
Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 1

Prolog-D-Linda v2 : A New Embedding of

Linda in SICStus Prolog
Geoff Sutcliffe

Dep't of Computer Science, James Cook University,
Townsville, Australia, 4811
Email: geoff@cs.jcu.edu.au

Abstract
This paper presents an embedding of the Linda parallel programming paradigm
into Prolog, resulting in a coarsely grained parallel Prolog1. The embedding
provides a distributed tuple space, using unification for matching and Prolog style
deduction in tuple space queries. Access to the tuple space is based on a general
service mechanism, that facilitates flexible and unrestricted manipulation of
tuples. A new mechanism, called an 'abandon request', has been introduced in the
implementation, to facilitate time dependent tuple space access. A controller
process is used to provide remote I/O facilities for all background processes. Two
applications have been developed using Prolog-D-Linda.

1 Introduction

Prolog-D-Linda is an embedding of the Linda paradigm into Prolog. The original motivation
for embed Linda into Prolog was the naturalness and ease with which it could be done. This
naturalness has also been noted by De Bosschere [1992]. There have been four further
implementations since the original [Sutcliffe & Pinakis, 1990] in muProlog [Naish, 1985],
moving from a single processor running all the application processes and the centralised tuple
space, through to the current version which supports applications running over an internet of
processors with a distributed tuple space (hence Prolog-D(istributed)-Linda). Many aspects of
the development path have been influenced by experience gained in the development of two
non-trivial applications. The viability of Prolog-D-Linda as a practical parallel logic
programming language has been illustrated by the success of these applications.

Section 2 of this paper describes the original Linda paradigm [Gelernter, 1985], and section 3
describes how the paradigm has been adapted for Prolog-D-Linda. The implementation of the
embedding is described in section 4. Two particularly interesting aspects of Prolog-D-Linda
are the deductive nature of the tuple space, and the 'abandon request' mechanism used in the
implementation. These are discussed in sections 5 and 6 respectively. Two applications

1 This work extends that reported in [Sutcliffe & Pinakis, 1992]. Some of the information in this technical report
also appears in [Sutcliffe & Pinakis, 1992].

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 2

developed in Prolog-D-Linda, mentioned above, are described in section 7. Section 8
concludes the paper, highlighting the main features of Prolog-D-Linda and contrasting
Prolog-D-Linda with related systems.

2 The Linda paradigm

Linda is a programming framework of language-independent operators. These operators are
injected into the syntax of existing programming languages, such as Modula-II [Borrman,
Herdieckerhoff, & Klein, 1988], C [Berndt, 1989], LISP [Yuen & Wong, 1990],
Joyce [Pinakis & McDonald, 1991], and Russell [Butcher & Zedan, 1991], resulting in new
parallel programming languages. Linda permits cooperation between parallel processes by
controlling access to a shared data structure called the tuple space. The tuple space contains
ordered collections of data called tuples. Manipulation of the tuple space is possible only by
using the set of Linda operators.

2.1 Tuples and the Tuple Space

Tuples are collections of fields, of any arity. Every field has a data type drawn from the host
language. The type of a tuple is the cross product of the types of its fields. A field can be a
formal field or an actual field. A formal field has a type but no value, while an actual field
has both a type and a value.

The tuple space contains any number of tuples, and identical tuples may exist in the tuple
space. Processes communicate by inserting, removing and examining tuples in the tuple
space. Thus the tuple space is a shared data object. All processes having access to the tuple
space have access to all tuples in it.

2.2 The Linda Operators

The out operator inserts a tuple into the tuple space. The tuple is supplied as an argument to
out.

The in operator removes a tuple from the tuple space. Its argument is a template against
which tuples are matched. A template matches a tuple if all corresponding fields match. Two
actual fields match if they have the same type and value. A formal field and an actual field
match if they have the same type. Two formal fields cannot match. If a match for the template
is found, the matched tuple is removed from the tuple space and formal fields in the template
are given the values of the corresponding actual fields in the tuple. If more than one tuple
matches a template, one is chosen indeterminately. If no matching tuple can be found in the
tuple space, in will block and wait for a matching tuple to be inserted by an out operation.

The rd operator (pronounced read) is similar to in, but leaves the matched tuple in the tuple
space. The rd operator is used for its binding and synchronization side-effects.

