
CAB: Fast Update of OBB Trees for Collision Detection between

Articulated Bodies

Harald Schmidl Nolan Walker Ming C. Lin

{schmidl|walkern|lin}@cs.unc.edu

Department of Computer Science

Sitterson Hall, Campus Box 3175

Chapel Hill, NC 27599-3175

Abstract

We present a new, fast approach for updating oriented bounding box hierarchies for articulated

humanoid models, using a bottom up approach. The algorithm approximates existing techniques

by assuming a major body axis. Existence of a major axis allows merging of bounding boxes in a

hierarchy approximately but with sufficient accuracy. For scenarios with close proximity a speedup

by a factor 2 on average is achieved compared to existing techniques.

1 Introduction

Collision detection algorithms often have in common the breakdown of the larger problem into sub-
problems: a broad phase and a narrow phase. The exact and often more expensive collision detection
computation of the narrow phase is only run if a cheaper filtering effect in the broad phase has deter-
mined that this step is necessary. Bounding boxes are very helpful in the broad phase [1, 3, 5, 7]. Only if
simpler boxes that enclose the original geometry are overlapping will exact collision detection be called.
In this paper, we propose an efficient algorithm on updating oriented bounding box (OBB) hierarchies
of articulated humanoid models for fast broad-phase culling.

2 Background

Efficient algorithms for collision detection use data structures based on hierarchical representations.
Our collision handling algorithm for articulated bodies, CAB, utilizes results from previous work on
hierarchies of axis aligned bounding boxes (AABB) [1] and hierarchies of object oriented bounding
boxes (OBB) [3]. OBBs generally have a tighter fit than AABBs. OBBs for rigid bodies can be pre-
computed and are only transformed to body positions at runtime. It is common to find OBBs by taking
the covariance matrix of the underlying geometry and use the eigenvectors of this matrix as the box
axes [3]. Using the same approach to build a hierarchy at run-time, i.e. to merge boxes into internal
parent nodes, can be fairly expensive.

For deformable or articulated bodies, the bounding volume hierarchy (BVH) must be updated as the
underlying body geometry changes. Recent work [1] suggests that updating AABBs is faster. Larsson
and Akenine-Möller [6] presented a way to further speed up the update of BVHs through a hybrid
approach that only updates a hierarchy partially to a certain depth, going deeper on demand. However,
the speedup only applies for hierarchies with many levels and when most boxes are not overlapping.
Scenarios as the braided chains in figure 2(a), when handled with AABBs, will have all boxes engaged
in overlap although the enclosed primitives are mostly free of collisions. Hence, all hierarchy levels have
to be built on demand and such approaches no longer offer any advantage.

This paper presents CAB, a new bounding box fitting algorithm for OBBTrees [3]. For articulated,
human-like figures, this approach achieves faster hierarchy update than hierarchies of AABBs. It can also

1

handle close proximity scenarios where almost all internal nodes of two object hierarchies are overlapping
with superior runtime performance.

3 Algorithm

This section describes our new, efficient OBB fitting algorithm for articulated bodies. We first present
our assumptions, then the mathematical background, and finally the algorithm in detail.

3.1 Assumptions

We build the bounding volume hierarchy (BVH) based on the acyclic articulation hierarchy with the
rigid unit bodies in the leaf nodes. Figure 1(a) gives an example of a binary hierarchy.

1 2 3

4

 1 2 3 4

(a) CAB uses a bottom up binary hierarchy.

 Large angle

 Small angle

 E

a1

 Axis of Major Variation

E

a1

a2

a2

 Axis of Major Variation

(b) Finding parent box axes with principle com-
ponent analysis and CAB’s approximation.

Figure 1: Some detail on CAB’s hierarchy shape and generation.

CAB assumes that the geometry comes from a humanoid model. The humanoid geometry can be
visualized as a collection of ellipsoids connected with joints. The ellipsoids are elongated, i.e. they have
a longest, or major axis. We assume that the ellipsoids are jointed together such that their major axes
are perpendicular to the joint axis. We define an OBB as a box center ~c, three unit vector axes ~Ai, and
three scalar extents ei.

