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Abstract

The CADE ATP System Competition (CASC) evaluates the performance of sound,
fully automatic, classical logic, ATP systems. The evaluation is in terms of the number of
problems solved, the number of acceptable proofs and models produced, and the average
runtime for problems solved, in the context of a bounded number of eligible problems chosen
from the TPTP problem library and other useful sources of test problems, and specified
time limits on solution attempts. The CADE-26 ATP System Competition (CASC-26) was
held on 9th August 2017. The design of the competition and its rules, and information
regarding the competing systems, are provided in this report.

1 Introduction

The CADE and IJCAR conferences are the major forum for the presentation of new research
in all aspects of automated deduction. In order to stimulate ATP research and system devel-
opment, and to expose ATP systems within and beyond the ATP community, the CADE ATP
System Competition (CASC) is held at each CADE and IJCAR conference. CASC-26 was held
on 9th August 2017, as part of the 26th International Conference on Automated Deduction
(CADE-26), in Gothenburg, Sweden. It was the twenty-second competition in the CASC series
[130], 136}, 133|911, 93, 129}, 127, (128, (98], [100], 102}, [104] 107 109, [112], 114} 116}, 118 [120], 135] [122].

CASC evaluates the performance of sound, fully automatic, classical logic, ATP systems.
The evaluation is in terms of:

e the number of problems solved,
e the number of acceptable proofs and models produced, and
e the average runtime for problems solved;

in the context of:

e a bounded number of eligible problems, chosen from the TPTP problem library [123] and
other useful sources of test problems, and
e specified time limits on solution attempts.

Twenty-one ATP system versions, listed in Table [I], entered into the various competition
and demonstration divisions. The winners of the CASC-J8 (the previous CASC) divisions were
automatically entered into those divisions, to provide benchmarks against which progress can be
judged (the competition archive provides access to the systems’ executables and source code).

The design and procedures of this CASC evolved from those of previous CASCs [130, 13T,
126, (132, 89, (90, 02}, 94, [95, [96, [97, 199, (0T, (103, (106}, [0S, [T, (13, 115, 117, (019, [121]. Important
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ATP System Divisions Entrant (Associates) Entrant’s Affiliation

CVC4 1.5.5 TFA FOF FNT SLH Andrew Reynolds (Clark Barrett, University of Iowa
Cesare Tinelli)

E 2.1 FOF FNT EPR SLH LTB Stephan Schulz DHBW Stuttgart

ET 2.0 SLH Josef Urban (Jan Jakubuv, Czech Technical University
Cezary Kaliszyk, Stephan Schulz) in Prague

iProver 2.5 EPR CASC CASC-J8 winner

iProver 2.6 FOF FNT EPR SLH LTB Konstantin Korovin University of Manchester

iProverModulo 2.5-0.1 FOF SLH Guillaume Burel University Paris-Saclay

Isabelle 2016 THF Jasmin Blanchette (Lawrence Paulson, Vrije Universiteit Amsterdam
Tobias Nipkow, Makarius Wenzel)

lean-nanoCoP 1.0 FOF Jens Otten University of Oslo

LEO-II 1.7.0 THF Alexander Steen (Max Wisniewski Freie Universitat Berlin
Christoph Benzmiiller)

Leo-IIT 1.1 THF Alexander Steen (Max Wisniewski Freie Universitat Berlin

FOF SLH (demo) Christoph Benzmiiller)

MaLARea 0.6 LTB Josef Urban (Jan Jakubuv, Czech Technical University
Cezary Kaliszyk, Stephan Schulz) in Prague

Princess 170717 TFA Philipp Riimmer Uppsala University

Prover9 2009-11A FOF CASC (William McCune, Bob Veroff) CASC fixed point

Satallax 3.0 THF CASC CASC-J8 winner

Satallax 3.2 THF Michael Farber (Chad Brown) Universitat Innsbruck

Scavenger EP-0.1 EPR Bruno Woltzenlogel Paleo (Daniyar Australian National University

Scavenger EP-0.2
Vampire 4.0
Vampire 4.1
Vampire 4.2

Zipperposition 1.1

FOF FNT EPR

FOF LTB

TFA FNT

TFA FOF FNT EPR SLH LTB

THF TFA FOF SLH

Itegulov, Uladzislau Padtsiolkin)

Bruno Woltzenlogel Paleo (Daniyar
Itegulov, Uladzislau Padtsiolkin)

CASC

CASC

Giles Reger (Martin Suda, Andrei Voronkov
Evgeny Kotelnikov, Laura Kovacs)

Simon Cruanes

Australian National University
CASC-J8 winner
CASC-J8 winner

University of Manchester

Inria Nancy

Table 1: The ATP systems and entrants
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changes for this CASC were:
e The TFN division was put into a hiatus state.
e The SLH division was added.

The competition organizer was Geoff Sutcliffe. CASC is overseen by a panel of knowledge-
able researchers who are not participating in the event. The CASC-26 panel members were
Pascal Fontaine, Moa Johansson, and Dejan Jovanovié¢. The competition was run on computers
provided by StarExec at the University of Iowa. The CASC-26 web site provides access to
resources used before, during, and after the event: http://www.tptp.org/CASC/26

The CASC rules, specifications, and deadlines are absolute. Only the panel has the right
to make exceptions. It is assumed that all entrants have read the web pages related to the
competition, and have complied with the competition rules. Non-compliance with the rules can
lead to disqualification. A “catch-all” rule is used to deal with any unforeseen circumstances:
No cheating is allowed. The panel is allowed to disqualify entrants due to unfairness, and to
adjust the competition rules in case of misuse.

2 Divisions

CASC is divided into divisions according to problem and system characteristics. There are
competition divisions in which systems are explicitly ranked, and a demonstration division in
which systems demonstrate their abilities without being ranked. Some divisions are further
divided into problem categories, which makes it possible to analyse, at a more fine grained
level, which systems work well for what types of problems. The problem categories have no
effect on the competition rankings, which are made at only the division level.

2.1 The Competition Divisions

The competition divisions are open to ATP systems that meet the required system properties,
described in Section [6.1] Each division uses problems that have certain logical, language, and
syntactic characteristics, so that the ATP systems that compete in the division are, in principle,
able to attempt all the problems in the division.

The THF division: Typed Higher-order Form theorems (axioms with a provable conjecture).
The THF division has two problem categories:

e The TNE category: THF with No Equality

e The TEQ category: THF with EQuality

The TFA division: Typed First-order with Arithmetic theorems (axioms with a provable
conjecture). The TFA division has three problem categories:

e The TFI category: TFA with only Integer arithmetic

e The TFR category: TFA with only Rational arithmetic

e The TFE category: TFA with only rEal arithmetic

The FOF division: First-Order Form theorems (axioms with a provable conjecture). The
FOF division has two problem categories:

e The FNE category: FOF with No Equality

e The FEQ category: FOF with EQuality

The FNT division: First-order form Non-Theorems (axioms with a countersatisfiable con-
jecture, and satisfiable axiom sets). The FNT division has two problem categories:
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e The FNN category: FNT with No equality
e The FNQ category: FNT with eQuality

The EPR division: Effectively PRopositional clause normal form theorems and non-theo-
rems (clause sets). Effectively propositional means that the problems are syntactically non-
propositional but are known to be reducible to propositional problems, e.g., CNF problems that
have no functions with arity greater than zero. The EPR division has two problem categories:

e The EPT category: Effectively Propositional Theorems (unsatisfiable clause sets)
e The EPS category: Effectively Propositional non-theorems (Satisfiable clause sets)

The SLH division: Typed first-order theorems without arithmetic (axioms with a provable
conjecture), generated by Isaballe’s SLedgeHammer system [67] and submitted to the Syste-
mOnTPTP [I10] service.

The LTB division: First-order form theorems (axioms with a provable conjecture) from
Large Theories, presented in Batches. A large theory has many functors and predicates, and
many axioms of which typically only a few are required for the proof of a theorem. Problems
in a batch all use a common core set of axioms, and the problems in a batch are given to the
ATP system all at once. Each problem category is accompanied by a set of training problems
and their solutions, taken from the same source as the competition problems, that can be used
for tuning and training during (typically at the start of) the competition. In CASC-26 the LTB
division had one problem category, which remained a secret until the day of CASC (to ensure
there was no pre-tuning).

Section explains what problems are eligible for use in each division and category. Sec-
tion [4] explains how the systems are ranked in each division.

2.2 The Demonstration Division

ATP systems that cannot run in the competition divisions for any reason (e.g., the system
requires special hardware, or the entrant is an organizer) can be entered into the demonstration
division. Demonstration division systems can run on the competition computers, or the com-
puters can be supplied by the entrant. Computers supplied by the entrant may be brought to
CASC, or may be accessed via the internet. The demonstration division results are presented
along with the competition divisions’ results, but might not be comparable with those results.
The systems are not ranked and no prizes are awarded.

3 Infrastructure

3.1 Computers

The computers had:
e Four (a quad-core chip) Intel(R) Xeon(R) E5-2609, 2.40GHz CPUs
e 128GB memory

e The Red Hat Enterprise Linux Server release 7.2 (Maipo) operating system, kernel 3.10.0-
327.10.1.el7.x86_64.

One ATP system runs on one CPU at a time. Systems can use all the cores on the CPU
(which is advantageous in the divisions where a wall clock time limit is used).