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 3

The inp and rdp operators perform tasks equivalent to in and rd but are non-blocking.
Instead they return a boolean value which indicates the success of the operation.

The final operator is eval. The eval operator is syntactically similar to out. When eval
is called, a new process is created to evaluate each of the fields in the tuple argument. When
the evaluation of all fields has terminated, the tuple is placed in the tuple space.

3 Prolog-D-Linda

Prolog-D-Linda represents tuples by Prolog clauses. Both Prolog rules and facts can exist in
the tuple space. Facts correspond almost directly to standard Linda tuples. The necessary
existence of a predicate symbol in a fact is analogous to requiring that the first field of a tuple
be an actual field with a string literal value, as enforced by some Linda implementations
[Leichter, 1989]. This requirement does not reduce the generality of the system. Formals in
Prolog-D-Linda tuples are implemented by unbound variables. As data in Prolog is untyped
(everything is a term) the data in Prolog-D-Linda's tuples is untyped. The effect of rules in the
tuple space is discussed in section 5.

The Prolog-D-Linda tuple space is represented by a collection of Prolog databases. The tuples
are distributed across the databases, as is described in section 4. Tuples are added to the tuple
space (the out operation) using Prolog's assertz, and removed (the in operation) using
retract. Tuples in the tuple space are examined (the rd operation) using Prolog's query
mechanism. The tuple matching method is thus generalised to Prolog's unification. As a
consequence of this, formals can match and be extracted from the tuple space.

Prolog-D-Linda's eval operation differs from that of the original Linda paradigm. The
eval operator is used to start a new Prolog environment, containing specified clauses and
evaluating a specified Prolog query. The evaluation of the query may of course cause a tuple
to be inserted in the tuple space. This form of eval is more general than the original, and can
implement the original. Restricting eval to starting a single process is supported by
Nadkarni [1992].

4 The Implementation

Prolog-D-Linda v2 has been implemented in SICStus Prolog [Carlsson, 1991]. The
development has been done on a network of DEC stations, running Ultrix and connected via
an Ethernet. This environment provides access to a shared file system via Sun's Network File
System. Prolog-D-Linda v2 has also been tested on a network of SUN Sparc stations running
Sun OS.

4.1 Overview

Prolog-D-Linda's tuple space and associated operations are implemented in server processes.
Multiple servers can be used, each being responsible for part of the tuple space. Linda

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 4

operations in client processes are translated into requests which are passed to an appropriate
server. One of the servers is designated to be the eval-server. In addition to being responsible
for part of the tuple space, the eval-server is responsible for processing all eval requests.
Prolog-D-Linda is controlled by a single controller process, which must be associated with a
terminal device. The controller is responsible for : (i) starting and stopping the server
processes, (ii) for reading and displaying the terminal input and output of servers, (iii) starting
clients in eval operations, and (iv) for reading and displaying the terminal input and output
of evaled clients.

Communication between the controller and servers, between the controller and evaled
clients, and between servers and clients, is via internet domain stream sockets. When a server
or evaled client is started by the controller, its terminal input and output streams are
connected to a file descriptor in the controller. In addition to these I/O streams, each server
establishes a connection to the controller and every client establishes a connection to each
server. The server-controller connections are used by the controller to tell the servers when to
shutdown, and by the eval-server to pass information regarding eval requests to the
controller. The client-server connections are used for sending Linda operation requests to the
servers, and for receiving corresponding replies. The controller and servers monitor their
connections for incoming data, and process the data as described in section 4.2.

The Prolog-D-Linda v2 architecture is shown in Figure 1.

Eval-server

Controller

ServerServer

Client evaled client

Tuple space requests and
 replies, eval requests

Tuple space requests and replies

Terminal I/O and
Server shutdown

Figure 1 - The Prolog-D-Linda v2 Architecture

A configuration file must be supplied to Prolog-D-Linda. The configuration file is in the form
of a Prolog program which defines three predicates :
• A single servers__/1 fact that has a list of processor names as its argument. The

processors listed each execute a server process. No processor name may appear more than
once in the list.

• A single eval_server__/1 fact that has the name of the eval-server as its argument.
The eval-server name must also appear in the servers__/1 list.

