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Abstract A long-standing paradigm in B cell immunology is that effective somatic
hypermutation and affinity maturation require cycling between the dark zone and
light zone of the germinal center. The cyclic re-entry hypothesis was first proposed
based on considerations of the efficiency of affinity maturation using an ordinary dif-
ferential equations model for B cell population dynamics. More recently, two-photon
microscopy studies of B cell motility within lymph nodes in situ have revealed the
complex migration patterns of B lymphocytes both in the preactivation follicle and
post-activation germinal center. There is strong evidence that chemokines secreted
by stromal cells and the regulation of cognate G-protein coupled receptors by these
chemokines are necessary for the observed spatial cell distributions. For example, the
distribution of B cells within the light and dark zones of the germinal center appears
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to be determined by the reciprocal interaction between the level of the CXCR4 and
CXCRS receptors and the spatial distribution of their respective chemokines CXCL12
and CXCL13. Computer simulations of individual-based models have been used to
study the complex biophysical and mechanistic processes at the individual cell level,
but such simulations can be challenging to parameterize and analyze. In contrast, or-
dinary differential equations are more tractable, but traditional compartment model
formalizations ignore the spatial chemokine distribution that drives B cell redistri-
bution. Motivated by the desire to understand the motility patterns observed in an
individual-based simulation of B cell migration in the lymph node, we propose and
analyze the dynamics of an ordinary differential equation model incorporating ex-
plicit chemokine spatial distributions. While there is experimental evidence that B
cell migration patterns in the germinal center are driven by extrinsically regulated
differentiation programs, the model shows, perhaps surprisingly, that feedback from
receptor down-regulation induced by external chemokine fields can give rise to spon-
taneous interzonal and intrazonal oscillations in the absence of any extrinsic regu-
lation. While the extent to which such simple feedback mechanisms contributes to
B cell migration patterns in the germinal center is unknown, the model provides an
alternative hypothesis for how complex B cell migration patterns might arise from
very simple mechanisms.

1 Introduction

The evolution of high-affinity specific antibodies by long-lived B cells is driven
by a process known as affinity maturation that occurs in the germinal center
of lymph nodes. In this process, the germinal center (GC) is partitioned into a
dark zone (DZ), consisting largely of rapidly dividing B cells known as cen-
troblasts, and a light zone (LZ), consisting largely of B cells known as centro-
cytes interacting with follicular dendritic cells (FDC). It is believed that somatic
hypermutation which introduces random changes in the antibody nucleotide se-
quence occurs within centroblasts in the DZ, while centrocytes in the LZ inter-
act with and compete for immune complexes bound to FDC (Allen et al. 2007a;
Shlomchik and Weisel 2012). A long-held hypothesis of cyclic re-entry is that the
periodic migration of B cells from the DZ to the LZ and vice versa is critical for
the efficiency of affinity maturation (Kepler and Perelson 1993; Kepler et al. 1993;
Meyer-Hermann et al. 2001). FDCs present antigen bound on Fc receptor-captured
antibodies on their cell surface, and centrocytes compete for binding to these anti-
gens. Centrocytes with high affinity B cell receptors are more likely to successfully
bind antigen and receive survival signals, while centrocytes with low affinity recep-
tors fail to bind and undergo apoptosis. Successful centrocytes may then reenter the
DZ for proliferation and another iteration of selection, or exit the germinal center as
memory B cells or long-lived plasma cells.

How B cells migrate in the lymph node is hence critical for understanding the
generation of high affinity long-lived memory and plasma cells that are the basis
of humoral immunity. Naive B cells are believed to be attracted to the preactiva-
tion follicle primarily by the chemokine CXCL13, although lipid ligands that bind to
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the EBI2 receptor and CCR7:CCL19/CCL21 receptor-ligand interactions also mod-
ulate the B cell spatial distribution in the follicle (Gatto et al. 2011). In the post-
activation germinal center, the migration of B cells between the DZ and LZ is driven
by the chemokines CXCL12 found mainly in the LZ and CXCL13 in the DZ. These
chemokines are recognized by the G-protein coupled receptors (GPCR) CXCR4 and
CXCRS5, with CXCR4 binding to CXCL12 and CXCRS binding to CXCL13 (Allen
et al. 2004, 2007a).

Pioneering work by Sally Zigmond has described receptor internalization (and
resulting loss of sensitivity to a chemokine gradient) as an important aspect of
GPCR-mediated chemotaxis (Zigmond 1981; Zigmond et al. 1982). Estimated re-
ceptor levels are in the 10* range (10,000-50,000) of receptors per cell (Zigmond
1981). Upon ligand binding, GPCRs signal to G-protein, become phosphorylated by
GPCR kinase (effectively desensitizing the receptor by dissociating G-protein sub-
units), and internalize via one of two major pathways. One internalization pathway is
fast and involves clathrin-mediated endocytosis. The other is slower and uses a lipid-
raft/caveolae pathway. The clathrin pathway involves the recruitment of arrestin to
the receptor, which can act as a scaffold for further signaling events. Receptors inter-
nalized in either pathway can potentially be recycled, or degraded. How chemokine
receptors respond to the local chemokine field over time is hence likely to be a ma-
jor regulatory mechanism for the migration behavior of B cells. Indeed, the literature
describes alterations in chemokine receptor expression balance as the fundamental
basis for directional migration within the lymph node and germinal center (Allen
et al. 2004; Hardtke et al. 2005; Reif et al. 2002).