4
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3.2 Problems
3.2.1 Problem Selection

The problems for the THF, TFA, FOF, FNT, and EPR divisions were taken from the TPTP
Problem Library [123], version v7.0.0. The TPTP version used for CASC is released after
the competition has started, so that new problems have not been seen by the entrants. The
problems have to meet certain criteria to be eligible for selection. The problems used are
randomly selected from the eligible problems based on a seed supplied by the competition
panel.

e The TPTP tags problems that designed specifically to be suited or ill-suited to some
ATP system, calculus, or control strategy as biased, and they are excluded from the
competition.

e The problems must be syntactically non-propositional.

e The TPTP uses system performance data in the Thousands of Solutions from Theorem
Provers (T'STP) solution library to compute problem difficulty ratings in the range 0.00
(easy) to 1.00 (unsolved) [134]. Difficult problems with a rating in the range 0.21 to 0.99
are eligible. Problems of lesser and greater ratings might also be eligible in some divisions
if there are not enough problems with ratings in that range. Systems can be submitted
before the competition so that their performance data is used for computing the problem
ratings.

e The selection is constrained so that no division or category contains an excessive number
of very similar problems [91].

e The selection is biased to select problems that are new in the TPTP version used, until 50%
of the problems in each problem category have been selected, after which random selection
(from old and new problems) continues. The number of new problems used depends on
how many new problems are eligible and the limitation on very similar problems.

The problems for the SLH division were collected from submissions from Isabelle’s Sledge-
hammer subsystem to the SystemOnTPTP service. The problems were collected over a long
period with sampling that ensures diversity. Appropriately difficult problems were chosen based
on performance data similar to that in the TSTP.

The problems for the LTB division are taken from various sources, with each problem
category being based on one source. The process for selecting problems depends on the problem
source. Entrants are expected to honestly not use publicly available problem sets for tuning
before the competition.

3.2.2 Number of Problems

In the TPTP-based divisions, the minimal numbers of problems that must be used in each
division and category, to ensure sufficient confidence in the competition results, are determined
from the numbers of eligible problems in each division and category [29] (the competition
organizers have to ensure that there are sufficient computers available to run the ATP systems on
this minimal number of problems). The minimal numbers of problems are used in determining
the time limits imposed on each solution attempt - see Section [3.3

In the TPTP-based and SLH divisions, the lower bound on the total number of problems
to be used is determined from the number of computers available, the time allocated to the
competition, the number of ATP systems to be run on the competition computers over all the
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divisions, and the per-problem time limit, according to the following relationship:

NumberO fComputers x TimeAllocated
NumberO f AT PSystems x TimeLimit

NumberO f Problems =

It is a lower bound on the total number of problems because it assumes that every system
uses all of the time limit for each problem. Since some solution attempts succeed before the time
limit is reached, more problems can be used. The numbers of problems used in the categories in
the various divisions are (roughly) proportional to the numbers of eligible problems, after taking
into account the limitation on very similar problems, determined according to the judgement
of the competition organizers.

In the LTB division the number of problems in each problem category is determined by the
number of problems in the corresponding problem set. In CASC-26, the one problem category
had 1500 problems.

3.2.3 Problem Preparation

The problems are in TPTP format, with include directives. In order to ensure that no system
receives an advantage or disadvantage due to the specific presentation of the problems in the
TPTP, the problems in the TPTP-based divisions are preprocessed to:

e strip out all comment lines, including the problem header

e randomly reorder the formulae/clauses (the include directives are left before the formu-
lae, type declarations and definitions are kept before the symbols’ uses)

e randomly swap the arguments of associative connectives, and randomly reverse implica-
tions

e randomly reverse equalities

In the SLH and LTB divisions the formulae are not preprocessed, thus allowing the ATP
systems to take advantage of natural structure that occurs in the problems.

In the TPTP-based divisions the problems are given in increasing order of TPTP difficulty
rating. In the SLH division the problems are given in a roughly estimated order of difficulty. In
the LTB division the problems are given in the natural order of their creation for the problem
sets, e.g., export from an ITP system.

3.2.4 Batch Specification Files

The problems for each problem category of the LTB division are listed in a batch specification
file, containing containing global data lines and one or more batch specifications. The global
data lines are:

e A problem category line of the form
division.category LTB. category-mnemonic
e The name of a .tgz file (relative to the directory holding the batch specification file) that
contains training data in the form of problems in TPTP format and one or more solutions
to each problem in TSTP format, in a line of the form
division.category.training data tgz_file_name
The .tgz file expands in place to three directories: Axioms, Problems, and Solutions.
Axioms contains all the axiom files that are used in the training and competition problems.
Problems contains the training problems. Solutions contains a subdirectory for each of
the Problems, containing TPTP format solutions to the problem.
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Each batch specification consists of:

A header line % SZS start BatchConfiguration
A specification of whether or not the problems in the batch must be attempted in order
is given, in a line of the form
execution.order ordered/unordered
If the batch is ordered the ATP systems may not start any attempt on a problem, including
reading the problem file, before ending the attempt on the preceding problem. For CASC-
26 it is
execution.order unordered
e A specification of what output is required from the ATP systems for each problem, in a
line of the form
output.required space_separated_list
where the available list values are the SZS values Assurance, Proof, Model, and Answer.
For CASC-26 it is
output.required Proof.
e The wall clock time limit per problem, in a line of the form
limit.time.problem.wc limit_in_seconds
A value of zero indicates no per-problem limit. For CASC-26 it is
limit.time.problem.wc O

e The overall wall clock time limit for the batch, in a line of the form
limit.time.overall.wc limit_in_seconds

e A terminator line % SZS end BatchConfiguration

e A header line % SZS start BatchIncludes

e include directives that are used in every problem. Problems in the batch have all these

include directives, and can also have other include directives that are not listed here.

e A terminator line % SZS end BatchIncludes

e A header line % SZS start BatchProblems

e Pairs of problem file names (relative to the directory holding the batch specification file),

and output file names where the output for the problem must be written. The output files

must be written in the directory specified as the second argument to the starexec_run

script (the first argument is the name of the batch specification file).

A terminator line %, SZS end BatchProblems

3.3 Resource Limits
3.3.1 TPTP-based divisions

CPU and wall clock time limits are imposed for each problem. The minimal CPU time limit per
problem is 240s. The maximal CPU time limit per problem is determined using the relationship
used for determining the number of problems, with the minimal number of problems as the
NumberO f Problems. The CPU time limit is chosen as a reasonable value within the range
allowed, and is announced at the competition. The wall clock time limit is imposed in addition
to the CPU time limit, to limit very high memory usage that causes swapping. The wall clock
time limit per problem is double the CPU time limit. An additional memory limit is imposed,
depending on the computers’ memory.
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3.3.2 SLH division

In the SLH division, a wall clock time limit is imposed for each problem. The minimal wall
clock time limit per problem is 15s, and the maximal wall clock time limit per problem is 90s.
The wall clock time limit is chosen as a reasonable value within the range allowed, based on
performance data similar to that in the TSTP, and is announced at the competition. There are
no CPU time limits (i.e., using all cores makes sense).

3.3.3 LTB division

In the LTB division, wall clock time limits are imposed. For each batch there might be a wall
clock time limit for each problem, provided in the configuration section at the start of each
batch. The minimal wall clock time limit per problem is 15s, and the maximal wall clock time
limit per problem is 90s. For each batch there is an overall wall clock time limit, provided in
the configuration section at the start of each batch. The overall limit is proportional to the
number of problems in the batch, e.g., the batch’s per-problem time limit multiplied by the
number of problems in the batch. There are no CPU time limits.

Time spent before starting the first problem in the batch, e.g., learning from the training set
and pre-loading the common axioms, and times spent between ending a problem and starting
the next, e.g., learning from previous proofs, were not part of the time taken on problems.
However, time taken on such tasks was part of the overall time taken for the batch.

4 System Evaluation

For each ATP system, for each problem, four items of data are recorded: whether or not the
problem was solved, the CPU time taken, the wall clock time taken, and whether or not a proof
or model was output.

The systems are ranked in the competition divisions, from the performance data. The THF,
TFA, FOF, FNT, and LTB divisions are ranked according to the number of problems solved
with an acceptable proof/model output. The EPR and SLH divisions are ranked according
to the number of problems solved, but not necessarily accompanied by a proof or model (but
systems that do output proofs/models are highlighted in the presentation of results). Ties are
broken according to the average time taken over problems solved (CPU time or wall clock time,
depending on the type of limit in the division). Trophies are awarded to the division winners.

The competition panel decides whether or not the systems’ proofs and models are “accept-
able”. The criteria include:

e Derivations must be complete, starting at formulae from the problem, and ending at the
conjecture (for axiomatic proofs) or a false formula (for proofs by contradiction, e.g.,
CNF refutations).

e For proofs of FOF problems by CNF refutation, the conversion from FOF to CNF must
be adequately documented.

e Derivations must show only relevant inference steps.

e Inference steps must document the parent formulae, the inference rule used, and the
inferred formula.

e Inference steps must be reasonably fine-grained.

e An unsatisfiable set of ground instances of clauses is acceptable for establishing the un-
satisfiability of a set of clauses.
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e Models must be complete, documenting the domain, function maps, and predicate maps.
The domain, function maps, and predicate maps may be specified by explicit ground lists
(of mappings), or by any clear, terminating algorithm.

