
October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

Semantic Derivation Verification:

Techniques and Implementation

GEOFF SUTCLIFFE

Department of Computer Science, University of Miami

P.O. Box 248154, Coral Gables, FL 33124, USA

geoff@cs.miami.edu

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Automated Theorem Proving (ATP) systems are complex pieces of software, and thus
may have bugs that make them unsound. In order to guard against unsoundness, the
derivations output by an ATP system may be semantically verified by trusted ATP sys-
tems that check the required semantic properties of each inference step. Such verification
needs to be augmented by structural verification that checks that inferences have been
used correctly in the context of the overall derivation. This paper describes techniques
for semantic verification of derivations, and reports on their implementation and testing
in the GDV verifier.

Keywords: Derivation verification; Automated theorem proving.

1. Introduction

Automated Theorem Proving (ATP) systems are complex pieces of software, and

thus may have bugs that make them unsound or incomplete. While incompleteness

is common (sometimes by design) and tolerable, when an ATP system is used in

an application it is important, typically mission critical, that it be sound, i.e., that

it never reports that a solution has been found when this is not the case. Directly

verifying the soundness of an implemented state-of-the-art ATP system seems im-

practical, due to the complexity of the low level coding that is typically used 11.

Thus other techniques are necessary, and several possibilities are evident.

First, an ATP system may be empirically verified, by testing it over a large

number of problems. If the system consistently returns the correct (or, at least,

expected) answer, confidence in the system’s soundness may grow to a sufficient

level. For example, it is commonly accepted that Otter 13 is sound, thanks to its

extensive accepted usage by many researchers over many years. This is essentially

the philosophical standpoint of 16. Second, the derivations output by a system may

be syntactically verified. In syntactic verification, each of the inference steps in a

derivation are repeated by a trusted system, to ensure that the inferred formula

can be inferred from its parent formulae by the inference rule stated. This is the

1

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

2 Geoff Sutcliffe

approach taken in the IVY system 11, in the Omega proof checker after reduction to

ND form 24, and that is planned for the in-house verifier for Vampire 18. A serious

disadvantage of syntactic verification is that the trusted system must implement

all of the inference rules of all of the ATP systems whose derivations are to be

verified (which is impossible to do in the present for inference rules of the future).

Third, an appeal may be made to higher order techniques, in which a 1st order proof

is translated into type theory and checked by a higher order reasoning system 9.

This is the approach taken by Bliksem’s in-house verifier 2, whose proofs are then

checked by Coq 1. A weakness of this approach is the introduction of translation

software, which may introduce or hide flaws in the original 1st order proof. Fourth,

the derivations output by an ATP system may be semantically verified. In semantic

verification, the required semantic properties of each inference step are checked by

trusted ATP systems. For example, deduction steps are verified by checking that the

inferred formula is a logical consequence of its parent formulae. This is the approach

taken in the low level checker of the Mizar system 21, that has been adopted by

several in-house verifiers for contemporary ATP systems (e.g., SPASS 32), that has

been implemented using the “hints” strategy in Otter 31, and that forms the core

of the verification process described in this paper.

Advantages of semantic verification include: independence of the trusted ATP

systems from the ATP system that produced the derivation (this advantage also

applies to syntactic checking and higher order techniques, and contrasts with the

internal proof checking in systems such as Coq and Isabelle 14); independence from

the particular inference rules used in the derivation - see Section 2; and robustness

to the preprocessing of the input formulae that some ATP systems perform - see

Section 2.3. Semantic verification is able to verify any form of derivation, not only

proofsa, in which the required semantic properties of each inference step can be

checked by a trusted system. Checking inference steps in which the inferred formula

is a logical consequence of its parents is quite simple, while checking inference steps

that have other semantic relationships, e.g., Skolemization and splitting, can be

done with inference rule specific techniques.

All forms of verification that examine ATP systems’ derivations include, at least

implicitly, some structural verification that checks that inferences have been used

correctly in the context of the overall derivation. A basic structural check is, e.g.,

that the specified parents of each inference step do exist in the derivation. Struc-

tural checking is the basis for the high level checker of the Mizar system. The

necessary structural verification techniques that complement semantic verification

are described in this paper.