With the advent of two-photon microscopy, we can now observe individual B
cell dynamics in situ within a developing germinal center (Allen et al. 2007b;
Schwickert et al. 2007; Hauser et al. 2007b; Victora et al. 2010). However, two-
photon microscopy is restricted to the visualization of relatively small regions and
short time-spans. Computational modeling is therefore a valuable adjunct for in-
ference beyond these short time and space scales, providing mechanistic insight
into long range/long duration phenomena such as the relationship between B cell
migration patterns and the efficacy of somatic hypermutation (Kleinstein 2002;
Meyer-Hermann et al. 2009; Figge and Meyer-Hermann 2011). As traditional or-
dinary differential equation (ODE) models ignore the spatial inhomogeneity of the
chemokine fields, computational simulations of individual-based models (IBM) may
be more appropriate vehicles for understanding how emergent behavior arises from
the interactions of single B cells with their environment and other cells (Figge 2005;
Bogle and Dunbar 2009; Germain et al. 2011; Beltman et al. 2011).

The detailed biology of chemotaxis is complex, and existing models of chemotaxis
are in general either mechanistic or phenomenological (Palsson and Othmer 2000;
Hauser et al. 2007a; Figge et al. 2008). We use phenomenological models in this pa-
per as our interest is in the feedback between receptors and an external chemokine
field, and not so much in the detailed mechanism of chemotaxis. Phenomenologi-
cal models are typically based on some variation of a persistent random walk biased
in the direction of the chemokine gradient (Weiner 2002). To bridge between de-
terministic and stochastic motility models in continuous time, we use the classical
Langevin process stochastic differential equation formalism for persistent random
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walks to model chemotaxis and reduce to a deterministic version by removing the
Wiener noise component where appropriate. We also explicitly incorporate GPCR
desensitization by an external chemokine field in the Langevin process model.

Chemokine receptors are regulated on multiple levels, and receptor dynamics can
be complex (Lauffenburger and Linderman 1996). As an illustrative example (Beyer
and Meyer-Hermann 2008) present a detailed formalism (comprising 6 differential
equations with 13 free parameters) to model the dynamics of a single receptor type
interacting with its chemokine. Implementing a model with that degree of complexity
would focus attention on detail and detract from our intention to show that very sim-
ple mechanisms suffice to induce complex migratory behavior. We therefore chose
to derive a new phenomenological model for the receptor incorporating just ligand
binding, constitutive and binding-induced down-regulation, and de novo synthesis.
The use of singular perturbation analysis leads to the formulation of a single equation
to model the dynamics of each chemokine receptor.

Based on the considerations above, we propose a simple ODE model of individ-
ual B cells coupled to static chemokine fields. We used the model to investigate the
range of dynamical behaviors exhibited in the presence of static chemokine field dis-
tributions representing the DZ and LZ of the germinal center. Our hypothesis was
that study of a phenomenological model integrating spatial chemokine distributions,
receptor regulation, and chemotaxis could provide a template for understanding the
broad-stroke dynamics of B cells in the germinal center. This would complement
the use of IBM simulations to fill in the fine details and reveal unexpected emergent
behavior resulting from individual cell interactions. For our model, we chose to in-
clude just three components—a spatial distribution of chemokines in one dimension,
a model for the regulation of chemokine receptors, and a chemotactic model for cell
locomotion.

This manuscript describes the application of the spatially-driven ODE model to
explore the migratory response of B cells to chemokines in the germinal center.
We show that chemokine-induced receptor down-regulation and receptor-mediated
chemotaxis in the presence of a simple fixed spatial distribution of the relevant
chemokines is sufficient to induce complex migratory patterns, including intrazonal
and interzonal oscillations.

2 Model Definition and Analysis
2.1 Static Chemokine Fields

The chemokine-driven ODE model is a deterministic nonlinear dynamical system
in one spatial dimension, in which chemotaxis of a single cell is modulated by the
levels of two chemokine receptors that are reciprocally regulated by the static 1D
spatial distribution of their cognate chemokines.