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 5

• One or more select_server__/2 clauses that define how the tuple space is to be
partitioned amongst the servers. The second argument of select_server__/2 must
return the name of the server (appearing in the server__/1 list) that is responsible for
the tuple that is supplied as the first argument.

A sample configuration file is listed in the appendix.

4.2 Operation

Prolog-D-Linda is started by executing the controller. The controller reads the configuration
file to determine the names of the server processors. When the servers__/1 fact has been
found, the controller uses the rexec() system call to start each server. Each server
establishes a connection to the controller, then waits for connections from new clients, for
requests from existing clients, or for a shutdown instruction from the controller.

There are two types of requests that are sent from clients to servers; action requests and
abandon requests. Action requests consist of a query, a success action, and a failure action.
They are serviced by evaluating the query and, depending on the success of the query,
performing either the success or failure action. The available success and failure actions are
(i) to do nothing, (ii) to send some data back to the client that sent the request, (iii) to place
the request on a global wait queue, (iv) to re-service all requests on the global wait queue,
(v) report an error. The <query,success,failure> triplet provides a general mechanism for
servicing action requests - any query can be passed to a server for evaluation. The standard
use for the global wait queue is to hold in and rd requests that could not be immediately
satisfied, and which are waiting for an appropriate tuple to be outed. Abandon requests
consist only of a success action and a failure action, but they are serviced in the same manner
as action requests. The implicit query of every abandon request is to remove an action
request, that came from the same client, from the global wait queue. The success or failure
action of the abandon request is executed depending on the outcome of this implicit query.

Client processes may be started independently at a terminal, or via the eval primitive (see
section 4.3). New clients consult the configuration file to determine how the tuple space is
partitioned amongst the servers and to identify the eval-server. To determine where to send a
Linda operation request, a client simply evaluates an appropriate select_server__/2 or
eval_server__/1 query.

The controller and servers are shutdown by entering the keyword halt. at the controller's
terminal. When the controller reads this, it closes its ends of the connections from the servers.
This causes an end of file condition to be sent to the servers. Upon receipt of these, the
servers terminate. This in turn sends end of file conditions to the controller on the servers'
terminal I/O streams, indicating to the controller that the servers have terminated. Although
Linda operation requests can no longer be serviced, the controller continues to run until all
evaled clients have also terminated. This is necessary as the controller is still responsible for
such clients' terminal I/O activity (see section 4.4).

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 6

4.3 The Operators

Each of the Linda operators is implemented in the clients by sending an action request to the
appropriate server.

The query of an in request is to retract the tuple template. The success action is to send
the template, now with variables possibly instantiated, back to the client that made the
request. The failure action is to place the request on the global wait queue. Such waiting
requests are re-serviced after an out operation. After sending the request the client attempts
to read a reply from the server, thus causing the client to block until the reply is sent.

The rd operation is implemented in a manner similar to in, with the difference that the
query is to evaluate the tuple template as a Prolog query.

The query of an out request is to assertz the tuple into the server's database. The success
action is to re-service all requests on the global wait queue. This may allow some waiting
requests to succeed. The failure action of an out request is to report an error.

The inp and rdp operations are implemented by sending the same action requests as for in
and rd, but then sending an abandon request before attempting to read a reply from the
server. The success action of the abandon request is to send the atom fail back to the client,
and the failure action is to do nothing. If the action request succeds, either immediately or at
any time before the abandon request is received, then the requested tuple will be returned to
the client and the abandon request will fail with no further action. If the action request fails
and remains on the global wait queue, then the abandon request will succeed and return the
fail reply. This reply is used in the client to cause the operation to fail.

Prolog-D-Linda's eval operator takes three arguments : the name of a processor on which to
execute the client, a Prolog query, and a list of Prolog source file names. The query of an
eval request calls an eval-server procedure, with these three arguments, to implement the
eval. The success action of the request is to do nothing, and the failure action is to report an
error. The eval-server procedure forwards the name of the new client processor to the
controller. The controller starts a new client by rexecing a Prolog saved state on the
specified processor. (The Network File System provides transparent access to files on remote
processors.) The saved state has the client running so that it immediately consults the
configuration file and opens connections to the servers. In the interim, the eval-server
procedure places a tuple of the form
<client processor>(<the query>,<the source files>) into its tuple
space. The new client ins this tuple, consults the source files, and evaluates the query. On
completion of the query the client closes the server connection and terminates.