This paper describes techniques for semantic verification of derivations, and

reports on their implementation in the GDV verifier. The techniques were developed

to verify derivations in classical 1st order logic, including the common approach of

aThat is the reason for using the term “derivation verification” rather than the more common
“proof checking”.

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

Semantic Derivation Verification: Techniques and Implementation 3

proof-by-refutation in clause normal form (CNF) – see 19 for background material

on reasoning in 1st order logic. However, the principles are more widely applicable.

Section 2 describes how various parts of a derivation are semantically verified, and

Section 3 describes the necessary structural verifications. Section 4 provides some

details of the implementation of the techniques in the GDV verifier, and the results of

testing GDV in a real-world application are given in Section 5. Section 6 examines the

extent to which (these) verification techniques can be trusted. Section 7 concludes

the paper.

2. Semantic Verification

A derivation is a directed acyclic graph (DAG) whose leaf nodes are formulae (pos-

sibly derived) from the input problem, whose interior nodes are formulae inferred

from parent formulae, and whose root node is the final derived formula. For exam-

ple, a CNF refutation is a derivation whose leaf nodes are the clauses formed from

the axioms and the negated conjecture, and whose root node is the false clause.

Figure 1 shows the structure. The formulae 1 to 6 form the input problem, and are

used to form the leaves Li of the derivation. The internal formulae Di are inferred

from their parents, ending at the root node F.

Input Problem

L1

L2 L3

D4

D1

L4

D3

D2

L5

L6

F

5 632 41

Fig. 1. Derivation DAG

Semantic verification of a derivation has two notionally distinct aspects. First,

it is necessary to check that each leaf node is a formula that occurs in, or can be

appropriately derived (as explained in Section 2.3) from the input problem. This

ensures that the derivation is a solution to the input problem. Second, it is neces-

sary to check the semantic properties of each inference step in the derivation. This

is done by encoding the required semantic relationship between each inferred for-

mula and its parent formulae into logical obligations, in the form of ATP problems.

The obligations are then discharged by having trusted ATP systems solve the ATP

problems. The required semantic relationship between an inferred formula and its

parent formulae depends on the intent of the inference rule used, and correspond-

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

4 Geoff Sutcliffe

ingly different types obligations are produced. Most commonly an inferred formula

is intended to be a logical consequence of its parent formulae, but in other cases,

e.g., Skolemization and splitting, the inferred formula has a weaker relationship with

its parents. A comprehensive list of inferred formula statuses is given in the SZS

ontology 29. Two types of obligations arise in this work: theorem obligations, which

produce an ATP problem to prove a conjecture from some axioms, and satisfiability

obligations, which produce an ATP problem to show a set of formulae is satisfiable.

The verification of logical consequence inference steps is described first, because

the technique is also used in checking splitting steps and leaf formulae.

2.1. Logical Consequences

The basic technique for verifying logical consequences is well known and quite sim-

ple. The earliest use appears to have been in the in-house verifier for SPASS. For

each inference of a logical consequence in a derivation, a theorem obligation to prove

the inferred formula from its parent formulae is formed. If the inference rule imple-

ments any theory, e.g., paramodulation implements most of equality theory, then

the corresponding axioms of the theory are added as axioms of the obligation. The

theorem obligation is handed to a trusted ATP system. If the trusted system proves

the theorem, the obligation has been discharged. This process is shown in Figure 2,

where the inferred formula D3 must be proved from its parents {L1, L2, D1}. Theo-

rem obligations are very typically simple ATP problems that are easily discharged.

L1

L2 L3

D4

D1

L4

D3

D2

L5

L6

{L1,L2,D1} D3

Trusted
ATP System

Input Problem
5 632 41

Fig. 2. Verifying a Logical Consequence

A special case of logical consequence is making a copy of a formula. Copying

inferences can be verified by discharging a theorem obligation as above, but may

also be checked directly by comparing the two formulae.