In addition to the ranking criteria, other measures are made and presented in the results:

e The state-of-the-art contribution (SOTAC) quantifies the unique abilities of each system.
For each problem solved by a system, its SOTAC for the problem is the reciprocal of the
number of systems that solved the problem, so that if a system is the only one to solve a
problem then its SOTAC for the problem is 1.00, and if all the systems solve a problem
their SOTAC for the problem is the inverse of the number of systems. A system’s overall
SoTAC is its average SOTAC over the problems it solved.

e The core usage is the average of the ratios of CPU time to wall clock time used, over
the problems solved. This measures the extent to which the systems take advantage of
multiple cores. The competition ran on quad-core computers, thus the maximal core
usage was 4.0.

e The efficiency measure combines the number of problems solved with the time taken. It
is the average solution rate over the problems solved (the solution rate for one problem
is the inverse of the time taken to solve it), multiplied by the fraction of problems solved.
This can be interpreted intuitively as the average of the solution rates for problems solved,
multiplied by the fraction of problems solved. Efficiency is computed for both CPU time
and wall clock time, to measure how efficiently the systems use one core and multiple cores
respectively. how efficiently the systems use one core and multiple cores respectively.

At some time after the competition, all high ranking systems in each division are tested
over the entire TPTP. This provides a final check for soundness (see Section regarding
soundness checking before the competition). If a system is found to be unsound during or after
the competition, but before the competition report is published, and it cannot be shown that
the unsoundness did not manifest itself in the competition, then the system is retrospectively
disqualified. At some time after the competition, the proofs and models from the winners (of
divisions ranked by the numbers of proofs/models output) are checked by the panel. If any
of the proofs or models are unacceptable, i.e., they are significantly worse than the samples
provided, then that system is retrospectively disqualified. All disqualifications are explained in
the competition report.

5 System Entry

To be entered into CASC, systems must be registered using the CASC system registration
form, by the registration deadline. For each system entered, an entrant must be nominated
to handle all issues (e.g., installation and execution difficulties) arising before and during the
competition. The nominated entrant must formally register for CASC. It is not necessary for
entrants to physically attend the competition.

Systems can be entered at only the division level, and can be entered into more than one
division. A system that is not entered into a competition division is assumed to perform worse
than the entered systems, for that type of problem - wimping out is not an option. Entering
many similar versions of the same system is deprecated, and entrants may be required to limit
the number of system versions that they enter. Systems that rely essentially on running other
ATP systems without adding value are deprecated; the competition panel may disallow or move
such systems to the demonstration division.
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The division winners from the previous CASC are automatically entered into their divisions,
to provide benchmarks against which progress can be judged. Prover9 2009-11A is automatically
entered into the FOF division, to provide a fixed-point against which progress can be judged.

5.1 System Description

A system description has to be provided for each ATP system entered, using the HTML schema
supplied on the CASC web site. (See Section [7| for these descriptions.) The schema has the
following sections:

e Architecture. This section introduces the ATP system, and describes the calculus and
inference rules used.

e Strategies. This section describes the search strategies used, why they are effective, and
how they are selected for given problems. Any strategy tuning that is based on specific
problems’ characteristics must be clearly described (and justified in light of the tuning
restrictions described in Section [6.1]).

e Implementation. This section describes the implementation of the ATP system, including
the programming language used, important internal data structures, and any special code
libraries used. The availability of the system is also given here.

e Expected competition performance. This section makes some predictions about the per-
formance of the ATP system in each of the divisions and categories in which it is com-
peting.

e References.

The system description has to be emailed to the competition organizers by the system
description deadline. The system descriptions form part of the competition proceedings.

5.2 Sample Solutions

For systems in the divisions that require proof/model output, representative sample solutions
must be emailed to the competition organizers by the sample solutions deadline. Use of the
TPTP format for proofs and finite interpretations is encouraged. The competition panel decides
whether or not proofs and models are acceptable.

Proof/model samples are required as follows:

THF: SET0144

TFA: DATO13=1

FOF and LTB: SEU140+2
FNT: NLPO42+1 and SWVO17+1

An explanation must be provided for any non-obvious features.

6 System Requirements

6.1 System Properties

Entrants must ensure that their systems execute in the competition environment, and have
the following properties. Entrants are advised to finalize their installation packages and check
these properties well in advance of the system delivery deadline. This gives the competition
organizers time to help resolve any difficulties encountered.

10
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Execution, Soundness, and Completeness

Systems must be fully automatic, i.e., all command line switches have to be the same for
all problems in each division.

Systems’ performance must be reproducible by running the system again.

Systems must be sound. At some time before the competition all the systems in the com-
petition divisions are tested for soundness. Non-theorems are submitted to the systems in
the THF, TFA, FOF, EPR, SLH, and LTB divisions, and theorems are submitted to the
systems in the FNT and EPR divisions. Finding a proof of a non-theorem or a disproof
of a theorem indicates unsoundness. If a system fails the soundness testing it must be
repaired by the unsoundness repair deadline or be withdrawn. For systems running on
entrant supplied computers in the demonstration division, the entrant must perform the
soundness testing and report the results to the competition organizers.

Systems do not have to be complete in any sense, including calculus, search control,
implementation, or resource requirements.

All techniques used must be general purpose, and expected to extend usefully to new
unseen problems. The precomputation and storage of information about individual prob-
lems and axiom sets is not allowed. Strategies and strategy selection based on individual
problems is not allowed. If machine learning procedures are used, the learning must ensure
that sufficient generalization is obtained so that no there is no specialization to individual
problems or their solutions.

All techniques used must be general purpose, and expected to extend usefully to new
unseen problems. The precomputation and storage of information about individual prob-
lems that might appear in the competition or their solutions is not allowed. (It’s OK to
store information about LTB training problems.) Strategies and strategy selection based
on individual problems or their solutions are not allowed. If machine learning procedures
are used to tune a system, the learning must ensure that sufficient generalization is ob-
tained so that no there is no specialization to individual problems or their solutions. The
system description must fully explain any such tuning or training that has been done.
The competition panel may disqualify any system that is deemed to be problem specific
rather than general purpose.

Output

In all divisions except LTB all solution output must be to stdout. In the LTB division
all solution output must be to the named output file for each problem, in the directory
specified as the second argument to the starexec_run script. If multiple attempts are
made on a problem in an unordered batch, each successive output file must overwrite the
previous one.

In the LTB division the systems must print SZS notification lines to stdout when starting
and ending work on a problem (including any cleanup work, such as deleting temporary
files). For example

% SZS status Started for CSRO75+2.p
... (system churns away, result and solution output to file)
% SZS status GaveUp for CSRO75+2.p
% SZS status Ended for CSRO75+2.p</PRE>
. and later in another attempt on that problem ...<PRE>

11
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% SZS status Started for CSRO75+2.p

(system churns away, result and solution appended to file)
% SZS status Theorem for CSRO75+2.p
% SZS status Ended for CSRO75+2.p

e For each problem, the system must output a distinguished string indicating what solution
has been found or that no conclusion has been reached. Systems must use the SZS
ontology and standards [105] for this. For example

SZS status Theorem for SYNO75+1
or
SZS status GaveUp for SYNO75+1

In the LTB division this line must be the last line output before the ending notification
line (the line must also be output to the output file).

e When outputting proofs/models, the start and end of the proof/model must be delimited
by distinguished strings. Systems must use the SZS ontology and standards for this. For
example

SZS output start CNFRefutation for SYNO75-1.p

SZS output end CNFRefutation for SYNO75-1.p

The string specifying the problem status must be output before the start of a proof/model.
Use of the TPTP format for proofs and finite interpretations is encouraged [125].

Resource Usage

e Systems must be interruptible by a SIGXCPU signal, so that CPU time limits can be im-
posed, and interruptible by a SIGALRM signal, so that wall clock time limits can be imposed.
For systems that create multiple processes, the signal is sent first to the process at the top
of the hierarchy, then one second later to all processes in the hierarchy. The default action
on receiving these signals is to exit (thus complying with the time limit, as required), but
systems may catch the signals and exit of their own accord. If a system runs past a time
limit this is noticed in the timing data, and the system is considered to have not solved
that problem.

e If a system terminates of its own accord, it may not leave any temporary or intermediate
output files. If a system is terminated by a SIGXCPU or SIGALRM, it may not leave any
temporary or intermediate files anywhere other than in /tmp.

e For practical reasons excessive output from an ATP system is not allowed. A limit,
dependent on the disk space available, is imposed on the amount of output that can be
produced.

6.2 System Delivery

Entrants must email a StarExec installation package to the competition organizers by the system
delivery deadline. The installation package must be a .tgz file containing only the components
necessary for running the system (i.e., not including source code, etc.). The entrants must also
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email a .tgz file containing the source code and any files required for building the StarExec
installation package to the competition organizers by the system delivery deadline.

For systems running on entrant supplied computers in the demonstration division, entrants
must email a .tgz file containing the source code and any files required for building the exe-
cutable system to the competition organizers by the system delivery deadline.

After the competition all competition division systems’ source code is made publicly avail-
able on the CASC web site. In the demonstration division, the entrant specifies whether or not
the source code is placed on the CASC web site. An open source license is encouraged.

6.3 System Execution

Execution of the ATP systems is controlled by StarExec. The jobs are queued onto the com-
puters so that each CPU is running one job at a time. All attempts at the Nth problems in all
the divisions and categories are started before any attempts at the (N+1)th problems.

A system has solved a problem iff it outputs its termination string within the time limit,
and a system has produced a proof/model iff it outputs its end-of-proof/model string within
the time limit. The result and timing data is used to generate an HTML file, and a web browser
is used to display the results.

The execution of the demonstration division systems is supervised by their entrants.

7 The ATP Systems

These system descriptions were written by the entrants.

7.1 CVC41.5.2

Andrew Reynolds
University of lowa, USA

Architecture

CVC4 [3] is an SMT solver based on the DPLL(T) architecture [56] that includes built-in
support for many theories, including linear arithmetic, arrays, bit vectors, datatypes, finite sets
and strings. It incorporates approaches for handling universally quantified formulas. For prob-
lems involving free function and predicate symbols, CVC4 primarily uses heuristic approaches
based on E-matching for theorems, and finite model finding approaches for non-theorems. For
problems in pure arithmetic, CVC4 uses techniques for counterexample-guided quantifier in-
stantiation [71].

