experiments show that OBA has its strength
in solving large and crowded systems rather than small systems
with few collisions. As expected, thehybrid method has a higher
running time than the otherwise similarly complexcubejam, since it
makes partial use of RD. Thehourglassscene illustrates that OBA
runs fast even for 1000 bodies. It is frictionless but, unlike position-
based physics [18], it has bouncing and parabolic trajectories. Our
experiments show that our iterated position QP method does not
require excessive numbers of QPs to be solved. Also the number
of rollbacks due to infeasibilities which result from constraint lin-
earization is mostly zero.Robotis an exception here. The robot
and claw move on paths given by the animator. These paths are not
necessarily physical. They were generated by a human and can po-
tentially lead to infeasibilities. Therefore, the number of rollbacks
is higher as is the number of QPs solved. The algorithm needs
to do more optimization work to accommodate non-overlap con-
straints when animated bodies are present. All scenes are visually
extremely stable. Stability is an important feature of any simulator.

The complexity of the algorithm is governed by the position up-
date. It takes up over 50% of the running time. The momentum and
force calculation each take up about 20-25% of the running time.
The remainder goes into other tasks like maintaining data structures
and general bookkeeping. Each of the three stages of our algorithm
solves QPs, and the running time is determined by how fast we can
solve these QPs. Typically, this time depends on the number of con-
straintsm in a QP. Momentum and force updates havem perfectly
proportional to the number of contacts per frame. In the position
update,m is proportional to the number of close pairs. Finding the
close pairs is minor as far as running time goes. Each solid can have
up to a constant number of neighbors depending on the body geom-



#solids close pairs/fr. collisions/fr. contacts/fr. #frames sec./fr. avg. #qp/fr. rollbacks [%]
Stack 10 6.6 29 25.7 600 0.9 3 0
Cubejam 100 172 411.7 278.4 1500 22.2 4.8 0
Wall 90 129.2 404.3 220.6 600 12.3 4 0
Jacks 50(150) 123.3 167.1 94 1500 15.5 4.6 0.03
Pendulum 6 0 0 0 1000 0.1 2.1 0
Hybrid 100 159.1 518.7 497.6 1500 25.9 4.8 0.07
Hourglass 1000 1723.4 1673.6 1673.6 2000 13.5 2.6 0
Robot 306 308 507.7 507.7 580 75.5 6 2.7

Table 2: Complexity of scenes and efficiency issues.

etry. The physics of crystals provides theory and different models
for such tightest packing problems.

It is therefore clear that the overall running time will depend on
the particular scene, the shape of its bodies, and how crowded the
bodies are. It is hard to compare thestacksimulation with thejacks.
Our wall can be simulated much faster thancubejam, although the
number of solids is only moderately smaller. This is due to the dif-
ference in number of contacts and close pairs. During large parts
of thewall simulation, the bricks are flying through the air, and in-
teraction is rather dynamic. There are not so many contact points.
The jackshave a lower number of contacts overall. This is at first
surprising, but a closer look reveals that the jacks in our video end
up in a very unordered fashion like tumbleweed. In many instances,
a pair of jacks will have as few as three contact points. However,
a pair of cubes has in most instances at least four and up to eight
contact points. The two simulationsjacksandwall still run in com-
parable time since there are multiple convex components in each
jack. Robothas a relatively high number of close pairs, collisions,
and contacts. These and the higher number of iterations in the posi-
tion update are responsible for its higher simulation time per frame.

For these reasons, we ran a separate simulation to analyze the
efficiency of OBA. We dropped 200 cubes in packages of nine at
every ten frames into a vertical shaft from a small height. The cubes
settle into a stable, tightly packed arrangement. We record the time
that it takes to solve each QP, the number of constraints in the QP,
the number of close pairs or contacts, and the number of iterations.
We verified that the position update takes the majority of the run-
ning time. Since position update is done by iterating QPs, the time
spent is number of iterations times the time for solving each indi-
vidual QP. The number of iterations varies slightly with the number
of close pairs, but not in a strictly monotone fashion: overall and
on average, it seems to grow very slowly with the number of close
pairs. The number of close pairs is proportional to the number of
bodies, and therefore the number of constraints in a QP is also pro-
portional to the number of bodies. The time to solve a QP depends
heavily on the complexity of the problem at hand.