If the input problem is in FOF (First-Order Form - including quantifiers, etc,

as opposed to CNF), and is converted to CNF for a proof by refutation, then one

of the inferences is to negate the conjecture, i.e., the inferred clause is a counter

theorem (in the SZS ontology) of its parent. In this case the theorem obligation

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

Semantic Derivation Verification: Techniques and Implementation 5

is to prove the negation of the inferred formula from its parent. (As is indicated

in Section 5, although this kind of theorem obligation is simple to discharge in

principle, modern CNF refutation based trusted ATP systems can find such theorem

obligations difficult.)

There are inference steps that use a process of proof by contradiction, in which

the assumption of the negation of a given formula seeds the derivation of the false

formula, from which the given formula can be inferred. Such inference steps must

be structurally verified as described in Section 3, and then a theorem obligation to

prove the inferred formula from the negation of the assumed negated formula, must

be discharged.

The verification of logical consequences ensures the soundness of the inference

steps, but does not check for relevance. As a contradiction in first order logic entails

everything, an inference step with contradictory parents can soundly infer anything.

An inference step with contradictory parents can thus always be the last in a deriva-

tion. A derivation containing an irrelevant inference is shown in Figure 3, in which

false should have been inferred directly from p and ∼p. If it is required that an

inference step (that infers a formula other than false) is not irrelevant, a satisfia-

bility obligation consisting of the parents of the inference must be discharged. This

verification step should not be implemented during conversion from FOF to CNF

when there is a single parent formulae that is (derived from) the negation of the

conjecture - such parent formulae are correctly unsatisfiable when the conjecture is

a tautology. In addition to being useful for rejecting inferences from contradictory

parents, relevance checking is also useful in the verification of splitting steps, as

described in Section 2.2.

p ~p

~r

false

r

Fig. 3. Irrelevant Inferences

In practice (see Section 4), each attempt to discharge an obligation is constrained

by a CPU time limit. Thus the failure to discharge a theorem obligation may be

because it is not logically possible (indicating a fault in the derivation being veri-

fied), or because the obligation is too hard for the trusted ATP system within the

CPU time limit. In order to try to differentiate between these two situations, if a

trusted ATP system fails to prove a theorem obligation, a satisfiability obligation

to show that the set consisting of the axioms and the negation of the conjecture

of the theorem obligation is satisfiable, is attempted. If this is successful then it is

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

6 Geoff Sutcliffe

known that the theorem obligation cannot be discharged, and that there is a fault

in the derivation being verified. Due to the semi-decidability of first order logic, sat-

isfiability obligations also cannot be guaranteed to be discharged. Three alternative

techniques, described here in order of preference, may be used to show satisfiability.

First, a finite model of the axioms may be found using a model generation system

such as Mace4 12 or Paradox 3. Second, a saturation of the axioms may be found

using a saturating ATP system such as SPASS or EP 23. Third, an attempt to show

the axioms to be contradictory can be made using a refutation system. If that suc-

ceeds then the satisfiability obligation cannot be discharged. If it fails, it provides

an incomplete assurance that the formulae are satisfiable. The incompleteness of

this final test for satisfiability makes it unsuitable for some checks, e.g., the check

for non-provability of theorem obligations. Its use must be appropriately controlled.

2.2. Splitting

ATP systems that build refutations for CNF problems may use splitting. Splitting

reduces a CNF problem to one or more potentially easier problems, by dividing

a clause into two subclauses. Splitting may be done recursively - a clause in a

subproblem may be split to form subsubproblems, etc. There are several variants

of splitting that have been implemented in specific ATP systems, including explicit

splitting as implemented in SPASS (also called explicit case analysis in 17), and

forms of pseudo splitting as implemented in Vampire and EP (also called splitting

without backtracking in 17). The verification of splitting steps has been omitted in

existing ATP systems’ in-house verifiers.

2.2.1. Explicit Splitting

Explicit splitting takes a CNF problem S ∪{L∨R}, in which L and R do not share

any variables, and replaces it by two subproblems S ∪ {L} and S ∪ {R}. These

are referred to as the L and R subproblems, respectively. If both the subproblems

have refutations i.e., are unsatisfiable, then it is ensured that the original problem

is unsatisfiable. In SPASS’ implementation of explicit splitting, when a refutation of

the L (R) subproblem has been found, ¬L (¬R) is inferred by contradiction, with

L (R) and the false root of the subproblem’s refutation as parents. This inferred

clause is called the anti-kid of the split. It is a logical consequence of S, and can be

used in any problem that includes S (L is commonly used by SPASS in the refutation

of S ∪ {R}). Semantic verification of explicit splitting and the anti-kid inferences

are described here. The structural verification of explicit splitting is described in

Section 3.