Like other SMT solvers, CVC4 treats quantified formulas using a two-tiered approach. First,
quantified formulas are replaced by fresh Boolean predicates and the ground theory solver(s)
are used in conjunction with the underlying SAT solver to determine satisfiability. If the prob-
lem is unsatisfiable at the ground level, then the solver answers “unsatisfiable”. Otherwise, the
quantifier instantiation module is invoked, and will either add instances of quantified formu-
las to the problem, answer “satisfiable”, or return unknown. Finite model finding in CVC4
targets problems containing background theories whose quantification is limited to finite and
uninterpreted sorts. In finite model finding mode, CVC4 uses a ground theory of finite car-
dinality constraints that minimizes the number of ground equivalence classes, as described in
[73]. When the problem is satisfiable at the ground level, a candidate model is constructed that
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contains complete interpretations for all predicate and function symbols. It then adds instances
of quantified formulas that are in conflict with the candidate model, as described in [74]. If no
instances are added, it reports “satisfiable”.

Strategies

For handling theorems, CVC4 primarily uses conflict-based quantifier instantiation [72] and
E-matching. CVC4 uses a handful of orthogonal trigger selection strategies for E-matching. For
handling non-theorems, CVC4 primarily uses finite model finding techniques. Since CVC4 with
finite model finding is also capable of establishing unsatisfiability, it is used as a strategy for the-
orems as well. For problems in pure arithmetic, CVC4 uses variations of counterexample-guided
quantifier instantiation [71], which select relevant quantifier instantiations based on models for
counterexamples to quantified formulas. CVC4 relies on this method both for theorems in TFA
and non-theorems in TFN.

Implementation

CVC(4 is implemented in C++. The code is available from:

https://github.com/CVC4

Expected Competition Performance

For TFA, CVC4 should perform better than last year due to its use of new heuristic tech-
niques for non-linear real and integer arithmetic [75]. For FOF, it should perform slightly better
due to improvements in the implementation of E-matching and several optimizations related to
conflict-based instantiation [2]. It should perform roughly the same in the FNT division as last
year.

7.2 E 2.1

Stephan Schulz
DHBW Stuttgart, Germany

Architecture

E 2.1 [81], [B6] is a purely equational theorem prover for many-sorted first-order logic with
equality. It consists of an (optional) clausifier for pre-processing full first-order formulae into
clausal form, and a saturation algorithm implementing an instance of the superposition calculus
with negative literal selection and a number of redundancy elimination techniques. E is based on
the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation of active and
passive facts. No special rules for non-equational literals have been implemented. Resolution
is effectively simulated by paramodulation and equality resolution.

For the SLH and LTB divisions, a control program uses a SInE-like analysis to extract
reduced axiomatizations that are handed to several instances of E. E will probably not use
on-the-fly learning this year.
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Strategies

Proof search in E is primarily controlled by a literal selection strategy, a clause selection
heuristic, and a simplification ordering. The prover supports a large number of pre-programmed
literal selection strategies. Clause selection heuristics can be constructed on the fly by combining
various parameterized primitive evaluation functions, or can be selected from a set of predefined
heuristics. Clause evaluation heuristics are based on symbol-counting, but also take other clause
properties into account. In particular, the search can prefer clauses from the set of support,
or containing many symbols also present in the goal. Supported term orderings are several
parameterized instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering
(LPO).

For CASC-26, E implements a strategy-scheduling automatic mode. The total CPU time
available is broken into several (unequal) time slices. For each time slice, the problem is classified
into one of several classes, based on a number of simple features (number of clauses, maximal
symbol arity, presence of equality, presence of non-unit and non-Horn clauses,...). For each
class, a schedule of strategies is greedily constructed from experimental data as follows: The
first strategy assigned to a schedule is the the one that solves the most problems from this class
in the first time slice. Each subsequent strategy is selected based on the number of solutions on
problems not already solved by a preceding strategy. About 220 different strategies have been
evaluated on all untyped first-order problems from TPTP 6.4.0. About 90 of these strategies
are used in the automatic mode, and about 210 are used in at least one schedule.

Implementation

E is build around perfectly shared terms, i.e. each distinct term is only represented once
in a term bank. The whole set of terms thus consists of a number of interconnected directed
acyclic graphs. Term memory is managed by a simple mark-and-sweep garbage collector. Un-
conditional (forward) rewriting using unit clauses is implemented using perfect discrimination
trees with size and age constraints. Whenever a possible simplification is detected, it is added
as a rewrite link in the term bank. As a result, not only terms, but also rewrite steps are
shared. Subsumption and contextual literal cutting (also known as subsumption resolution) is
supported using feature vector indexing [82]. Superposition and backward rewriting use fin-
gerprint indexing [84], a new technique combining ideas from feature vector indexing and path
indexing. Finally, LPO and KBO are implemented using the elegant and efficient algorithms
developed by Bernd Lochner in [51)52]. The prover and additional information are available at

http://www.eprover.org

Expected Competition Performance

E 2.1 has slightly better strategies than previous versions, and has some minor improvements
in clausification and Set-of-Support implementation. The system is expected to perform well
in most proof classes, but will at best complement top systems in the disproof classes.

7.3 ET 0.2

Josef Urban
Czech Technical University in Prague, Czech Republic
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Architecture

ET [37] 0.2 is a metasystem using E prover with specific strategies [I38] [41] 6] and prepro-
cessing tools [40, [B9] that are targeted mainly at problems with many redundant axioms. Its
design is motivated by the recent experiments in the Large-Theory Batch division [43] and on
the Flyspeck, Mizar and Isabelle datasets, however, ET does no learning from related proofs.

Strategies

We characterize formulas by the symbols and terms that they contain, normalized in various
ways. Then we run various algorithms that try to remove the redundant axioms and use special
strategies on such problems.

Implementation

The metasystem is implemented in ca. 1000 lines of Perl. It uses a number of external
programs, some of them based on E’s code base, some of them independently implemented in
C++.

Expected Competition Performance

ET can solve some problems that E 1.8 cannot prove, and even some TPTP problems with
rating 1.00. The CASC performance should not be much worse than that of E, possibly better,
depending on problem selection.

7.4 iProver 2.5

Kontantin Korovin
University of Manchester, United Kingdom

Architecture

iProver is an automated theorem prover based on an instantiation calculus Inst-Gen [27], [46]
which is complete for first-order logic. iProver combines first-order reasoning with ground rea-
soning for which it uses MiniSat [26] and optionally PicoSAT [13] (only MiniSat will be used
at this CASC). iProver also combines instantiation with ordered resolution; see |45, [46] for the
implementation details. The proof search is implemented using a saturation process based on
the given clause algorithm. iProver uses non-perfect discrimination trees for the unification
indexes, priority queues for passive clauses, and a compressed vector index for subsumption
and subsumption resolution (both forward and backward). The following redundancy elimi-
nations are implemented: blocking non-proper instantiations; dismatching constraints [28], 45];
global subsumption [45]; resolution-based simplifications and propositional-based simplifica-
tions. A compressed feature vector index is used for efficient forward/backward subsumption
and subsumption resolution. Equality is dealt with (internally) by adding the necessary ax-
ioms of equality. Recent changes in iProver include improved preprocessing and incremental
finite model finding; support of the AIG format for hardware verification and model-checking
(implemented with Dmitry Tsarkov).
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In the LTB division, iProver uses axiom selection based on the Sine algorithm [34] as imple-
mented in Vampire [50], i.e., axiom selection is done by Vampire and proof attempts are done
by iProver.

Some of iProver features are summarised below.

e proof extraction for both instantiation and resolution [4§],

e model representation, using first-order definitions in term algebra [48],

e answer substitutions,

e semantic filtering,

e incremental finite model finding,

e sort inference, monotonic [21I] and non-cyclic [47] sorts,

e predicate elimination [44].

Sort inference is targeted at improving finite model finding and symmetry breaking. Se-
mantic filtering is used in preprocessing to eliminated irrelevant clauses. Proof extraction is

challenging due to simplifications such global subsumption which involve global reasoning with
the whole clause set and can be computationally expensive.

Strategies

iProver has around 60 options to control the proof search including options for literal selec-
tion, passive clause selection, frequency of calling the SAT solver, simplifications and options
for combination of instantiation with resolution. At CASC iProver will execute a small num-
ber of fixed schedules of selected options depending on general syntactic properties such as
Horn/non-Horn, equational /non-equational, and maximal term depth. For the LTB and FNT
divisions several strategies are run in parallel.

Implementation

Prover is implemented in OCaml and for the ground reasoning uses MiniSat [26]. iProver
accepts FOF and CNF formats. Vampire [50, [32] and E prover [86] are used for proof-producing
clausification of FOF problems, Vampire is also used for axiom selection [34] in the LTB division.

iProver is available at:

http://www.cs.man.ac.uk/ “korovink/iprover/

Expected Competition Performance
iProver 2.5 is the CASC-J8 THF division winner.
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7.5 1iProver 2.6

Konstantin Korovin
University of Manchester, United Kingdom

Architecture

iProver is an automated theorem prover based on an instantiation calculus Inst-Gen [27, [40]
which is complete for first-order logic. iProver combines first-order reasoning with ground rea-
soning for which it uses MiniSat [26] and optionally PicoSAT [I3] (only MiniSat will be used
at this CASC). iProver also combines instantiation with ordered resolution; see [45, [46] for the
implementation details. The proof search is implemented using a saturation process based on
the given clause algorithm. iProver uses non-perfect discrimination trees for the unification
indexes, priority queues for passive clauses, and a compressed vector index for subsumption
and subsumption resolution (both forward and backward). The following redundancy elimi-
nations are implemented: blocking non-proper instantiations; dismatching constraints [28], 45];
global subsumption [45]; resolution-based simplifications and propositional-based simplifica-
tions. A compressed feature vector index is used for efficient forward/backward subsumption
and subsumption resolution. Equality is dealt with (internally) by adding the necessary axioms
of equality. Recent changes in iProver include improved preprocessing and incremental finite
model finding; support for the TFF format restricted to clauses; the AIG format for hardware
verification and QBF reasoning.