4.4 Terminal I/O

The terminal output of servers and evaled clients is read by the controller, off the
descriptors obtained from its rexec() calls. The output is displayed on the controller's

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 7

terminal, prefixed by the descriptor number from which it was read. This number uniquely
identifies the server or client from which the output originated. Input to be sent to a server or
client is entered at the controller's terminal, prefixed by the descriptor number which
identifies the server (the descriptor number is obtained from previous output). The controller
strips the descriptor number from the input and forwards the remainder on that descriptor.
This I/O system permits all servers and clients to be interactive, even though they may not be
associated with a terminal device.

5 Deductive tuple spaces

The Linda tuple space and associated operations are very similar to a standard concurrent
access relational database system. The in and out operations effect database updates, and
the rd operation effects database queries. The difference is that the Linda paradigm is viewed
as providing communication between, and synchronization of, parallel processes, whereas a
relational database is viewed only as storing data. Much research has been done on the
generalisation of relational database to deductive database. Lloyd [1987] gives an
introduction to this work. It is a logical step to extend a Prolog-Linda tuple space to a
deductive tuple space. By allowing rules as well as facts to be added to and removed from
the tuple space, the tuple space becomes deductive. Tuple space rd and rdp queries may be
satisfied by facts, or using rules. Rules are evaluated using normal Prolog deduction. If a
deduction is to take place in the tuple space, it is necessary for all the required tuples (rules
and facts) to be stored in the same partition of the tuple space, i.e. in one server.

A deductive tuple space greatly increases the capabilities of the tuple space, but not without
some penalty. The first problem is the increased time required to evaluate deductive rds. The
second problem, which is an extreme case of the first, is the danger of a server entering an
infinite deduction. Client requests to that server will not be serviced. In particular, requests
that could terminate the infinite deduction are not serviced. A solution to this second problem
is to restrict the nature of the deductive tuple space to be hierarchical [Lloyd, 1987]. Despite
the problems associated with a deductive tuple space, such a model provides facilities that are
not available from a standard tuple space. Two examples are described here.

• In Linda it is awkward to simultaneously rd multiple tuples of different signatures. A
method suggested in [Leichter, 1989] requires the outing process to know that the tuples
will be requested in this way. A deductive tuple space provides a direct solution. To rd any
one of Tuple1, Tuple2, ... , TupleN :

 rd((Tuple1;Tuple2; ... ;TupleN)).

 The disjunction between the alternate tuples is provided by the Prolog's interpretation of ;.

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 8

• A deductive tuple space has the potential for extreme space saving. There are indeed some
groups of tuples that can only be finitely stored in a deductive manner. For example :

 out_even:-
 out((even(Negative):-Negative < 0,!,fail)),
 out(even(0)),
 out((even(Number):-Number_less_2 is Number-2,
 even(Number_less_2))).

 would effectively place all tuples even(X) into the tuple space, where X is an even
natural number.

6 The 'abandon' request

Historically, the rdp and inp operators have been critisised because of the temporal
difficulties in implementing them correctly, especially in a distributed tuple space
[Leichter, 1989; Nadkarni 1992]. The criticisms are largely valid (although less convincing in
the coarse grained environment of Prolog-D-Linda), but this does not remove the requirement
of time dependence in 'real world' applications. The abandon request was designed to allow
time dependence in client processes, but such that the server processes are not aware of any
temporal issues.

The operational semantics of abandon have been described in section 4.2. It is evident that it
is the responsibility of the client to determine when an abandon request is sent. The recipient
server simply tries to satisfy the implicit goal whenever an abandon request arrives. The
server makes no guarantee that the tuple in question is not in the process of being outed.
However, if it is known a priori on which server a given tuple will reside, then the abandon
operation can be targeted at the appropriate server. In this scenario it is guaranteed that the
tuple is not in the tuple space when the action request is abandoned.