To verify a explicit splitting step’s role in establishing the overall unsatisfiabil-

ity of the original problem clauses, a theorem obligation to prove ¬(L ∨ R) from

{¬L,¬R} is discharged. The soundness of the split is then ensured as follows: The

ATP system’s (verified) refutations of the L and R subproblems show that every

model of S is a model of neither L nor R, and thus every model of S is a model of

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

Semantic Derivation Verification: Techniques and Implementation 7

both ¬L and ¬R. The discharge of the theorem obligation problem shows that every

model of ¬L and ¬R is a model of ¬(L ∨ R), and therefore not a model of L ∨ R.

Thus every model of S is not a model of L ∨ R, and S ∪ {L ∨ R} is unsatisfiable.

Discharging the theorem obligation problem by CNF refutation ensures that L

and R are variable disjoint - a simple example illustrates this: Let the split clause be

p(X)∨q(X). L is p(X) and R is q(X), i.e., they are not variable disjoint. The theorem

obligation is to prove ¬∀X(p(X) ∨ q(X)) from {¬∀Xp(X),¬∀Xq(X)}. When the

problem is converted to CNF, two Skolem constants are generated, producing the

CNF problem {p(X) ∨ q(X),¬p(sk1),¬q(sk2)}. This clause set is satisfiable, and

the theorem obligation cannot be discharged.

While discharging the theorem obligation ensures the soundness of the overall

refutation, it does not ensure that the splitting step was performed correctly. For

example, it would be incorrect to split the clause p ∨ q into p and ¬p, but the

theorem obligation to prove ¬(p ∨ q) from {¬p, p} is easily discharged because of

the contradictory axioms of the obligation problem. In such cases the refutations

of the two subproblems, S ∪ {p} and S ∪ {¬p}, show that S is unsatisfiable alone.

If such incorrect splits should be rejected, the discharge of the theorem obligation

must also check for relevance, as described in Section 2.1.

An anti-kid A of the L (R) subproblem of a split is verified by discharging a the-

orem obligation to prove A from ¬L (¬R). The refutation of the L (R) subproblem

shows that ¬L (¬R), and thus by modus ponens A is a logical consequence of S.

2.2.2. Pseudo Splitting

Pseudo splitting takes a CNF problem S ∪ {L ∨ R}, in which L and R do

not share any variables, and replaces {L ∨ R} by either (i) {L ∨ t,¬t ∨ R}, or

(ii) {L ∨ t1, R ∨ t2,¬t1 ∨ ¬t2}, where t and ti are new propositional symbols.

Vampire implements pseudo splitting by (i) and EP implements it by (ii). The re-

placement does not change the satisfiability of the clause set – any model of the

original clause set can be extended to a model of the modified set, and any model

of the modified clause set satisfies the original one 17,22. The underlying justifica-

tion for pseudo splitting is that it is equivalent to inferring logical consequences

of the split clause with new definitional axiom(s): for (i) t ⇔ ¬∀L, and for (ii)

t1 ⇔ ¬∀L and t2 ⇔ ¬∀R. Variants of these forms of splitting, that allow L and

R to have common variables, and that split a clause into more than two parts 17,

can be treated with generalizations of the verification steps described here.

Pseudo splitting steps are verified by discharging theorem obligations that prove

each of the replacement clauses from the split clause with the new definitional ax-

iom(s). The definitional axioms should be freshly generated by the verifier, for other-

wise the ATP system could produce incorrect split clauses and definitional axioms,

but such that the replacement clauses can be derived from them. Discharging the

theorem obligations confirms that the replacement clauses are logical consequences

of the parent formulae, which is sufficient for the soundness of a CNF refutation.

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

8 Geoff Sutcliffe

It is also the case that the split clause is a logical consequence of the replacement

clauses, which demonstrates the completeness of the splitting step.