In the LTB and SLH divisions, iProver combines an abstraction-refinement framework [31]
with axiom selection based on the SinE algorithm [34] as implemented in Vampire [50], i.e.,
axiom selection is done by Vampire and proof attempts are done by iProver.

Some of iProver features are summarised below.

e proof extraction for both instantiation and resolution [48],

e model representation, using first-order definitions in term algebra [48],
e answer substitutions,

e semantic filtering,

e incremental finite model finding,

e sort inference, monotonic [21I] and non-cyclic [47] sorts,

e support for the TFF format restricted to clauses,

o predicate elimination [44].

Sort inference is targeted at improving finite model finding and symmetry breaking. Se-
mantic filtering is used in preprocessing to eliminated irrelevant clauses. Proof extraction is
challenging due to simplifications such global subsumption which involve global reasoning with
the whole clause set and can be computationally expensive.

18



CASC-J8 Geoff Sutcliffe

Strategies

iProver has around 60 options to control the proof search including options for literal selec-
tion, passive clause selection, frequency of calling the SAT solver, simplifications and options
for combination of instantiation with resolution. At CASC iProver will execute a small num-
ber of fixed schedules of selected options depending on general syntactic properties such as
Horn/non-Horn, equational /non-equational, and maximal term depth. For the LTB, SLH and
FNT divisions several strategies are run in parallel.

Implementation

iProver is implemented in OCaml and for the ground reasoning uses MiniSat [26]. iProver
accepts FOF, TFF and CNF formats. Vampire [50, 2] and E prover [86] are used for proof-
producing clausification of FOF /TFF problems, Vampire is also used for axiom selection [HV11]
in the LTB/SLH divisions.

iProver is available at:

http://www.cs.man.ac.uk/ korovink/iprover/

Expected Competition Performance

Compared to the last year, we integrated an abstraction-refinement framework [3I] which we
expect to improve performance in the LTB and SLH divisions. There are a several general
improvements that should positively affect overall performance.

7.6 iProverModulo 2.5-0.1

Guillaume Burel
ENSIIE, University ParisSaclay, France

Architecture

iProverModulo [20] is an extension of iProver [45] to integrate Polarized resolution modulo
[25]. Polarized resolution modulo consists in presenting the theory in which the problem has
to be solved by means of polarized rewriting rules instead of axioms. It can also be seen as a
combination of the set-of-support strategy and selection of literals.

iProverModulo consists of two tools: First, autotheo is a theory preprocessor that converts
the axioms of the input into rewriting rules that can be used by Polarized resolution modulo.
Second, these rewriting rules are handled by a patched version of iProver 2.5 that integrates
Polarized resolution modulo. The integration of polarized resolution modulo in iProver only
affects its ordered resolution calculus, so that the instantiation calculus is untouched.

iProverModulo 2.540.1 outputs a proof that is made of two parts: First, autotheo prints a
derivation of the transformation of the axioms into rewriting rules. This derivation is in TSTP
format and includes the CNF conversions obtained from E. Second, the modified version of
iProver outputs a proof in TSTP format from this set of rewriting rules and the other input
formulas.
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Strategies

Autotheo is first run to transform the formulas of the problem whose role is “axiom” into
polarized rewriting rules. Autotheo offers a set of strategies to that purpose. For the competi-
tion, the Equiv and the ClausalAll strategies will be used. The former strategy orients formulas
intuitively depending of their shape. It may be incomplete, so that the prover may give up in
certain cases. However, it shows interesting results on some problems. The second strategy
should be complete, at least when equality is not involved. The rewriting system for the first
strategy is tried for half the time given for the problem, then the prover is restarted with the
second strategy if no proof has been found.

The patched version of iProver is run on the remaining formulas modulo the rewriting rules
produced by autotheo. No scheduling is performed. To be compatible with Polarized resolution
modulo, literals are selected only when they are maximal w.r.t. a KBO ordering, and orphans
are not eliminated. To take advantage of Polarized resolution modulo, the resolution calculus
is triggered more often than the instantiation calculus, on the contrary to the original iProver.

Normalization of clauses w.r.t. the term rewriting system produced by autotheo is performed
by transforming these rules into an OCaml program, compiling this program, and dynamically
linking it with the prover.

Implementation
iProverModulo is available as a patch to iProver. The most important additions are the

plugin-based normalization engine and the handling of polarized rewriting rules. iProverModulo
is available from

http://www.ensiie.fr/"guillaume.burel/blackandwhite\_iProverModulo.html.en

Since iProverModulo needs to compile rewriting rules, an OCaml compiler is also provided.

Autotheo is available independently from iProverModulo from

http://www.ensiie.fr/"guillaume.burel/blackandwhite\_autotheo.html.en

Autotheo uses E to compute clausal normal form of formula. The version of E it uses is very
slightly modified to make it print the CNF derivation even if no proof is found.

Both of autotheo and iProver are written in OCaml.

For the SLD division, iProverModulo uses the CNF transformation tool provided with the
Logtk library [22].

Expected Competition Performance

Although iProverModulo is now based on version 2.5 of iProver, no great improvement of
performance is expected compared to CASC-25, since only the resolution part of iProver, which
is relatively stable, has been modified.
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7.7 Isabelle 2016

Jasmin Blanchette
Vrije Universiteit Amsterdam, Netherlands

Architecture

Isabelle/HOL 2016 [58] is the higher-order logic incarnation of the generic proof assistant
Isabelle2016. Isabelle/HOL provides several automatic proof tactics, notably an equational
reasoner [57], a classical reasoner [68], and a tableau prover [66]. It also integrates external first-
and higher-order provers via its subsystem Sledgehammer [67, [14]. Isabelle includes a parser
for the TPTP syntaxes CNF, FOF, TFF0, and THF0, due to Nik Sultana. It also includes
TPTP versions of its popular tools, invokable on the command line as isabelle tptp-tool
maz_secs file.p. For example:

isabelle tptp\_isabelle\_hot 100 SEU/SEU824\verb|~|3.p

Isabelle is available in two versions. The HOT version (which is not participating in CASC-
J8) includes LEO-II [8] and Satallax [I7] as Sledgehammer backends, whereas the competition
version leaves them out.

Strategies

The Isabelle tactic submitted to the competition simply tries the following tactics sequen-
tially:
sledgehammer

Invokes the following sequence of provers as oracles via Sledgehammer:

e satallax - Satallax 2.7 [I7] (HOT version only);
e leo2 - LEO-II 1.6.2 [8] (HOT wversion only);

e spass - SPASS 3.8ds [15];

e vampire - Vampire 3.0 (revision 1435) [76];

o c-E 1883

nitpick

For problems involving only the type $o of Booleans, checks whether a finite model exists
using Nitpick [16]. simp

Performs equational reasoning using rewrite rules [57]. blast

Searches for a proof using a fast untyped tableau prover and then attempts to reconstruct
the proof using Isabelle tactics [66]. auto+spass

Combines simplification and classical reasoning [68] under one roof; then invoke Sledgeham-
mer with SPASS on any subgoals that emerge. z3

Invokes the SMT solver Z3 4.4.0 [24]. cvcé

Invokes the SMT solver CVC4 1.5pre [4]. fast

Searches for a proof using sequent-style reasoning, performing a depth-first search [6§]. Un-
like blast, it construct proofs directly in Isabelle. That makes it slower but enables it to work
in the presence of the more unusual features of HOL, such as type classes and function un-
knowns. best
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Similar to fast, except that it performs a best-first search. force

Similar to auto, but more exhaustive. meson

Implements Loveland’s MESON procedure [53]. Constructs proofs directly in Isabelle.
fastforce

Combines fast and force.

Implementation

Isabelle is a generic theorem prover written in Standard ML. Its meta-logic, Isabelle/Pure,
provides an intuitionistic fragment of higher-order logic. The HOL object logic extends pure
with a more elaborate version of higher-order logic, complete with the familiar connectives and
quantifiers. Other object logics are available, notably FOL (first-order logic) and ZF (Zermelo-
Fraenkel set theory).

The implementation of Isabelle relies on a small LCF-style kernel, meaning that inferences
are implemented as operations on an abstract theorem datatype. Assuming the kernel is correct,
all values of type theorem are correct by construction.

Most of the code for Isabelle was written by the Isabelle teams at the University of Cam-
bridge and the Technische Universitat Miinchen. Isabelle/HOL is available for all major plat-
forms under a BSD-style license from

http://www.cl.cam.ac.uk/research/hvg/Isabelle/

Expected Competition Performance

I expect we will end up in second place (excluding proof output), behind Satallax, since we
haven’t upgraded the system since 2016. We will be back, hopefully in 2018!

7.8 lean-nanoCoP 1.0

Jens Otten
University of Oslo, Norway

Architecture

lean-nanoCoP is an automated theorem prover for classical first-order logic with equality.
It combines the provers leanCoP [65, [59] and nanoCoP [63], which are very compact imple-
mentations of the clausal connection calculus [12] and the non-clausal connection calculus [61],
respectively.