Currently the abandon request is an internal mechanism within the Prolog-D-Linda
implementation, and it is only used in the implementation of inp and rdp. However, other
uses for abandon requests are envisaged.
• Generalisations of inp and rdp can be provided. They would take two arguments; a tuple

template as is usual for in and rd, and a time limit on the operation. The implementation
sends the normal in or rd action request to the server, sets an alarm interrupt to go off
when the time limit is reached, then attempts to read a reply from the server. If a reply is
received, then the alarm is turned off. If the read is interrupted by the alarm, then an
abandon request is sent to the server. The success action of the abandon request is to send
the atom fail back to to the client, and the failure action is to do nothing. The client then
again waits for a reply from the server. Execution proceeds as for inp and rdp.

• Preemptive forms of in and rd could be provided. These forms would make their
requests but not immediately wait for a reply. Rather, another interim query is evaluated.
When the evaluation of the interim query completes, an abandon request is sent and the
client waits for a reply from the server, as above. In this manner a client can 'lay claim' on

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 9

a tuple that may appear in the tuple space at some point, but the client need not wait idle
for the tuple to be outed.

7 Applications

Two non-trivial applications have been developed using Prolog-D-Linda.

7.1 Automated deduction

Prolog-D-Linda has been used to implement distributed automated deduction systems
[Sutcliffe, 1991, 1992]. The deduction systems have multiple deduction components which
execute as separate client processes. Each component runs a different format of deduction
system. Lemmas created in each of the deduction components are passed to some of the other
components, via the tuple space. An extended version of one of the systems, in which the
lemmas created are distributed via a separate 'lemma control' component, has also been
developed. The speed-ups obtained by these distributed deduction systems are largely due to
cross-fertilisation between the deduction components. Prolog-D-Linda makes the
implementation of the systems highly modular, and new deduction or other components can
easily be added.

7.2 Genetic Algorithms

Prolog-D-Linda has been used to implement a genetic algorithm in which multiple clients
access and update the solution pool in parallel. Each candidate solution is stored as a tuple
containing the solution and its objective value. Each client process repeatedly (i) rds two
parent solution tuples from the tuple space, (ii) performs a crossover to produce two child
solutions, (iii) for each child, ins a 'sucker' solution chosen at random, (iv) outs the child
solution if e(SuckerObjective - ChildObjective)/T > random([0,1)), otherwise outs the sucker. (I.e.
if the child has a better objective value than the sucker, then the child is always outed; if the
child has a worse objective value, then the child may still be saved by virtue of the Boltzman
distribution, with temperature T.) Some variants of this algorithm have also been
implemented. It is the iterative nature of this genetic algorithm that permits it to be
parallelised. Similar work has been done by Ackley [1987] and Robertson [1987].

8 Conclusion

Prolog-D-Linda is a truly distributed logic programming environment. The distribution
allows applications to take advantage of the added computing power available, as well as to
be structured in a parallel fashion. The parallelism obtained is acknowledged to be coarse. In
the context of parallel Prolog architectures, it has been argued that "exploiting as much fine
grain parallelism as possible may be a flawed strategy; any gains through increased
parallelism are wasted due to communication overheads" [Wise, 1991, p. 2]. The use of a

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 10

blackboard style architecture for parallel logic programming is growing in popularity in the
logic programming community. This borne out by the forthcoming post-conference workshop
devoted to this topic, at the 1993 International Conference on Logic Programming.

The distribution of the tuple space in Prolog-D-Linda is a significant feature. As the
partitioning is user controlled, it is possible to tune the use of the tuple space so that
bottlenecks are avoided. The introduction of a deductive tuple space is a significant
enhancement to the capabilities of the Linda paradigm. A deductive tuple space provides
direct solutions to problems that were previously difficult or impossible.

The general request servicing mechanism, used in the implementation of the Prolog-D-Linda
servers, provides flexible and unrestricted access to the tuple space. The abandon request has
approached the temporal difficulties of the inp and rdp operators from a new, cleaner,
angle. The abandon request also has the potential to extend the capabilities of the Linda
paradigm.

The Prolog-D-Linda embedding of Linda in Prolog is very natural : the pattern matching and
database features of Prolog have been used directly in the embedding; garbage collection and
hashing in the tuple space are provided free by the Prolog implementation; the
implementation of formals in tuples is direct; the specification of how the tuple space is to be
partitioned is done as a Prolog program. This naturalness contrasts with the FCP(↑)
implementation described by Shapiro [1989].