2.1.1 Spatial Distribution of Chemokines
Chemokine fields are set up by the expression of chemokines by stromal cells in

the germinal center with dynamics determined by diffusion, absorption and degrada-
tion, but in the steady state over short periods of time, we make the assumption that
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the chemokine field is static. We further simplify by assuming that each chemokine
field has a Gaussian distribution, and only consider the dynamics along the axis that
runs through both the follicle or germinal center centroids. Chemokines are modeled
as functions of the cell displacement x—even though the field is static, cells with
different displacements respond to the local chemokine field. This representation of
chemokine fields as a function of cell displacement is flexible—it is possible to set
up arbitrarily complex chemokine fields in this system if necessary to model in vivo
measurements, for example, by using mixtures of Gaussians to represent multimodal
fields.

Germinal Center Model The chemokine concentration is given as a function of the
cell displacement x. For the examples in the paper, we use Gaussian distributions f;
and f> to represent the CXCL12 and CXCL13 chemokine distributions respectively,
i.e.,

—etkp?

fi)=cre i (1)
—tkp)?

Hx)=cre 2 ®)

where ¢; and w; determine the height and width of the distribution, and k = (k; +
k>)/2 is the half-distance between the dark and light zones in um. The chemokine
concentrations and gradients for CXCL12 and CXCL13 are shown in the first two
panels in the top row of Fig. 1.

2.2 Toy Model for Receptor Regulation and Chemotaxis

We begin with a toy model for receptor regulation and chemotaxis to illustrate the ba-
sic requirements for chemokine-driven oscillations. We assume that the chemokine
receptors are synthesized at a rate 7 and degraded at a rate §. To couple the receptor
dynamics to the chemokine field, we assume that receptors are also down-regulated
at a rate proportional to the product of the receptor and the local cognate chemokine
concentration. In other words, the chemokine drives the down-regulation of its recep-
tor.

dri=12
dt

For chemotaxis, we assume that the cell velocity depends on the product of the
receptor and the local cognate chemokine gradient, with a drag coefficient y .

T — Fi fi(x) — 8;r; 3)

dx

ar =Y @
dv , ,

E=r1f1(x)+r2f2(x)_)/v (5)
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2.3 Analysis of Toy Model

In this section, we first analyze the toy model components individually to gain insight
into the origin of specific dynamical behaviors, then integrate the components and
explore the resulting system dynamics.

2.3.1 Regulation of Receptor Density

From Eq. (3), it follows that the steady state receptor density 55 at any given position
X is given by

. — ©6)
§i + fi(x)

In the rightmost upper panel of Fig. 1, we plot the steady state solution for the
receptor density at a particular position. It is clear that the effect of binding-induced
down-regulation is to decrease the receptor density the greatest where the chemokine
concentration is highest. Where the level of cognate chemokine is low, synthesis
of new receptor outpaces down-regulation, and the saturating density of receptor is
achieved.

2.3.2 Stability of Cell Velocity

Next, we examine the dynamics of the velocity v with respect to relative changes in
receptor concentration using a reduced undamped model (y = 0)

dv , ,
EZSfl(x)‘i‘fz(x) 7

where we rescale so that s = r/ry. We also assume that the chemokine fields f;(x)
and f>(x) are standard normal distributions with centers set 1.5 units from the origin.

In the lower panels of Fig. 1, we plot the rate of change of the velocity as the
position of a B cell is varied. There are three different sets of steady state solutions
for v possible. When s, the ratio of the densities of the two chemokine receptors,
is small (so that r, dominates), there is a single steady state at the mean of f>(x).
As s increases, a new steady state is created at the mean of fj(x) by a saddle-node
bifurcation, and the system is bistable. As s continues to rise, the steady state at f>(x)
vanishes in a reverse saddle node bifurcation, and the system becomes monostable
again. This implies that under these conditions, the DZ, LZ or both can be equilibria
for a B cell, depending only on the ratio of CXCR4 and CXCRS expressed.

2.3.3 Coupling Receptor and Velocity Dynamics Results in Spontaneous
Oscillations

Referring to the bottom panels of Fig. 1, we see how oscillations can arise from cou-
pling of the receptor and velocity dynamics in the presence of opposing chemokine
fields. Suppose a cell starts with a low density of CXCR4 and high CXCRS5 at the
CXCLI12 peak. Under appropriate conditions, the only stable equilibrium is at the
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1D bifurcation 2D bifurcation Sample trajectories
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Fig. 2 Bifurcation plots and sample trajectories for the toy model. Left panel shows the 1D bifurcation
plot as the separation k between DZ and LZ is varied. Oscillations arise as k is increased above the thresh-
old labeled as H1 where a supercritical Hopf bifurcation occurs. The dotted line segment indicates the
parameter range for k where the equilibrium solution is unstable and oscillations exist. At approximately
k =39.5, a subcritical Hopf bifurcation occurs at H2. The equilibrium becomes stable again at the saddle
node bifurcation LP2 and there are no oscillations beyond this value. It is also possible to go beyond sin-
gle parameters and identify parameter combinations where bifurcations occur as illustrated by the middle
panel that shows the continuation of the Hopf bifurcation as k and the rate of synthesis of CXCR4 (1)
are simultaneously varied. The right panel shows sample trajectories for the pairs of (k, 1) parameters
indicated by crosses in the middle panel, with trajectories for each parameter pair plotted matching the
same color cross. Fixed parameters are chosen to be within reasonable biological ranges and to generate
oscillations on the correct time scale (hours): ¢ =20, w = 15.7, mp =1, §1 =0.001, 6, =0.001, y = 1. In
the left panel, w1 = 0.3, while in the center panel, the red (k = 40, 71 = 0.35), green (k =45, 71 = 0.58)
and blue (k = 50, 71 = 0.805) crosses represent (k, 7t ) pairs that have oscillatory behaviors (Color figure
online)