Strategies

The reduction rule of the connection calculus is applied before the extension rule. Open
branches are selected in a depth-first way. Iterative deepening on the proof depth is performed
in order to achieve completeness. Additional inference rules and techniques include regularity,
lemmata, and restricted backtracking [60]. leanCoP uses an optimized structure-preserving
transformation into clausal forms [60]. The fixed strategy scheduling, which is controlled by a
shell script, invokes the leanCoP and nanoCoP core provers.
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Implementation

leanCoP and nanoCoP are implemented in Prolog. The source code of the core provers
consists only of a few lines of code. Prolog’s built-in indexing mechanism is used to quickly find
connections when the extension rule is applied.

lean-nanoCoP can read formulae in leanCoP syntax and in TPTP first-order syntax. The
leanCoP and nanoCoP core provers return very compact connection proofs; leanCoP translates
its proof into a more readable output format.

The source codes of leanCoP and nanoCoP are available under the GNU general public
license. They can be downloaded from the leanCoP and nanoCoP websites at

http://www.leancop.de
and
http://www.leancop.de/nanocop

The leanCoP website also contains information about ileanCoP [59] and MleanCoP [62],
two versions of leanCoP for first-order intuitionistic logic and several first-order modal logics,
respectively. Recently, versions of nanoCoP for these logics have been developed as well [64].

Expected Competition Performance

For problems that are in a “strong” non-clausal form, the combination of leanCoP and
nanoCoP are expected to perform better than the leanCoP prover by itself.

7.9 LEO-II 1.7.0

Alexander Steen
Freie Universitat Berlin, Germany

Architecture

LEO-II [§], the successor of LEO [6], is a higher-order ATP system based on extensional
higher-order resolution. More precisely, LEO-II employs a refinement of extensional higher-
order RUE resolution [5]. LEO-II is designed to cooperate with specialist systems for fragments
of higher-order logic. By default, LEO-II cooperates with the first-order ATP system E [80].
LEO-II is often too weak to find a refutation amongst the steadily growing set of clauses on its
own. However, some of the clauses in LEO-II’s search space attain a special status: they are
first-order clauses modulo the application of an appropriate transformation function. Therefore,
LEO-IT launches a cooperating first-order ATP system every n iterations of its (standard)
resolution proof search loop (e.g., 10). If the first-order ATP system finds a refutation, it
communicates its success to LEO-II in the standard SZS format. Communication between
LEO-II and the cooperating first-order ATP system uses the TPTP language and standards.

Strategies
LEO-IT employs an adapted “Otter loop”. Moreover, LEO-II uses some basic strategy

scheduling to try different search strategies or flag settings. These search strategies also include
some different relevance filters.
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Implementation

LEO-II is implemented in OCaml 4, and its problem representation language is the TPTP
THF language [9]. In fact, the development of LEO-II has largely paralleled the development of
the TPTP THF language and related infrastructure [124]. LEO-II’s parser supports the TPTP
THFO0 language and also the TPTP languages FOF and CNF.

Unfortunately the LEO-II system still uses only a very simple sequential collaboration model
with first-order ATPs instead of using the more advanced, concurrent and resource-adaptive
OANTS architecture [I0] as exploited by its predecessor LEO.

The LEO-II system is distributed under a BSD style license, and it is available from

http://www.leoprover.org

Expected Competition Performance

LEO-II ist not actively being developed anymore, hence there are no expected improvements
to last year’s CASC results.

7.10 Leo-IIT 1.1

Alexander Steen
Freie Universitat Berlin, Germany

Architecture

Leo-IIT [88], the successor of LEO-II [§], is a higher-order ATP system based on higher-order
paramodulation with inference restrictions using a higher-order term ordering.

Since Leo-IIT employs a agent-based blackboard architecture, multiple independent proof
search approaches can be run in parallel as so-called agents. In version 1.1, each agent runs
a sequential proof search based on the given-clause algorithm as known from E, each with
different search strategy.

Leo-IIT heavily relies on cooperation with external (first-order) ATPs that are called asyn-
chronously during proof search. At the moment, first-order cooperation is limited to typed
first-order systems, where CVC4 [3] is used as default external system. Nevertheless, further
external systems (also further higher-order systems or counter model generators) can be em-
ployed using command-line arguments. If either one of the saturation procedure loops or one
of the external provers finds a proof, the system stops and returns the result.

Strategies

Leo-III runs multiple search strategies in parallel using its agent-based architecture. The
search strategies differ in the employed relevance filter parameters, inference parameters, pre-
processing techniques and hence the considered formula set. The available portfolio of strategies
also contains incomplete approaches that might outperform default search strategies for some
problem input classes.
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Implementation

Leo-IIT exemplarily utilizes and instantiates the associated LeoPARD system platform [141]
for higher-order (HO) deduction systems implemented in Scala (currently using Scala 2.12).
The prover makes use of LeoPARD’s sophisticated data structures and implements its own
reasoning logic on top, e.g. as agents in LeoPARD’s provided blackboard architecture [I1].

A generic parser is provided that supports all TPTP syntax dialects. It is implemented
using ANTLR4 and converts its produced concrete syntax tree to an internal TPTP AST
data structure which is then transformed into polymorphically typed lambda terms. As of
version 1.1, Leo-IIT supports all common TPTP dialects (CNF, FOF, TFF, THF) including
their polymorphic variants [7 [38].

The term data structure of Leo-I1I uses a spine term representation augmented with explicit
substitutions and De Bruijn-indices. Furthermore, terms are perfectly shared during proof
search, permitting constant-time equality checks between alpha-equivalent terms.

As pointed out before, Leo-III’s agents may at any point invoke external reasoning tools.
To that end, Leo-IIT includes an encoding module that translates (polymorphic) higher-order
clauses to polymorphic and monomorphic typed first-order clauses. While LEO-II relied on
cooperation with untyped first-order provers, we hope to reduce clutter and therefore achieve
better results using native type support in first-order provers.

Leo-IIT 1.1 will be available on GitHub after CASC-26:

https://github.com/cbenzmueller/Leo-III

Expected Competition Performance

In contrast to its last version 1.0 (competed at CASC-J8), Leo-III 1.1 has been improved
in several aspects. Due to the novel cooperation schemes with typed first-order provers, we
strongly expect better results compared to its predecessor LEO-II.

7.11 MaLARea 0.6

Josef Urban
Czech Technical University in Prague, Czech Republic

Architecture

MaLARea 0.6 [137, 139, 43] is a metasystem for ATP in large theories where symbol and
formula names are used consistently. It uses several deductive systems (now E,SPASS, Vampire,
Paradox, Mace), as well as complementary Al techniques like machine learning (the SNoW
system) based on symbol-based similarity, model-based similarity, term-based similarity, and
obviously previous successful proofs. The version for CASC-26 will mainly use the E prover
with the BliStr(Tune) [I38][36] large-theory strategies, possibly also Prover9, Mace and Paradox.
The premise selection methods will likely also use the distance-weighted k-nearest neighbor [42]
and E’s implementation of SInE.

Strategies

The basic strategy is to run ATPs on problems, then use the machine learner to learn
axiom relevance for conjectures from solutions, and use the most relevant axioms for next ATP
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attempts. This is iterated, using different timelimits and axiom limits. Various features are
used for learning, and the learning is complemented by other criteria like model-based reasoning,
symbol and term-based similarity, etc.

Implementation

The metasystem is implemented in ca. 2500 lines of Perl. It uses many external programs -
the above mentioned ATPs and machine learner, TPTP utilities, LADR utilities for work with
models, and some standard Unix tools.

MalL ARea is available at:

https://github.com/JUrban/MPTP2/tree/master/MalLARea

The metasystem’s Perl code is released under GPL2.

Expected Competition Performance

Thanks to machine learning, MalLARea is strongest on batches of many related problems
with many redundant axioms where some of the problems are easy to solve and can be used for
learning the axiom relevance. Mal.ARea is not very good when all problems are too difficult
(nothing to learn from), or the problems (are few and) have nothing in common. Some of
its techniques (selection by symbol and term-based similarity, model-based reasoning) could
however make it even there slightly stronger than standard ATPs. MalLARea has a very good
performance on the MPTP Challenge, which is a predecessor of the LTB division, and on several
previous LTB competitions.

7.12 Princess 170717

Philipp Riimmer
Uppsala University, Sweden

Architecture

Princess [78] [79] is a theorem prover for first-order logic modulo linear integer arithmetic.
The prover uses a combination of techniques from the areas of first-order reasoning and SMT
solving. The main underlying calculus is a free-variable tableau calculus, which is extended with
constraints to enable backtracking-free proof expansion, and positive unit hyper-resolution for
lightweight instantiation of quantified formulae. Linear integer arithmetic is handled using a
set of built-in proof rules resembling the Omega test, which altogether yields a calculus that
is complete for full Presburger arithmetic, for first-order logic, and for a number of further
fragments. In addition, some built-in procedures for nonlinear integer arithmetic are available.

The internal calculus of Princess only supports uninterpreted predicates; uninterpreted func-
tions are encoded as predicates, together with the usual axioms. Through appropriate transla-
tion of quantified formulae with functions, the e-matching technique common in SMT solvers
can be simulated; triggers in quantified formulae are chosen based on heuristics similar to those
in the Simplify prover.
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Strategies

For CASC, Princess will run a fixed schedule of configurations for each problem (portfolio
method). Configurations determine, among others, the mode of proof expansion (depth-first,
breadth-first), selection of triggers in quantified formulae, clausification, and the handling of
functions. The portfolio was chosen based on training with a random sample of problems from
the TPTP library.