The closest relations to Prolog-D-Linda appear to be Shared Prolog [Brogi &
Ciancarini, 1991], its successor, PoLiS Prolog [Ciancarini, 1992], Multi-Prolog
[De Bosschere, 1992], and the blackboard system in BinProlog [Tarau, 1992].
• PoLiS Prolog extends upon the basic Linda model by providing multiple tuple spaces. In

both Shared Prolog and PoLiS Prolog the manner in which the tuple space operators can
be used is restricted to preactivation and postactivation parts, and the number of client
processes cannot be changed at run-time. These constraints contrast with the unrestricted
nature of Prolog-D-Linda.

• Multi-Prolog should be the fastest of this type of parallel Prolog, due to the passive nature
of its blackboard, which is implemented in the shared memory of a multiprocessor. Multi-
Prolog has a very rich set of operators corresponding to the Linda in and rd variants, but
restricts the terms on the blackboard to be ground. Each background process spawned in
Multi-Prolog evaluates its query using the same clauses as its parent. The query of the
spawn operation must be ground. This contrasts with Prolog-D-Linda where new clients
consult whatever source code is required, and any query can be evaluated.

• The BinProlog blackboard is accessed by a suite of low level primitives, which distinguish
between naming and copy functions. Access to a given object on the blackboard is via a
2-key hashing table, rather than the associative lookup provided in the Linda paradigm.
Any type of Prolog term can be stored in the blackboard. There is no immediate facility in
this system for starting parallel processes.

In none of these systems is the tuple space distributed or deductive.

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 11

Prolog-D-Linda is freely available by anonymous ftp from coral.cs.jcu.edu.au in
pub/prolog-linda.

Acknowledgment

The assistance of Stuart Kemp in programming Prolog-D-Linda II is acknowledged. I
couldn't work out what was going on inside the TCP/IP interface, but it was easy for him!

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 12

9 References

Ackley D.H. (1987), A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic
Publishers, Dordrecht, The Netherlands.

Berndt D.J. (1989), C-Linda Reference Manual, Version 2.0, Scientific Computing
Associates Inc., New Haven, CT.

Borrmann L., Herdieckerhoff M., and Klein A. (1988), Tuple Space Integrated into Modula-
2, Implementation of the Linda Concept on a Hierarchical Multiprocessor, In Jesshope,
Reinartz (Ed.), Proceedings of CONPAR '88, Cambridge University Press, Cambridge,
England, 1-8.

Brogi A., and Ciancarini P. (1991), The Concurrent Language, Shared Prolog, In ACM
Transactions on Programming Languages and Systems 13(1), ACM Press, New York,
NY, 99-123.

Butcher P., and Zedan H. (1992), Lucinda - A Polymorphic Linda, In Banatre J.B., Le
Metayer D. (Ed.), Proceedings of the Workshop on Research Directions in High-Level
Parallel Programming Languages (Mont Saint-Michel, France, 1991), (Lecture Notes
in Computer Science 574), Springer-Verlag, New York, NY, 110-125.

Carlsson M., Widen J., Andersson J., Andersson S., Boortz K., Nilsson H., and Sjoland T.
(1991), SICStus Prolog User's Manual, T91:11B, Swedish Institute of Computer
Science, Kista, Sweden.

Ciancarini P. (1992), Parallel logic programming using the Linda model of computation, In
Banatre J.B., Le Metayer D. (Ed.), Proceedings of the Workshop on Research
Directions in High-Level Parallel Programming Languages (Mont Saint-Michel,
France, 1991), (Lecture Notes in Computer Science 574), Springer-Verlag, New York,
NY, 110-125.

De Bosschere K., and Jacquet J-M. (1992), Multi-Prolog: A Blackboard-based Parallel Logic
Programming Language, In DeGroot D., Kacsuk P. , Succi G., Talia D. (Ed.),
Proceedings of the Joint Workshop on Distributed and Parallel Implementation of
Logic Programming Systems (Washington, DC, 1992).

Gelernter D.H. (1985), Generative Communication in Linda, In ACM Transactions on
Programming Languages 7(1), ACM Press, New York, NY, 80-112.

Leichter J.S. (1989), Shared Tuple Memories, Shared Memories, Buses and LAN's - Linda
Implementations Across the Spectrum of Connectivity, Ph.D. Thesis, Yale University,
Yale, CT.