CXCL13 peak and the cell moves to the right (bottom left). When it reaches the
CXCL13 peak, the chemokine drives the down-regulation of the CXCRS receptor and
CXCR4 is up-regulated. Now we are in the situation illustrated by the bottom right
panel; the stable equilibrium at the CXCL13 peak vanishes, and the cell is forced to
return to the CXCL12 peak, setting up a system where oscillations result.

2.3.4 Bifurcation Analysis

To better understand the conditions where the system exhibits oscillatory behavior,
we can systematically study the dynamics under changes of parameters using soft-
ware for continuation of equilibria (Dhooge et al. 2003; Clewley et al. 2007). Contin-
uation software “follows” the equilibrium solution as some parameter is changed, and
also checks for the occurrence of specific bifurcations at each parameter value. This
allows us to identify parameter regions where interesting or desired system behavior
is found, and provides insight into the parameter values where there is a qualitative
change of behavior. Figure 2 shows the bifurcation plots from different parameter
regions for the toy model.

2.4 Biologically Motivated Phenomenological Model for Receptor Regulation and
Chemotaxis

The toy model described above shows that a combination of receptor adaptation
(modeled as down-regulation) and receptor-mediated chemotaxis can give rise to au-
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Receptor
binding

Internallzatlon
Recycling k
—> Degradation
T

Synthesis

Fig.3 Schematic showing model for regulation of chemokine receptor levels on the cell surface. Unbound
receptors (U) and bound receptors (B) levels are determined by association or dissociation with chemokine
(shown as red ellipse) with rates k* and k~, respectively. Bound receptors are endocytosed to become
internalized receptors (/) with rate p and internalized receptors can either be degraded with rate § or
recycled with rate 8. Finally, new receptor synthesis occurs with rate 7t (Color figure online)

tonomous oscillations in the presence of a suitable static chemokine field. By design,
the model abstracts away all other biological considerations. In this section, we de-
scribe simple biologically-motivated models that accommodate standard mass-action
kinetics for receptor dynamics and chemotaxis with saturable chemokine receptor
signals, and show that these models preserve similar autonomous oscillations.

2.4.1 Model for GPCR Regulation

As discussed in a recent review by Bennett et al. (2011), the regulation of chemokine
receptor levels is highly complex with multiple different processes that can affect
GPCR levels and activity. However, the mechanism of migration is thought to be in-
dependent of transcription and regulated primarily by receptor trafficking dynamics
in response to agonist binding (Schaeuble et al. 2012). Agonist-dependent desensiti-
zation in response to agonist binding results in GPCR endocytosis and degradation
as discussed in the Introduction. Some of the internalized receptor may be recycled
rather than degraded, and the path taken depends on both cell type and the duration of
ligand engagement. While probably too slow a process to directly influence lympho-
cyte migration, new receptor synthesis is also essential for long-term maintenance
of surface chemokine receptor levels. These processes of new receptor synthesis and
agonist-induced internalization, recycling and degradation that together determine the
dynamics of chemokine receptor expression are illustrated in Fig. 3. The mass-action
kinetics corresponding to Fig. 3 are given by

dU
E:—kJ“UL—i—k_B—i—,BI—rU 8)
dB
— =kTUL—-k"B—uB )
dt
dI

where the first-order degradation term t for U is necessary to ensure that the unbound
receptor remains finite in the absence of ligand. To simplify the model, we neglect
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the contribution of receptor recycling on the available intracellular pool. That is, we
assume that 7w >> u B, and hence that [ is constant. With these assumptions, we can
derive the following model for the dynamics of the CXCR4 and CXCRS5 receptors in
the presence of their cognate chemokine ligands (full derivation given in Appendix A)

drici2 _ _ itk fi(x)
dt Y14k fi(x)
where « is a rescaled equilibrium association constant for GPCR:lignad interactions,

and § + 7 is the removal rate for bound GPCR that incorporates the first-order degra-
dation of unbound receptor U'.