Implementation

Princess is entirely written in Scala and runs on any recent Java virtual machine; besides
the standard Scala and Java libraries, only the Cup parser library is used.
Princess is available from:

http://www.philipp.ruemmer.org/princess.shtml

Expected Competition Performance

Princess should perform roughly as in the last years. Compared to last year, the support for
outputting proofs was extended, and should now cover all relevant theory modules for CASC
(but not yet all proof strategies).

7.13 Prover9 2009-11A

Bob Veroff on behalf of William McCune
University of New Mexico, USA

Architecture

Prover9, Version 2009-114, is a resolution/paramodulation prover for first-order logic with
equality. Its overall architecture is very similar to that of Otter-3.3 [55]. It uses the “given clause
algorithm”, in which not-yet-given clauses are available for rewriting and for other inference
operations (sometimes called the “Otter loop”).

Prover9 has available positive ordered (and nonordered) resolution and paramodulation,
negative ordered (and nonordered) resolution, factoring, positive and negative hyperresolution,
UR-resolution, and demodulation (term rewriting). Terms can be ordered with LPO, RPO, or
KBO. Selection of the “given clause” is by an age-weight ratio.

Proofs can be given at two levels of detail: (1) standard, in which each line of the proof
is a stored clause with detailed justification, and (2) expanded, with a separate line for each
operation. When FOF problems are input, proof of transformation to clauses is not given.

Completeness is not guaranteed, so termination does not indicate satisfiability.

Strategies

Prover9 has available many strategies; the following statements apply to CASC.

Given a problem, Prover9 adjusts its inference rules and strategy according to syntactic
properties of the input clauses such as the presence of equality and non-Horn clauses. Prover9
also does some preprocessing, for example, to eliminate predicates.
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For CASC Prover9 uses KBO to order terms for demodulation and for the inference rules,
with a simple rule for determining symbol precedence.

For the FOF problems, a preprocessing step attempts to reduce the problem to independent
subproblems by a miniscope transformation; if the problem reduction succeeds, each subproblem
is clausified and given to the ordinary search procedure; if the problem reduction fails, the
original problem is clausified and given to the search procedure.

Implementation

Prover9 is coded in C, and it uses the LADR libraries. Some of the code descended from EQP
[54]. (LADR has some AC functions, but Prover9 does not use them). Term data structures
are not shared (as they are in Otter). Term indexing is used extensively, with discrimination
tree indexing for finding rewrite rules and subsuming units, FPA /Path indexing for finding
subsumed units, rewritable terms, and resolvable literals. Feature vector indexing [83] is used
for forward and backward nonunit subsumption. Prover9 is available from

http://www.cs.unm.edu/ "mccune/prover9/

Expected Competition Performance

Prover9 is the CASC fixed point, against which progress can be judged. Each year it is
expected do worse than the previous year, relative to the other systems.

7.14 Satallax 3.0

Michael Farber
Universitat Innsbruck, Austria

Architecture

Satallax 3.0 [I7] is an automated theorem prover for higher-order logic. The particular form
of higher-order logic supported by Satallax is Church’s simple type theory with extensionality
and choice operators. The SAT solver MiniSat [26] is responsible for much of the proof search.
The theoretical basis of search is a complete ground tableau calculus for higher-order logic [19]
with a choice operator [I]. Problems are given in the THF format.

Proof search: A branch is formed from the axioms of the problem and the negation of the
conjecture (if any is given). From this point on, Satallax tries to determine unsatisfiability or
satisfiability of this branch. Satallax progressively generates higher-order formulae and corre-
sponding propositional clauses [Brol3]. These formulae and propositional clauses correspond
to instances of the tableau rules. Satallax uses the SAT solver MiniSat to test the current set of
propositional clauses for unsatisfiability. If the clauses are unsatisfiable, then the original branch
is unsatisfiable. Optionally, Satallax generates first-order formulae in addition to the propo-
sitional clauses. If this option is used, then Satallax periodically calls the first-order theorem
prover E to test for first-order unsatisfiability. If the set of first-order formulae is unsatisfiable,
then the original branch is unsatisfiable. Upon request, Satallax attempts to reconstruct a proof
which can be output in the TSTP format.
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Strategies

There are about 140 flags that control the order in which formulae and instantiation terms
are considered and propositional clauses are generated. Other flags activate some optional
extensions to the basic proof procedure (such as whether or not to call the theorem prover E).
A collection of flag settings is called a mode. Approximately 500 modes have been defined and
tested so far. A strategy schedule is an ordered collection of modes with information about
how much time the mode should be allotted. Satallax tries each of the modes for a certain
amount of time sequentially. Satallax 3.0 has a strategy schedule consisting of 54 modes (15 of
which make use of E). Each mode is tried for time limits ranging from less than a second to
about 90 seconds. The strategy schedule was determined through experimentation using the
THF problems in version 6.3.0 of the TPTP library.

Implementation

Satallax is implemented in OCaml. A foreign function interface is used to interact with
MiniSat 2.2.0 Satallax is available at:

http://satallaxprover.com

Expected Competition Performance

Satallax 3.0 is the CASC-J8 THF division winner.

7.15 Satallax 3.2

Michael Farber
Universitat Innsbruck, Austria

Architecture

Satallax 3.2 [I7] is an automated theorem prover for higher-order logic. The particular form
of higher-order logic supported by Satallax is Church’s simple type theory with extensionality
and choice operators. The SAT solver MiniSat [26] is responsible for much of the proof search.
The theoretical basis of search is a complete ground tableau calculus for higher-order logic [19]
with a choice operator [I]. Problems are given in the THF format.

Proof search: A branch is formed from the axioms of the problem and the negation of the
conjecture (if any is given). From this point on, Satallax tries to determine unsatisfiability or
satisfiability of this branch. Satallax progressively generates higher-order formulae and corre-
sponding propositional clauses [I8]. These formulae and propositional clauses correspond to
instances of the tableau rules. Satallax uses the SAT solver MiniSat to test the current set
of propositional clauses for unsatisfiability. If the clauses are unsatisfiable, then the original
branch is unsatisfiable. Optionally, Satallax generates first-order formulae in addition to the
propositional clauses. If this option is used, then Satallax periodically calls the first-order the-
orem prover E [85] to test for first-order unsatisfiability. If the set of first-order formulae is
unsatisfiable, then the original branch is unsatisfiable. Upon request, Satallax attempts to re-
construct a proof which can be output in the TSTP format. The proof reconstruction has been
significantly changed since Satallax 3.0 in order to make proof reconstruction more efficient and
thus less likely to fail within the time constraints.
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Strategies

There are about 150 flags that control the order in which formulae and instantiation terms
are considered and propositional clauses are generated. Other flags activate some optional
extensions to the basic proof procedure (such as whether or not to call the theorem prover E).
A collection of flag settings is called a mode. Approximately 500 modes have been defined and
tested so far. A strategy schedule is an ordered collection of modes with information about how
much time the mode should be allotted. Satallax tries each of the modes for a certain amount
of time sequentially. Before deciding on the schedule to use, Satallax parses the problem and
determines if it is big enough that a SInE-based premise selection algorithm [34] should be used.
If SInE is not activated, then Satallax 3.2 uses a strategy schedule consisting of 37 modes. Each
mode is tried for time limits ranging from less than a second to just over 1 minute. If SInE
is activated, than Satallax is run with a SInE-specific schedule consisting of 20 possible SInE
parameter values selecting different premises and some corresponding modes and time limits.

Implementation

Satallax is implemented in OCaml, making use of the external tools MiniSat (via a foreign
function interface) and E. Satallax is available at:

http://satallaxprover.com

Expected Competition Performance

The addition of a SInE-like procedure for premise selection means Satallax should be able
to solve some large problems that were previously out of reach. In addition, the changes to
the way TSTP proofs are generated should mean that proofs are more likely to be constructed
and reported after a proof has been found. We hope that this will be reflected in an improved
performance over Satallax 3.0 from last year.

7.16 Scavenger EP-0.1 and EP-0.2

Bruno Woltzenlogel Paleo
Australian National University, Australia

Architecture

Scavenger [35] is a theorem prover based on the new Conflict Resolution calculus [87]. At
the proof-theoretical level, Conflict Resolution (CR) is a generalization of the conflict-driven
clause learning (CDCL) principle to first-order logic. CR derivations are isomorphic to im-
plication graphs (as maintained by SAT-solvers): every unit-propagating resolution inference
corresponds to a new propagated literal in the graph; every assumption/decision corresponds
to a decision literal in the graph; and every conflict inference corresponds to a conflict in the
graph. CR’s clause learning inference learns a disjunction of negations of instances of the de-
cision literals that are ancestors of the conflict, using the compositions of the unifiers on the
paths from the decisions to the conflict. From a natural deduction point of view, CR’s clause
learning inference rule generalizes implication/negation introduction by taking unification into
account and considering several assumptions at once [142]. In this sense, it does to Gentzen’s
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implication/negation introduction what Robinson’s resolution did to implication elimination
(a.k.a. modus ponens).

The architecture of Scavenger attempts to be similar to the architecture of SAT-solvers,
but data structures typically used in sat-solvers (e.g., Two-Watched-Literals) cannot be easily
and efficiently generalized to first-order logic. Because of that, Scavenger’s architecture also
has a “taste” of saturation. For example, whereas in a SAT-solver propagation causes a literal
to be assigned (either true or false), in Scavenger, propagation often requires generation of an
instance of a literal, and it is this generated instance that is assigned.