As is the case with explicit splitting, the theorem obligations cannot all be

discharged if L and R share variables. For example, in the (ii)nd form of pseudo

splitting, a theorem obligation to prove ¬t1 ∨ ¬t2 from the split clause with the

definitional axioms must be discharged. Let the split clause be p(X)∨q(X). L is p(X)

and R is q(X), i.e., they are not variable disjoint. One of the theorem obligations is

to prove ¬t1∨¬t2 from {∀X(p(X) ∨q(X)), t1 ⇔ ¬∀p(X), t2 ⇔ ¬∀q(X)}. When

the problem is converted to CNF, two Skolem constants are generated, producing

the CNF problem {p(X) ∨ q(X), ¬ t1 ∨ ¬ p(sk1), ¬ t2 ∨ ¬q(sk2), t1 ∨ p(X),

t2 ∨ q(X), t1, t2}. This clause set is satisfiable, and the theorem obligation cannot

be discharged.

2.3. Leaf Formulae

The leaf formulae of a derivation should, optimally, be copies (modulo variable

renaming) of formulae from the input problem. This can be checked directly. Some

ATP systems perform preprocessing inferences on the input formulae, and do not

retain the original formulae of the input problem, e.g., Gandalf 30 may factor and

simplify input clauses before storing them in its clause data structure. In this case

the leaf formulae are not copies of input formulae, but are logical consequences of

input formulae. Such leaf formulae are verified by discharging a theorem obligation

to prove the formula from input formulae. This technique can also be used to verify

leaf formulae that are copies of input formulae. An advantage of always discharging a

theorem obligation to verify a leaf formulae is that is provides consistent robustness

to undocumented preprocessing inferences.

Discharging a theorem obligation to prove a leaf from the input formulae can

normally be done directly, as shown in the example on the left hand side of Figure 4.

In the example, the leaf formula L2 is proved directly from the input formulae

{1, 2, 3, 4, 5, 6} (as the figure indicates, only input formulae 2 and 3 are needed

to discharge the obligation, but that would not be known in advance). Directly

proving the leaves from the input formulae is ineffective when the derivation being

verified is a refutation, and the theorem obligations are discharged using a trusted

refutation system (that would refute the set consisting of the input formulae and the

negated leaf). Verifying a CNF refutation using a trusted CNF refutation system is

a common example of this scenario. In this scenario, a refutation of the input clauses

and the negated leaf formula does not necessarily mean that the leaf formula is a

relevant logical consequence of the input formulae, because the refutation may be

of the input formulae alone. A sound approach is to extract satisfiable maximal

subsets of the input formulae (an input formula may be a member of more than one

subset), and to then form alternative theorem obligations to prove the leaf from any

one of the subsets. This is shown in the right hand side of Figure 4, where the leaf

formula L2 is proved by refutation of ∼L2 with a satisfiable subset Sati of the input

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

Semantic Derivation Verification: Techniques and Implementation 9

formulae. If the trusted refutation system discharges any one of these obligations,

then the leaf is a relevant logical consequence of the input formulae. If it fails, that

may be because the leaf formula is derived from parents that are not all in one of

the subsets. Alternative subsets may then be tried. In the implementation described

in Section 4, subsets that are satisfied by the positive and negative interpretations

are formed. If any formulae are not satisfied by either of these interpretations, those

formulae are tested by a satisfiability obligation. If successful then all formulae

are in at least one satisfiable subset, and leaf verification is typically successful.

Otherwise some input formulae are unavailable for leaf verification, which may lead

to verification failure for some leaves.

{Input} L2

Trusted
ATP System

L1

L2 L3

D4

D1

L4

D3

D2

L5

L6

F

Input Problem
5 632 41

{Unsat} L2

Trusted
Refutation

System

L1

L2 L3

D4

D1

L4

D3

D2

L5

L6

Unsatisfiable
5 632 41

{Sati, ~L2}

{Sat1,...,Satn} L2

Fig. 4. Verification of Leaf Formulae

If the input problem is in FOF, and the derivation is a CNF refutation, some leaf

clauses may have been formed with the use of Skolemization. Such leaf clauses are

not logical consequences of the FOF input formulae. Skolemization steps can be in-

completely verified by discharging a theorem obligation to prove the parent formula

from the Skolemized formula. Although this is an incomplete verification, i.e., un-

sound Skolemization steps can pass this check, it does catch simple “typographical”

errors.