3.2 Algorithm Description

In general, to test if two BVHs intersect, we perform a simultaneous top-down traversal of both trees
as described in [1, 3]. When a link in an articulated body moves, the entire hierarchy may need to be
updated. Rigid body geometry at the leaf nodes is encapsulated with a well-fitting OBB that can be
pre-computed offline. When the rigid body moves or rotates, the OBB that surrounds it is updated
accordingly. CAB uses a bottom up update to refit internal nodes. We base our approach intuitively
on finding the axis of major variation for a given set of data points. The CAB algorithm is designed to
find a good approximation to this axis.

Consider two rigid bodies from the articulation hierarchy connected by a single joint. A very good
approximation to the axis of major variation will be either one of the major axes of the child boxes
in the case of small angles, or the “endpoint vector”, i.e. the vector connecting the endpoints of the
child boxes, in the case of large angles. Figure 1(b) illustrates the difference between CAB and principle

component analysis. CAB picks ~E as the major axis for the large angle case and ~a1 in the small angle
case.

3.2.1 Parent Box Computation

Let B1 and B2 be two child boxes in an articulated hierarchy connected by some joint. Let B2 have
some arbitrary rotation about its articulation point at this joint. To find the new axes of the parent
bounding box we find first the longest axis of each child. Let ~a1 and ~a2 be the longest axes of B1 and

2

B2 respectively, pointing away from the joint connecting B1 and B2. Call the unknown parent box axes
~A1, ~A2, and ~A3. We first calculate the endpoint vector ~E = ~a1 − ~a2. Next, we find the axis of major
variance (~M) by finding the longest vector among ~a1, ~a2, and the endpoint vector ~E. We normalize and
yield

~A1 = | ~M |−1 ~M. (1)

Note: alternatively we have also tried the following1. If ~E is shortest, find ~A1 by taking the normalized
sum of ~a1 and ~a2. However, we found this will result in a slightly larger parent box. Hence, filtering of
collisions will not be as good and runtime performance suffers slightly.

The axis of minor variance immediately follows. It is the normal of the plane containing the child
box axes,

~A2 = |~a1 × ~a2|
−1(~a1 × ~a2). (2)

The third unknown axis will then be uniquely determined by the cross product of these two perpendicular
vectors,

~A3 = ~A1 × ~A2. (3)

Hence we have found an orthonormal system that represents the orientation of the parent box.
There is a special case when ~a1 and ~a2 are nearly parallel, which causes ~A2 to not be well-defined in

our original formulation. Thus, before we do any of the calculations above, we first test the dot product
of ~a1 and ~a2. If this dot product is above a tolerance (1− 10−5), we consider the vectors parallel. When
this happens, we identify the child box with the largest axis, not considering the major axes ~a1 and ~a2.
The parent box uses all of this child’s axes as an orthonormal basis.

Once we have found the axes, we use the child bounding boxes to find the extents of the parent box.
For each parent bounding box axis ~Ai, we project the child bounding boxes onto that axis. We examine
the minimal (mini) and maximal (maxi) values of this projection. The extent ei of this axis and the
box center ~c will be given as

ei =
1

2
(maxi − mini) and ~c =

3∑

i=1

1

2
(mini + maxi) ~Ai. (4)

4 Analysis

(a) Two colliding chains with and without the boxes. (b) Simplified AABB.

Figure 2: Some detail on CAB’s hierarchy shape and generation.

This section presents experimental results and analysis. In the first set of experiments we employed
an implementation of optimization-based animation [8] to generate frames of motion data for chains
of varying length with bodies of different size and shape. Refer to figure 2(a) for an example of two
colliding chains with and without an OBB hierarchy drawn. The final experiment uses data gathered from
a virtual reality application. In all cases, the motion data is then used to test different BVH approaches.
Exact collision queries are done in SWIFT++ [2] extended by DEEP [4] to detect intersection, collision
normals, and the penetration depth if applicable. The reader may access MPEG videos and other related
materials through the web site listed at the end of this paper.