— i1 (11)

2.4.2 Chemotactic Model for Cell Locomotion

The model for B cell chemotaxis assumes that the cell velocity is governed by a
chemotactic process biased by saturable chemokine receptor signals generated by re-
ceptor ligand interactions that depend on both ligand concentration and density. The
velocity has a drag coefficient y, and a tuning factor for the degree of responsive-
ness to the underlying chemokine field given by x. The model equations (derived in
Appendix B) are

dx
dt
dv i) 12(x)
—=X\"n 7 +12 5| —Yv
dt (I +e€1 f1(x)) (1+ €2 f2(x))

We have set the effective equilibrium association constant € in the chemotactic
model to be distinct from the value « in the receptor regulation model to allow for

differential coupling of bound receptor to signal transduction pathways involved in
the two processes.

v 12)

13)

2.4.3 Bifurcation Analysis of Phenomenological Model

The full model is reproduced below for convenience.

dri __ nukifikx)

4 T T T i) 1
dro _ nufix)

7 T 27 (15)
dv _ ) £30) ) B y
ar* (” ranon? “Urapm?) " (16)
dx . (17
E =0

As with the toy model, the bifurcation analysis suggests that spontaneous oscilla-
tions only occur for a rather restricted set of parameter combinations. For example,
the leftmost panel of Fig. 4 shows that spontaneous oscillations only occur when the
distance separating the simulated DZ and LZ fall within a narrow range.
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Fig. 4 Bifurcation plots and sample trajectories for the reduced germinal center model. Left panel shows
the 1D bifurcation plot as the separation k between DZ and LZ is varied. Oscillations arise as k is in-
creased above the threshold labeled as H1 where a supercritical Hopf bifurcation occurs. The dotted line
segment indicates the parameter range for k where the equilibrium solution is unstable and oscillations
exist. At approximately k = 52, a subcritical Hopf bifurcation occurs at H2. The equilibrium becomes
stable again at the saddle node bifurcation LP2 and there are no oscillations beyond this value. It is also
possible to go beyond single parameters and identify parameter combinations where bifurcations occur as
illustrated by the right panel that shows the continuation of the Hopf bifurcation as k and the rate of syn-
thesis of CXCR4 (1) are simultaneously varied. Fixed parameters: ¢ = 10, w =25, 7 = 0.1, 71 =0.06,
7 =0.06, §; =0.006, 5 =0.006, k1 =1,k =0.1,€1 =0.3,ep =0.3, x =28, ¢ =1, y =5. In the left
panel, wy = 0.15, while in the right panel, the cyan (k =43, 71 =0.9), black (k = 44, w1 =0.75), and
green (k =50, w1 = 0.15) circles represent (k, 7r1) pairs that have oscillatory behavior, while the magenta
(k=44, 71 =0.9), blue (k =50, 71 = 0.25), and red (k =50, 71 = 0.05) circles represent (k, 7w1) pairs
that have steady state solutions. In particular, the green circle (k = 50, 71 = 0.15) corresponds to a solu-
tion in the unstable equilibrium region of the left panel, where oscillatory behavior is predicted. Sample
trajectories corresponding to these parameter pairs are shown in Fig. 7 (Color figure online)

2.4.4 Diversity of Dynamical Behaviors in 1D

A surprisingly rich variety of periodic behavior can be found in the 1D ODE model
system. The range of behaviors include direct passage to a steady state equilibrium,
damped oscillations to steady state and a variety of oscillatory behaviors with peri-
ods ranging from minutes to many hours. These oscillations may be from DZ to LZ,
within a single zone or have components of both small intrazonal and large inter-
zonal circulations. Oscillations can be highly asymmetrical, with a disproportionate
amount of time spent in a single zone. Oscillations may even be apparently chaotic.
Representative examples of the numerical simulations of displacement over time il-
lustrating the diversity of oscillations are shown in Fig. 5.

2.5 Individual-Based Model Simulations of Receptor Dynamics and Chemotaxis
Finally, we implemented the phenomenological model in a 3D IBM simulation of
immune cells (Kepler and Chan 2007; Mitha et al. 2008), extending the chemotac-
tic model to incorporate stochastic deviations. We show that very similar dynamical
behavior is observed in the 3D simulation as in the simpler ODE models.