3. Structural Verification

For all derivations, two structural checks are necessary: First, the specified parents

of each inference step must exist in the derivation. When semantic verification is

used to verify each inference step then the formation of the obligation problems

relies on the existence of the parents, and thus performs this check. The check can

also be done explicitly. Second, there must not be any loops in the derivation. For

this check it is sufficient to check that there are no cycles in the derivation, using a

standard cycle detection algorithm.

For derivations that claim to be refutations, it is necessary to check that the

false clause has been derived. If explicit splitting is used, multiple such checks are

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

10 Geoff Sutcliffe

necessary, as described below. Inferences that use proof by contradiction to infer

a formula, e.g., the inference of anti-kids in explicit splitting, must be checked to

ensure that there are two parents, one of which is false and the other of which is

an ancestor of the false parent (the assumed parent, as described in Section 2.1).

For refutations that use explicit splitting, special structural checks may be re-

quired. There are two reasons for an ATP system to do explicit splitting. The first

reason is to produce two easier subproblems, both of which are refuted. The second

reason is to refute just one of the subproblems in order to form an anti-kid that is

then used in another part of the overall refutation. Structural checking is required

in the first case. Clauses that were split for the first reason can be found by trac-

ing the derivation upwards from the root nodes (a derivation with explicit splits

has multiple root nodes), but not passing through anti-kid nodes, noting the split

clauses that are found. The splitting steps performed on these split clauses then

require two structural checks: First, it is necessary to check that both subproblems

have been refuted. This is done by ensuring that both the L and R clauses have a

false root descendant in the derivation. Second, it is necessary to check that L (R)

and it’s descendants are not used in the refutation of the R (L) subproblem. This

is done by examination of the ancestors of the false root of the refutation of the R

(L) subproblem.

For refutations that use pseudo splitting, a structural check is required to ensure

that the “new propositional symbols” really are new, and not used elsewhere in the

refutation.

4. Implementation

The semantic verification techniques described in Sections 2 and 3 have been imple-

mented in the GDV verification system. GDV is implemented in C, using the JJParser

library’s input, output, and data structure support. SystemOnTPTP 25 is used to

run the trusted ATP systems. The overall architecture and use of GDV are shown

in Figure 5.

Input Problem

ATP System

SystemOnTPTP

Trusted
ATP System

Derivation

Inference step

Inference step

Structural
checks

Semantic
checks

Obligation
problems

GDV

Fig. 5. The GDV Architecture

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

Semantic Derivation Verification: Techniques and Implementation 11

The inputs to GDV are: a derivation in TPTP format 29, the input problem in

TPTP format, names of trusted ATP systems to discharge obligations, and a CPU

time limit for the trusted ATP systems. Additionally, there are flags that control

the level of debug output, force the verification process to continue even when a

verification step fails (useful for finding multiple faults in a derivation), enable and

disable the verification of leaves, enable and disable relevance checks on theorem

obligations, indicate that the derivation should be a refutation (which enables the

check for a false root, and permits relevance failures when parent clauses are derived

from the negation of the conjecture), and specify whether or not the outputs from

the trusted systems should be retained (so that they are available, e.g., to form part

of a certificate for the calling application process).

The implementation relies centrally on a function that takes as parameters an

inferred formula, a list of it’s parents, and the required semantic relationship be-

tween them. Depending on the required semantic relationship, the function prepares

appropriate ATP problems and invokes one or more of the trusted ATP systems

on the problems through SystemOnTPTP. SystemOnTPTP provides the necessary

pre- and postprocessing to prepare a problem for a (trusted) ATP system, and to

interpret the output from the ATP system. This makes it easily possible to use

different trusted ATP systems, as specified on GDV’s command line.