1Suggested by a JGT reviewer

3

The timings for the following tables were taken with an implementation of our algorithms in C++.
Tables 1-4 were taken on a Pentium 4 1.8GHz CPU running Windows 2000, and table 5 was taken on
a 866MHz Pentium 3 laptop running Windows XP. We recorded the total number of calls to the exact
query, the number of false alarms where a query returned false, i.e. no overlap, the time spent for all
queries (t[query]), the time for the box hierarchy update (t[upd]), the time for testing the hierarchies
for overlapping pairs of boxes (t[test]), and finally the total (t[total]). All numbers are cumulative for
the number of frames that were simulated. Note: times are rounded to two decimal places and do not
always add up exactly therefore.

#coll #false t[query] t[upd] t[test] t[total]
brute 1200000 1199786 19.34 0 0 19.34

AABB+ 71534 71320 1.86 135.86 4.94 142.67
AABB∗ 84148 83934 1.99 8.08 5.42 15.94
OBB 5740 5526 0.16 14.63 1.75 16.54
CAB 5740 5526 0.16 6.34 2.06 8.56

Table 1: 16 convex links, ratio 3:1, 10000 frames.

#coll #false t[query] t[upd] t[test] t[total]
brute 1200000 1199646 20.52 0 0 20.52

AABB+ 130112 129758 2.97 136.34 7.04 146.34
AABB∗ 149466 149112 3.44 8.04 7.45 18.94
OBB 7194 6840 0.21 14.62 1.60 16.43
CAB 7194 6840 0.21 6.33 2.26 8.80

Table 2: 16 convex links, ratio 6:1, 10000 frames.

Brute-force testing and AABB+ are included for completeness only. AABB+ always fits boxes to all
body vertices and runs highly inefficient. AABB∗ uses the eight vertices of a rectangular hull around the
original geometry for fitting a bounding box instead of all original vertices. This case is illustrated for
two dimensions in figure 2(b). Although the green box fits less tightly there is a tremendous advantage
in update speed. OBB indicates the timing on finding the hierarchy by covariance analysis [3]. Despite
of this approach resulting in better fitting boxes, CAB excels due the advantage in the update time.
The numbers of overall queries and false alarms are the same for both OBB and CAB because the leaf
boxes are exactly the same in both cases, only the internal parent nodes differ.

Tables 1 and 2 show timings for chains of bodies with different length to thickness ratios as shown
in figures 3(a) and 3(b) respectively. The ratio 6 : 1 in table 2 represents approximately the geometry of

(a) Convex links with length to
thickness ratio 3:1.

(b) Convex links with length to
thickness ratio 6:1.

(c) Non-convex links with length
to thickness ratio 6:1.

Figure 3: Closeups of the different links’ geometry.

4

#coll #false t[query] t[upd] t[test] t[total]
brute 1200000 1199927 22.24 0 0 22.24

AABB+ 130112 130039 3.71 135.79 7.13 146.63
AABB∗ 148784 148711 3.97 8.06 7.46 19.50
OBB 3405 3332 0.34 14.70 0.85 15.88
CAB 3405 3332 0.34 6.36 1.38 8.08

Table 3: 16 non-convex links, ratio 6:1, 10000 frames.

#coll #false t[query] t[upd] t[test] t[total]
brute 1200000 1190472 21.37 0 0 21.37

AABB+ 65936 56408 3.88 136.34 4.67 144.89
AABB∗ 93502 83974 4.55 8.11 5.64 18.29
OBB 24731 15203 2.83 14.90 3.01 20.74
CAB 24731 15203 2.80 6.35 4.01 13.17

Table 4: 16 convex links, “braided”, ratio 6:1, 10000 frames.

a human lower or upper arm. It is clear that OBB approximate the body geometry better than AABBs
and less dependent on length to thickness ratio.