2.5.1 Stochastic Model for Chemotaxis

For the IBM, we rewrite the phenomenological model for chemotaxis as a stochas-
tic differential equation in Ito form, giving rise to the following Langevin process
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Fig. 5 Diversity of oscillations with the phenomenological model. In each case, initial conditions were
x=0,v=1,r1 = 1,rp = 1. Top row: Left panel shows symmetrical oscillations, center panel shows
asymmetrical oscillations and right panel shows oscillations confined to one zone. Bottom row: Left panel
shows “nested” large and small oscillations in both zones, center panel shows “nested” small oscilla-
tions only in one zone, and right panel shows chaotic oscillations. Parameters: Top left (¢ = 10, w =25,
w1 = 0.15, mp = 0.15, 11 = 0.06, 75 = 0.06, §; = 0.006, §, = 0.006, k| = 0.5, k3 = 0.5, €] = 0.3,
e) =03, x =28, y =5, k =50); top center (c =10, w = 25, 71 = 0.23, mp = 0.15, 71 = 0.06,
7 = 0.06, §; = 0.006, 8, = 0.006, k1 = 0.5, kp =0.5, € =0.3, g = 0.3, x =28, y =5, k =50);
top right (c =10, w =25, 7y =0.15, mp = 0.15, 71 = 0.06, 7, = 0.06, §; = 0.006, 8o = 0.006, k1 = 3.6,
kp =0.5,€1 =0.3,€p =0.3, x =28, y =5, k =50); bottom left (c =5, w =22, 71 =0.02, 7y = 0.004,
71 =0.005, 7, =0.01, §; =0.001, §, =0.001, k1 =10, kp =10, €] =3, € =0.2, x =26.67, y =0.03,
k = 45); bottom center (c =5, w =22, m; = 0.05, 7p = 0.006, 7y = 0.04, rp = 0.015, §; = 0.001,
87 =0.001, k1 =10, ko =10, €] =6, g = 0.1, x =3.33, y = 0.03, k = 45); bottom right (¢ =5,
w =22, 7y =0.05, 7 = 0.0056, r; = 0.005, rp = 0.018, §; =0.001, 8, =0.001, k1 =5.5, kp = 10,
€1 =6,ep=0.1, x =16.17, y = 0.03, k = 45)

equation
dx =vdt (18)
fx) ) )
dv= dt —yvd aw 19
! X<”<1+61f1<x>>2 T apee) ! T orar (9

where d W is the differential Wiener process.

There are three main differences between the phenomenological model and IBM
simulation—the IBM is in 3D while the phenomenological model is 1D; cells in
the IBM have a stochastic chemotactic motility model rather than a deterministic
one (i.e., o # 0); and there are extrinsic forces in the IBM when cells collide with
each other or environmental boundaries. While we have closed form solutions for
the spatial distribution of chemokines in the two models shown here, the simulation
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Fig. 6 Snapshots of IBM GC B cell simulation. All B cells were started in the lower zone (DZ) and
undergo spontaneous periodic motion between DZ and LZ as predicted by the phenomenological model.
Chemokine concentrations in the DZ and LZ are volume-rendered, and the cell color shows density of
CXCR4 receptors as indicated by the color bar (Color figure online)

system uses a spatially discretized numerical approximation in order to generalize to
arbitrary (and potentially evolving) chemokine distributions. Numerically, the differ-
ences between the IBM simulation and 1D phenomenological models are the use of
a three-dimensional grid to store chemokine concentrations and gradients (5 um per
side voxels with trilinear interpolation between voxel centroids) as compared with
values given by the closed forms f; and f> in the ODE model. In addition, cells in
the IBM can have more complex behaviors such as division, death, and activation and
the possibility of collision-induced forces when multiple cells are simulated. In the
IBM simulation, cells are also constrained to be within a specified volume.

2.5.2 Dynamical Behavior in Individual-Based Simulation

Figure 6 shows three snapshots of the 3D IBM simulation. Oscillatory behavior is
preserved in the presence of external forces and stochasticity, although of course, the
periodicity is no longer synchronized between cells.

In the absence of stochasticity (Fig. 7 middle panel), the 3D simulation model be-
havior corresponds very closely to that of the 1D phenomenological model (Fig. 7 top
panel). With stochasticity (Fig. 7 bottom panel), the 3D simulation behavior begins to
diverge. However, the dynamical analysis of the minimal model remains informative
for the 3D simulation behavior.

3 Discussion

We have described a simple mathematical model of chemotaxis-driven B cell mi-
gration in the germinal center. The model incorporates a static chemokine field,
chemokine-induced receptor modulation, and chemotaxis driven by the interaction
of the chemokine receptor with the local chemokine concentration and gradient. The
model is specified using coupled first-order differential equations, lending itself to
detailed analysis using techniques from nonlinear dynamics. Using this basic setup,
we investigated the dynamics of B cell migration under a simple chemokine field
comprising of two Gaussian distributions representing CXCL12 in the light zone and
CXCL13 in the dark zone of the germinal center.
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Fig.7 Comparison of sample
oscillations from the 1D
phenomenological model (top),
IBM simulation with no
stochasticity (middle) and IBM
simulation with stochasticity
(bottom). Top—Sample
trajectories for the six (k, )
parameter pairs shown in Fig. 4
found using a numerical ODE
solver. Middle—Sample
trajectories for the six (k, )
parameter pairs shown in 4
obtained by running the 3D
simulation for a single cell using
identical parameter values "/
with o = 0. There is excellent
agreement with the ODE
solutions shown above. Very
minor differences (e.g., slight
change in periodicity) are likely
due to spatial discretization