The verification proceeds in five phases. First, the derivation is read in and

prepared for verification. The main part of this is preparation for verification of

splitting steps, which is necessary because the derivations output by ATP systems

do not always contain all the necessary information. In particular, it is necessary

to generate the definitional axioms for the pseudo splitting done by EPb, and to

tag the left and right children, and the anti-kid produced, of explicit splits done by

SPASS.

Second, structural verification is performed. This does some simple initial checks

that the formulae in the derivation are uniquely named, and that all parents of each

inference exist in the derivation and are annotated with information necessary for

verification. The structural checks described in Section 3 are then performed. After

structural verification all CNF formulae are converted to FOF for the remaining

checks.

Third, inference rule specific verifications are performed. This includes checking

explicit and pseudo splitting steps, and proofs by contradiction.

Fourth, leaf verification is performed. The first part of this is dividing the input

formulae into maximal satisfiable subsets, as described in Section 2.1. First a satis-

fiability obligation to show that the entire input problem is satisfiable is attempted.

If this succeeds then the entire input problem is used as the only satisfiable subset,

otherwise the subsets are built. Then for each leaf of the derivation, ignoring defini-

tional axioms inserted for pseudo splitting, a search for a copy in the input problem

bThe author of EP has promised to output the definitional axioms natively, but at the time of
writing (June 2005, EP version 0.82) this is not available.

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

12 Geoff Sutcliffe

is made. If the leaf is not found, then theorem obligations to prove the leaf from

one of the satisfiable subsets are attempted.

Fifth, the inference rule non-specific inference steps are verified. This includes

checking copied formulae, inferences of logical consequences, negation of conjec-

tures (see Section 2.1 for these three), and the checking of Skolemization steps (see

Section 2.3).

Obligations that are successfully discharged are reported. If an obligation cannot

be discharged, or a structural check fails, GDV reports the failure. As is explained

in Section 2.1, a failure to discharge an obligation does not always imply a fault in

the derivation, which may motivate the user to use the command line flag to force

the verification process to continue even when a verification step fails.

5. Testing

In the program certification process described in 5, a code generator has been ex-

tended to generate annotations in the code, e.g., loop invariants, that facilitate

automatic checking of safety conditions on the code. A verification condition gener-

ator processes the annotated code, and produces a set of logical safety obligations

that are provable if and only if the code is safe. An ATP system proves these obliga-

tions, and its proofs serve as part of the certificate for the safety of the program. For

software certification purposes, users and certification authorities like the FAA must

be assured – or better yet, given explicit evidence – that none of the individual tool

components used in the certification process yield incorrect results. It is therefore

useful to verify the proofs of the safety obligations produced by the ATP system.

In 6, multiple ATP systems were evaluated on 366 safety obligations generated from

the certification of programs generated by the AutoBayes 7 and AutoFilter 33

program synthesis systems. Of those 366 problems, 109 were selected for inclusion

in the TPTP problem library 27, the standard library of test problems for testing

and evaluating ATP systems. The 109 problems were selected based on the results

of evaluating several state-of-the-art ATP systems against the problems, and were

selected so as to be “difficult”, i.e., with TPTP difficulty ratings strictly between

0.0 and 1.0 28. As a practical test and evaluation of the derivation verification tech-

niques and implementation described in this paper, the proofs generated for the 109

problems by the ATP systems EP 0.82 and SPASS 2.1 have been verified.

Both EP and SPASS work by converting the axioms and negated conjecture to

CNF, and then using clausal reasoning to find a refutation. The derivations output

by EP include details of the FOF to CNF conversion, and the subsequent CNF

refutation. The derivations are natively output in TPTP format. The derivations

output by SPASS document the CNF refutation, but not the FOF to CNF con-

version. The SPASS derivations are natively in DFG format 8, which is translated

to TPTP format prior to verification. Both systems are based on the superposition

calculus, but differ in the specific inference rules used. A notable difference is EP’s

use of pseudo-splitting and SPASS’s use of explicit splitting. Additionally, the sys-

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

Semantic Derivation Verification: Techniques and Implementation 13

tems have quite different control heuristics. As a result, the derivations produced

by the two systems have quite different characteristics.