The theoretical time to solve a QP is a polynomial of high degree,
if the objective is positive semi-definite, as it is in our case. How-
ever, CPLEX software uses a variety of techniques to obtain good
running times in practice. In our case, we verified that the time to
solve an individual QP using CPLEX is roughlyO(m2), with m
the number of constraints. This running time has occasional out-
liers that take four to five times as long as predicted.

The number of iterations grows extremely slowly with the num-
ber of close pairsn. There is no clear pattern, but it seems safe to
assume it is not more thanO(logn). The numbern of close pairs
is bounded, and dependent on the body geometry and complexity
of the scene. We mentioned that there is proportionality between
m andn, and thus also the numberm of constraints is bounded.
Essentially, we expect an overall running time ofO(n2). Figure 9
shows the total time spent in the position update versus the number
of close pairsn. For larger numbers of close pairs, the graph ex-
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Figure 9: Solution time of one QP vs. number of close pairs for the
position update.

hibits some noise. This is due to somewhat unpredictable changes
in the number of iterations. At any rate, the number of iterations
stays reasonable. It is mostly as low as 2-4, and it goes only in
some cases up to 8. Another more important reason for noise are
the QPs which are outlying regarding their solution time.

There is a possibility to improve the running time by decom-
posing the position update. It has been investigated for two-
dimensional polygonal compaction problems [13], and we intend
to generalize this work to three dimensions. The decomposition
of a large problem into smaller sub-problems can even be done for
scenes where the bodies form a single cluster, and a speed-up can be
achieved even in a sequential uni-processor environment. Distribut-
ing the sub-problems in a parallel fashion further improves running
time.

We would like to provide some implementation details at this
point. All simulations use the CPLEX 7.0 run-time library to solve
quadratic programs. All examples except thehourglasswere coded
in Java on a 450MHz Pentium II processor running Windows NT.
Thehourglasswas implemented in C++ on a 933MHz Pentium III
running Redhat Linux 7.0. Java programs have been reported to be
as fast or almost as fast for arithmetical operations as compiled lan-
guages. The major performance differences are to be found in out-
put routines, such as for drawing. Our simulator uses these output
routines very sparingly, and we do not see a significant performance
disadvantage in using Java for some of our experiments. The main
reason for the better simulation speed ofhourglasscan be seen in
the absence of friction in this simulation, and in the particular na-
ture of the contact geometry of spheres. Two spheres have only one
contact point, whereas two cubes can have up to eight.

We used the usual value for gravity|g| = 10 m/sec2 throughout



our experiments. The coefficient of restitution for the hourglass was
ε = 0.7 and for all other simulations wasε = 0.3. Except for the
frictionlesshourglass, the Coulomb friction coefficient wasµ =
0.3. The bodies have density0.8 g/cm2. These values correspond
to some “normal” types of wood, and changing them has no effect
on the performance of the algorithm.

5 Conclusions and Future Work

We presented a new method for animation of large systems of con-
vex bodies. OBA is efficient, very stable, and realistic where it
matters within visual limits. It can be perfectly employed for scenes
whereplausibleanimations are adequate. Bodies follow Newtonian
trajectories, and optimization makes it possible to simulate stacks of
many bodies or otherwise “crowded” scenes. Stacks are the canoni-
cal example where traditional simulation techniques have problems,
and we feel that our method is superior in this particular application.
We have shown that we can handle links and non-convexity, and we
have devised a hybrid method that allows a trade-off between speed
and physical accuracy. The beauty of mathematical programming
software is that it has been well researched, and is readily available.
People who are not necessarily experts in the field of mathematical
programming can make use of it in their programs as we have done.
We feel that further development of OBA should point towards a
parallel implementation.
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