(5 um per side voxels with
trilinear interpolation) and lower
temporal resolution of the 3D
simulation compared with the
adaptive numerical integrator
used in the ODE solution.
Bottom—Sample trajectories for
the six (k, 771) parameter pairs
shown in Fig. 4 obtained by
running the 3D simulation for a
single cell again with identical
parameters except for o = 2.
The overall qualitative behavior
is similar to that seen with

o =0, but the presence of
stochasticity reveals the nearby
attractor structure (see sporadic
spikes in top row, middle
column, and bottom row, last
column) reminiscent of
stochastic resonance
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In this simple germinal center model, we show that spontaneous oscillations be-
tween the light and dark zone can arise, and the periodicity can be tuned so that
the residence times in the dark and light zones is consistent with experimental ob-
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servations. An interesting prediction of the model is that for a fixed width of the
chemokine fields, oscillations only occur for a narrow range of separations between
the dark and light zone. When the light and dark zones are too close or far apart,
no oscillations are observed. Oscillations can also be elicited in an alternative model
where one receptor is fixed, and only one receptor is regulated by the chemokine field
(supplementary Fig. A.1), but then the allowed range of separations is even narrower.
This suggests that reciprocal regulation of both CXCR4 and CXCRS receptors gives
more robust oscillatory behavior than regulation of a single receptor.

While the simple mechanism of chemokine-driven receptor down-regulation is
sufficient for inducing autonomous oscillations of some complexity, the extent to
which such a mechanism contributes to B cell cycling in the germinal center is un-
known. In fact, there is substantial evidence that B cell cycling in the germinal cen-
ter is largely driven by extrinsic influences (e.g., B cell:FDC or B cell:T follicular
helper cell interactions) that trigger differentiation programs regulating the expres-
sion of chemokine receptors. However, our model shows that surprisingly complex
migratory patterns can emerge from very simple mechanisms, a recurring theme in
the study of nonlinear dynamical systems. We believe that this provides a useful al-
ternative perspective on the causal mechanisms of complex immune cell migration
patterns, such as those observed in the germinal center.

This work was originally motivated by the desire to simplify IBM simulations of
B cell behavior in order to gain insight into observed motility patterns and to facilitate
parameter calibration. The 1D phenomenological model described in Eqgs. (14)—(17)
differ from the single cells in the 3D IBM simulations in the restriction to one dimen-
sion, the absence of a stochastic component, and the absence of collisions with other
cells and the environment boundaries. However, we show that the phenomenologi-
cal model effectively predicts the large-scale behavior of the IBM simulation when
parameters are matched. Dynamical behaviors of interest can be rapidly identified in
the phenomenological model configuration using bifurcation analysis and numerical
simulations, and then studied in the more realistic 3D stochastic context with the IBM
simulation using the same parameter values as the 1D phenomenological model. This
is much more efficient than the brute-force search over parameter space otherwise
necessary for IBM simulations, since such models are analytically intractable and
highly demanding of computational resources. A caveat is that the extent to which
such ODE-based model simplifications can replicate the dynamics of richer IBM that
incorporate phenomena such as cell-cell interactions is not known. We conjecture that
ODE models with mean-field approximations of cell-cell interactions will still be use-
ful for providing insight into the parameters of these more challenging simulations
and their calibration, and plan to investigate such approximations.

In conclusion, the ODE models for B cell motility described offer potential for
a thorough analysis of the surprising complexity engendered by simple environ-
ment/cell interactions, and highlight the importance of considering the chemokine
environment in understanding migration patterns of B cells. In addition, the ODE
models provide flexibility to perform rapid prototyping of B cell migration dynam-
ics, and may serve as a tractable bridge to more detailed IBM simulations.
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Appendix A: Model for GPCR Regulation

Let r be the density of unbound GPCR, and r* the density of GPCR bound by its
ligand, whose concentration is /. The dynamical equations for this system are

d 1
d—:zn—(ﬁr—grl—i—gr* (20)
dr* 1

dr; =—(8+t)r*+§rl—gr* 1)

where 7 is the rate of production of GPCR where, § is the removal rate for GPCR in
the unbound state, and § + 7 is the removal rate for the bound GPCR.

K

is the forward rate constant for ligand binding,

1

&

is the rate constant for dissociation. We use these expressions to facilitate taking the
limit where the binding and dissociation reactions are much faster than the cellular
processes. We reduce the complexity of the dynamical system by taking some of
its subprocesses as occurring on a much faster time-scale than others. These fast
subprocesses are treated as if in equilibrium with the more slowly varying com-
ponents, thus eliminating dynamic degrees of freedom. The mathematics used is
singular perturbation theory (Jones 1995). In the present case, the justification for
making the approximation comes from the measured rates for the subprocesses. The
binding and dissociation of CXCL12 and CXCR4 has been characterized using sur-
face plasmon resonance, giving kon = 4.20 X 10° M, kosr = 8.24 x 1073 s!, and
Kp = 3.47 x 1078 M, showing that the reactions equilibrate with a characteristic time
of about 44 seconds for CXCL12 concentration equal to the reactions’ Ky (35 nM)
(Vegaetal. 2011). In contrast, the characteristic time for CXCR4 internalization upon
binding by CXCL12 was found to be between 450 and 600 seconds (estimated from
Signoret et al. 1997, Fig. 8A).
Define the total GPCR density r7 = r 4+ r* , whose rate equation is