Lloyd J.W. (1987), Foundations of Logic Programming, 2nd Edition, Springer-Verlag, New
York, NY.

Nadkarni P.M. (1992), Parallel Programming with Linda: An Advanced Introduction.
Naish L. (1985), muProlog 3.2 Reference Manual, Technical Report 85/ 11, Department of

Computer Science, University of Melbourne, Melbourne, Australia.

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 13

Pinakis J., and McDonald C. (1991), The Inclusion of the Linda Tuple Space Operations in a
Pascal-based Concurrent Language, In Gupta G., Lions J. (Ed.), Proceedings of the 14th
Australian Computer Science Conference (Kensington, Australia, 1991), Department of
Computer Science, University of New South Wales, Kensington, Australia, 45.1-45.11.

Robertson G. (1987), Parallel Implementation of Genetic Algorithms in a Classifier System,
In Davis L. (Ed.), Genetic Algorithms and Simulated Annealing, (Research Notes in
Artificial Intelligence), Pitman Publishing, London, England, 129-140.

Shapiro E. et al. (1989), Technical Correspondence, In Communications of the ACM 32(10),
ACM Press, New York, NY, 1244-1258.

Sutcliffe G. (1991), A Parallel Linear and UR-Derivation System, In Kanal L.N., Suttner C.
B. (Ed.), Informal Proceedings of PPAI-91, International Workshop on Parallel
Processing for Artificial Intelligence (Sydney, Australia, 1991), International Joint
Conferences on Artificial Intelligence, Inc., Sydney, Australia, 211-215.

Sutcliffe G. (1992), A Heterogeneous Parallel Deduction System, In Hasegawa R., Stickel M.
E. (Ed.), Proceedings of the Workshop on Automated Deduction: Logic Programming
and Parallel Computing Approaches, FGCS'92 (Tokyo, Japan, 1992), Institute for New
Generation Computer Technology, Tokyo, Japan,

Sutcliffe G., and Pinakis J. (1990), Prolog-Linda - An Embedding of Linda in muProlog, In
Tsang C.P. (Ed.), Proceedings of AI'90 - the 4th Australian Conference on Artificial
Intelligence (Perth, Australia, 1990), World Scientific, Singapore, 331-340.

Sutcliffe G., and Pinakis J. (1992), Prolog-D-Linda : An Embedding of Linda in SICStus
Prolog, In DeGroot D., Kacsuk P. , Succi G., Talia D. (Ed.), Proceedings of the Joint
Workshop on Distributed and Parallel Implementation of Logic Programming Systems
(Washington, DC, 1992), 70-79.

Tarau P. (1992), Blackboard based Language Extensions in BinProlog, TR92-04, Dep't
d'Informatique, Universite de Moncton, Moncton, Canada.

Wise M.J. (1991), MB-Prolog: A Distributed Prolog with Communication via Message-
Brokers, Distributed at the International Workshop on Parallel Processing for Artificial
Intelligence.

Yuen C.K., and Wong W.F. (1990), BaLinda Lisp: A Parallel Lisp Dialect for Biddle with the
Concurrent Facilities of Linda, Technical Report TRA1/90, Department of Information
Systems and Computer Science, National University of Singapore, Kent Ridge,
Singapore.

Prolog-D-Linda v2 : A New Embedding of Linda in SICStus Prolog Page 14

Appendix

Listed below is a sample Prolog-D-Linda configuration file. The configuration specifies two
servers - coral and curlew, of which coral is nominated as the eval-server. The tuple
space is partitioned so that coral maintains tuples of arity 0 and 1, and curlew maintains
all other tuples.

%---- The tuple space is partitioned between two processors.
servers__(['coral.cs.jcu.edu.au','curlew.cs.jcu.edu.au']).

%---- coral does the eval requests
eval_server__('coral.cs.jcu.edu.au').

%---- coral maintains tuple with 1 or 0 arguments
select_server__('coral.cs.jcu.edu.au',Tuple):-
 functor(Tuple,_,Arity),
 Arity =< 1.

%---- curlew maintains all other tuples
select_server__('curlew.cs.jcu.edu.au',Tuple):-
 functor(Tuple,_,Arity),
 Arity >= 2.