Table 3 is for non-convex bodies. Figure 3(c) shows the dented links reminiscent of a boat hull. The
ratio of length to maximum thickness is still 6 : 1. The AABBs have therefore almost the same size as
in table 2 and the times for box testing are comparable for the two tables. However, the OBBs shrink
and fit more closely. Non-convex distance queries are more expensive in SWIFT and DEEP than convex
queries. Thus, the effect of better OBB filtering is more evident for non-convex bodies and is shown in
the larger performance gap between AABB∗ and CAB.

The advantage of CAB is less noticeable in table 4. This experiment uses again the links shown in
figure 3(b) but with radically different chain motion. The chains end up “braided” together in very close
contact. In this table, AABB∗ is actually slightly faster than OBB. This is because of the underlying
motion which generates relatively more contacts between bodies. The close contact between bodies
moves the cost of OBB and CAB testing closer to that of AABB∗ but the advantage of faster update
for CAB persists.

Figure 4: The hand flicks a ball over a table.

Table 5 shows timings for an articulated hand interacting with a virtual environment. See figure 4
for an articulated hand that plays with a ball. We used a Cyberglove for tracking the hand. The overall
advantage of CAB persists even in this more complicated scenario with multiple branching in the links.
The number of false alarms is relatively higher because the hand is not always in contact with the
environment but is always close to it, i.e. boxes overlap without the hand touching anything.

Many applications, such as virtual reality or general animation use a frame rate of 30 frames per

5

#coll #false t[query] t[upd] t[test] t[total]
brute 288072 287308 16.08 0 0 16.08

AABB+ 25893 25129 7.92 68.42 1.00 77.35
AABB∗ 27337 26573 8.79 4.48 0.88 14.16
OBB 11031 10267 5.62 6.65 0.52 12.79
CAB 11031 10267 5.65 3.01 0.56 9.22

Table 5: An articulated hand interacting with a ball, 4000 frames.

second. The total time spent for CAB hierarchy update, testing, and exact collision queries in our
examples ranges from approximately 0.9 to 1.3 milliseconds per frame. This corresponds to 3%-4% of
the frame time assuming each step takes 1/30 second. This performance shows that CAB is suitable for
many real-time applications.

Web Materials

Mpeg videos and other supplementary materials are available online at
http://www.acm.org/jgt/papers/SchmidlWalkerLin04.

References

[1] G. Van den Bergen. Efficient collision detection of complex deformable models using AABB trees.
Journal of Graphics Tools, 2(4):1–13, 1997.

[2] S. Ehmann and M. C. Lin. Accurate and fast proximity queries between polyhedra using convex
surface decomposition. Computer Graphics Forum (Proc. of Eurographics’2001), 20(3):500–510, 2001.

[3] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A hierarchical structure for rapid interference
detection. Proc. of ACM Siggraph’96, pages 171–180, 1996.

[4] Y. Kim, M. Lin, and D. Manocha. Deep: An incremental algorithm for penetration depth compu-
tation between convex polytopes. Proc. of IEEE Conference on Robotics and Automation, pages
921–926, 2002.

[5] James T. Klosowski, Martin Held, Joseph S.B. Mitchell, Henry Sowizral, and Karel Zikan. Efficient
collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization
and Computer Graphics, 4(1):21–36, 1998.

[6] T. Larsson and T. Akenine-Möller. Collision detection for continuously deforming bodies. Euro-
graphics Conference 2001, pages 325–333, 2001. short presentation.

[7] M. Lin and S. Gottschalk. Collision detection between geometric models: A survey. Proc. of IMA
Conference on Mathematics of Surfaces, pages 37–56, 1998.

[8] Victor J. Milenkovic and Harald Schmidl. Optimization-based animation. SIGGRAPH 01 Conference
Proceedings, pages 37–46, 2001.

6