drT

——=n—érr —tr" 22
dt i T (22)
Equation (21) can now be written
dr* 1
drt =—@+or+ g(rT —r*) - gr* (23)
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We now perform the singular perturbation analysis, taking the limit ¢ — 0. We
first construct the “outer solution” by expanding the state variables as

rr(t,e)=rro+err+ 0(82) o
ri(t,e) =ri+erf + 0(82)
and then matching coefficients of ¢ in Egs. (22) and (24). To lowest order, we have

drT,()

= —3drro— 11}
dt 0 (25)
0= K(rr,o — rS‘)l —ry

the second of Egs. (25) has solution

«  Kkrrol
= 26
"0 1+« (26)
so that the first of Egs. (25) becomes
drro Tkl
— =g —|$ 27
7 " < +1+KI>FT,0 (27

To impose initial conditions, we must compute the “inner solution” obtained by
rescaling time as

t
T=- (28)
e
and letting
Rr(T, &) =rr(t(T,¢),¢) (29)
etc.
Now, matching coefficients of ¢ in the resulting differential equations gives
o
IR* (30)
0 * *
=«(Rro0— Ry)— R
dt K( T,0 0) 0
Now the initial value problem in the inner solution has solution
Rr,0(T) =rr(0) (€29)
and
klrr(0)\ _ klrr(0)
Ry(T)=(r*(0) — ——= Je ITDT 4 ———— 32
o()(f() T )¢ +1+/<l (32)
Matching the inner and outer solutions requires setting
rr,0(0) = lim Ry o(T) =rr,0(0) (33)
T—o0
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and
klrr (0)
14+«l

Equation (11) from the text is recovered by dropping subscripts and substituting
the chemokine fields for the ligand concentration,

dr _ Tk f(x)
Z_n <6+71+Kf(x))r (35)

5O = lim RY(T)= (34)

Initial parameter values for the spatial measurements and receptor dynamics used
for bifurcation analysis and numerical simulations were derived from the literature
(Lin and Butcher 2008; Hauser et al. 2007a; Allen et al. 2004; Victora et al. 2010;
Zigmond 1981; Hoffman et al. 1996; Ricart et al. 2011), or estimated when no exper-
imental data was available.

Appendix B: Model for Cellular Locomotion

The model for cellular locomotion starts with a third-order Langevin process in Ito
form:

dX =Vdt
dV =[-yV + @ + Pldt (36)
dP =[—¢Pdt+T'ldt+0/cdW

where X (r) € R3 is the cell’s position at time; V (¢) € R3 and P(r) € R? are the
velocity and polarization, respectively. We use upper-case letters to remind us that
these variables are stochastic. The effective drag coefficient is y, and the polarization
decorrelation rate is {. @ is the external force exerted on the cell, and I" is the signal
due to an external orientation field. dW is a Wiener process generating fluctuations
in the polarization, and o controls the size of those fluctuations.

We proceed from here by providing a model for I” in the case where the orientation
field is due to an inhomogeneous chemokine distribution. We suppose that the binding
of chemokine receptors on the cell’s surface generates a local signal, and the global
orientation signal is the vector average of these signals over the cell’s surface.

I fs a2y r* (y)R() 37)

where, as in Appendix A, r* is the density of bound receptor, now considered a
function of position y on the cell surface S, 72(y) is the unit vector normal to the cell
surface at surface point y. We use the same singular perturbation method to get

fax+yr flor Ty Jf(x)
T+cfGat+y) dT+ef Y " Txero

r*(y) o« +o(lyl*) 39
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where x is the position of the center of the cell, « is the equilibrium association
constant, and f(x) is the concentration of chemokine at x. The expression to the
right of the equals sign results from a Taylor expansion.

Substituting Eq. (38) into Eq. (37) gives

PV f(x)
[ =y—-"r— 39
/0P 39

where the constant y is the chemotactic coefficient.

Finally, we let the coefficients ¢, x, and o become very large while their ratios
remain constant. We further assume that there are no external forces. In this limit, we
get the system of equations

X=Vdt

rV f(x) (40)

dV =—yVdt+ xy————dt+ /yocdW
[1+kf (x)]?

where the parameters have been rescaled to give the form displayed.

Values for the motility parameters used in the simulation were calculated by fitting
to data from 3D trajectory data of individual lymphocytes from 2-photon data (Kepler
and Chan 2007).
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