Strategies

Proof search in the Conflict Resolution calculus presents unique challenges. For example,
in contrast to what happens in the propositional case, unit-propagation may not terminate.
Scavenger is an experimental prover, and such challenges have been dealt with in various ways
[35]. Scavenger-EP-0.1 is one of the three versions evaluated in [35]. It simply ignores the non-
termination of unit-propagation (and hence is incomplete). (Scavenger-TD-0.1 and Scavenger-
PD-0.1 maintain completeness by iteratively deepening the propagation and making decisions
eagerly. However, on TPTP problems they did not perform as well as Scavenger-EP-0.1, and
therefore will not participate in CASC this year.)

Scavenger-EP-0.2 extends Scavenger-EP-0.1 from CNF without equality to FOF with equal-
ity. However, equality reasoning is done in a naive way: (instances of) equality axioms are added
to the problem when needed. Scavenger-EP-0.2 also implements a VSIDS heuristic for decision
literal selection and optimizes unification and some data structures.

Implementation

Scavenger is implemented in Scala and runs on the Java Virtual Machine. Terms and
formulas are simply typed lambda terms. Clauses are two-sided sequents (pairs of lists of
positive and negative atomic formulas). Inference rules are classes with assertions that ensure
their soundness. A hashmap is used to allow quicker detection of propagating clauses (in an
attempt to generalize two-watched-literals to first-order logic).

Scavenger is available at:

http://https://gitlab.com/aossie/Scavenger/

Expected Competition Performance

Both competing versions of Scavenger are expected to perform better on effectively propo-
sitional problems (where the non-termination of unit-propagation is not an issue) than on
problems that are not in this fragment. Scavenger-EP-0.1 has been evaluated in [35], and sim-
ilar performance is expected in CASC. Scavenger-EP-0.2 has not been thoroughly evaluated
yet. It is hoped that it will perform better than Scavenger-EP-0.1.
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7.17 Vampire 4.0

Giles Reger
University of Manchester, United Kingdom

Architecture

Vampire 4.0 is an automatic theorem prover for first-order logic. Vampire implements the
calculi of ordered binary resolution and superposition for handling equality. It also implements
the Inst-gen calculus and a MACE-style finite model builder. Splitting in resolution-based proof
search is controlled by the AVATAR architecture, which uses a SAT solver to make splitting
decisions. Both resolution and instantiation based proof search make use of global subsumption.

A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by
ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution
tree and code tree indexes are used to implement all major operations on sets of terms, literals
and clauses. Internally, Vampire works only with clausal normal form. Problems in the full
first-order logic syntax are clausified during preprocessing. Vampire implements many useful
preprocessing transformations including the Sine axiom selection algorithm.

When a theorem is proved, the system produces a verifiable proof, which validates both the
clausification phase and the refutation of the CNF.

Strategies
Vampire 4.0 provides a very large number of options for strategy selection. The most
important ones are:

e Choices of saturation algorithm:

— Limited Resource Strategy
DISCOUNT loop
— Otter loop

Instantiation using the Inst-Gen calculus
MACE-style finite model building with sort inference

e Splitting via AVATAR

e A variety of optional simplifications.
e Parameterized reduction orderings.
e A number of built-in literal selection functions and different modes of comparing literals.

e Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection.

e Set-of-support strategy.
e Ground equational reasoning via congruence closure.
e Evaluation of interpreted functions.

e Extensionality resolution with detection of extensionality axioms
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Implementation

Vampire 4.0 is implemented in C++4.

Expected Competition Performance

Vampire 4.0 is the CASC-J8 FOF and LTB division winner.

7.18 Vampire 4.1

Giles Reger
University of Manchester, United Kingdom

Architecture

Vampire [50] 4.1 is an automatic theorem prover for first-order logic. Vampire implements
the calculi of ordered binary resolution and superposition for handling equality. It also im-
plements the Inst-gen calculus [46] and a MACE-style finite model builder [70]. Splitting in
resolution-based proof search is controlled by the AVATAR architecture [I40] which uses a SAT
or SMT solver to make splitting decisions. Both resolution and instantiation based proof search
make use of global subsumption [46].

A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by
ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution
tree and code tree indexes are used to implement all major operations on sets of terms, literals
and clauses. Internally, Vampire works only with clausal normal form. Problems in the full
first-order logic syntax are clausified during preprocessing. Vampire implements many useful
preprocessing transformations including the SinE axiom selection algorithm.

When a theorem is proved, the system produces a verifiable proof, which validates both the
clausification phase and the refutation of the CNF.

Strategies

Vampire 4.1 provides a very large number of options for strategy selection. The most
important ones are:

e Choices of saturation algorithm:

— Limited Resource Strategy [77].
DISCOUNT loop
Otter loop

— Instantiation using the Inst-Gen calculus

— MACE-style finite model building with sort inference
e Splitting via AVATAR
e A variety of optional simplifications.

e Parameterized reduction orderings.
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e A number of built-in literal selection functions and different modes of comparing literals.

o Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection.

e Set-of-support strategy.
e Ground equational reasoning via congruence closure.
e Addition of theory axioms and evaluation of interpreted functions.

e Use of Z3 [24] with AVATAR to restrict search to ground-theory-consistent splitting
branches.

e Extensionality resolution [30] with detection of extensionality axioms.

Implementation

Vampire 4.1 is implemented in C++.

Expected Competition Performance

Vampire 4.0 is the CASC-J8 TFA and FNT division winner.

7.19 Vampire 4.2

Giles Reger
University of Manchester, United Kingdom

Architecture

Vampire [50] 4.2 is an automatic theorem prover for first-order logic. Vampire implements
the calculi of ordered binary resolution and superposition for handling equality. It also imple-
ments the Inst-gen calculus and a MACE-style finite model builder [70]. Splitting in resolution-
based proof search is controlled by the AVATAR architecture which uses a SAT or SMT solver
to make splitting decisions [140, [69]. Both resolution and instantiation based proof search make
use of global subsumption.

A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by
ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution
tree and code tree indexes are used to implement all major operations on sets of terms, literals
and clauses. Internally, Vampire works only with clausal normal form. Problems in the full
first-order logic syntax are clausified during preprocessing. Vampire implements many useful
preprocessing transformations including the SinE axiom selection algorithm. When a theorem
is proved, the system produces a verifiable proof, which validates both the clausification phase
and the refutation of the CNF.
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Strategies

Vampire 4.2 provides a very large number of options for strategy selection. The most
important ones are:

e Choices of saturation algorithm:

— Limited Resource Strategy
DISCOUNT loop

Otter loop
— Instantiation using the Inst-Gen calculus

— MACE-style finite model building with sort inference
e Splitting via AVATAR [140]
e A variety of optional simplifications.
e Parameterized reduction orderings.

e A number of built-in literal selection functions and different modes of comparing literals
[33].

o Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection.

e Set-of-support strategy.
e Ground equational reasoning via congruence closure.
e Addition of theory axioms and evaluation of interpreted functions.

e Use of Z3 with AVATAR to restrict search to ground-theory-consistent splitting branches
[69].

e Specialised theory instantiation and unification

e Extensionality resolution with detection of extensionality axioms

Implementation

Vampire 4.2 is implemented in C++. It makes use of minisat and z3.

Expected Competition Performance

Vampire 4.2 should be an improvement on Vampire 4.1, which won 4 divisions last year.
Most changes have happened in parts relevant to TFA, some small changes in parts relevant
to model building (EPR and FNT), and some general improvements to preprocessing that will
effect all tracks.
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7.20 Zipperposition 1.1

Simon Cruanes
Inria Nancy, France

Architecture

Zipperposition is a superposition-based theorem prover for typed first-order logic with equal-
ity. It features a number of extensions that include polymorphic types; linear arithmetic on
integers and rationals using a specialized set of first-order inference rules; datatypes with struc-
tural induction; user-defined rewriting on terms and formulas (“deduction modulo theories”);
a lightweight variant of AVATAR for boolean case splitting; first-class booleans [49]; and (very
experimental) support for higher-order logic, extending first-order rules to higher-order terms
using a customized variant of pattern unification. The core architecture of the prover is based
on saturation with an extensible set of rules for inferences and simplifications. The initial cal-
culus and main loop were imitations of an old version of E [81], but there are many more rules
nowadays. A summary of the calculus for integer arithmetic and induction can be found in [23].

Strategies

The system does not feature advanced strategies: only one saturation loop with pick-given
ratio and clause selection heuristics is used. No tuning specific to CASC was made.

Implementation

The prover is implemented in OCaml, and has been around for five years. Term indexing is
done using discrimination trees (non perfect ones for unification, perfect ones for rewriting) as
well as feature vectors for subsumption. Some inference rules such as contextual literal cutting
make heavy use of subsumption. The code can be found at

https://github.com/c-cube/zipperposition

and is entirely free software (BSD-licensed).

Zipperposition can also output graphic proofs using graphviz. Some tools to perform type
inference and clausification for typed formulas are also provided, as well as a separate library
for dealing with terms and formulas [23].

Expected Competition Performance

The prover is expected to have decent performance on first-order theorems, hopefully beating
prover9; decent performance in arithmetic (ignoring the lack of real arithmetic), but behind
more sophisticated provers such as Vampire or CVC4; and poor performance on THF problems

except those that only require first-class booleans.
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8 Conclusion

The CADE-26 ATP System Competition was the twenty-second large scale competition for
classical logic ATP systems. The organizer believes that CASC fulfills its main motivations:
stimulation of research, motivation for improving implementations, evaluation of relative capa-
bilities of ATP systems, and providing an exciting event. Through the continuity of the event
and consistency in the the reporting of the results, performance comparisons with previous and
future years are easily possible. The competition provides exposure for system builders both
within and outside of the community, and provides an overview of the implementation state of
running, fully automatic, classical logic, ATP systems.
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