For the verification of the EP proofs, GDV was configured to verify all aspects

of each proof: the derivation was structurally verified, leaves were verified as being

(possibly derived) from the input problem, all inferred formulae were semantically

verified with relevance checking, and all splitting steps were verified. For the verifi-

cation of the SPASS proofs, GDV was configured to verify selected aspects of each

proof: leaves were not verified because SPASS does not document the FOF to CNF

conversion, all inferred formulae were semantically verified but without relevance

checking, all splitting steps were verified but the independence of the subproblems

was not verified in the larger proofs because of the computational complexity, and

the derivation was structurally verified (with the exception of the splitting aspect

just mentioned). The trusted ATP systems were Otter 3.3 13 for discharging theo-

rem obligations, Paradox 1.1 3 for finding finite models, and SPASS 2.1 for finding

saturations.c The outputs from Otter, Paradox, and SPASS were retained to be

available as part of a certificate. The verifications were done on Intel P4 2.8GHz

computers with 1GB RAM, and running the Linux operating system (kernel version

2.4). The CPU time limit for the trusted ATP systems was 10s.

5.1. Results

Out of the 109 problems, EP can solve 48 and SPASS can solve 83, thus giving a

total of 131 derivations to verify. The 48 problems solved by EP are a subset of those

solved by SPASS, but the derivations are obviously different. Table 1 summarizes

the results. The first column gives the overall values for the verification of the EP

proofs, including both the verification of both the steps of FOF to CNF conversion

and the inferences in the refutation. The next two columns split these values into

the two parts. The final column gives the values for the verification of the inferences

in SPASS’ refutations. The last two columns are thus directly comparable. The first

row shows the number of problems solved out of the 109, and the second row shows

how many of those were completely verified by GDV with the checks described above.

The next row gives the numbers of theorem obligations that were generated for the

verifications and discharged by Otter. The next row gives the average number of

theorem obligations per proof, and then the next five rows give their distribution,

thus giving an indication of the distribution of the proof sizes. The next block of

four rows gives the distribution of the CPU times taken by Otter to discharge the

theorem obligations. The final row gives the number of finite models found in the

relevance checking done for EP proofs.

The table shows that 46 of the 48 problems solved by EP were fully verified. Both

failure cases were caused by Otter’s inability to discharge obligations arising from

cSatisfiability tests, which employ saturation finding, are used only in the verification of leaves
and relevance checking. As these checks were not done for the SPASS proofs, this is not a case of
SPASS checking itself.

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

14 Geoff Sutcliffe

Table 1. Verification Results

EP EP-CNF EP-Ref SPASS

Problems solved 48 83
Proofs verified 46 83

Theorem obligations discharged 590 309 281 19737
Average obligations / proof 12.8 6.7 6.1 273.8
Number of obligations / proof

0 0 0 19 0
1-10 35 38 22 52
10-100 10 8 4 13
100-1000 1 0 1 12
> 1000 0 0 0 6

Discharge time / obligation
0.0-0.1s 208 123 85 19737
0.1-0.2s 362 172 190 0
0.2-0.3s 17 7 10 0
> 0.3s 3 3 0 0

Models found 361 140 221 -

steps in the FOF to CNF conversion. In particular, the obligations to verify the step

that negates the conjecture, which entails proving the negation of the negation from

the original, could not be discharged. The obligations are of the form L |= ¬¬L,

which Otter does not recognize as trivial, and if L is large the resultant CNF problem

is too difficult for Otter. (SPASS is able to discharge these obligations.) All 83 of

the SPASS proofs passed the verification checks chosen.

Most of the proofs require less than 10 obligations to be discharged, for both EP

and SPASS. However, SPASS produces some very large proofs that consequently

require a very large number of obligations to be discharged; the largest proof resulted

in 3493 theorem obligations. This difference in distribution leads to a significant

difference between the average numbers of obligations that had to be discharged

per problem. At the same time, all of the SPASS obligations were discharged in

almost no time. These figures indicate that SPASS proofs contain very many small,

easily verified steps, while EP proofs have some larger steps. Note that 19 of the

EP proofs were completed in the FOF to CNF conversion. EP’s largest proof steps,

requiring the longest times for verification (over 0.3s), are within the FOF to CNF

conversion. There is some overhead starting Otter for each theorem obligation, and

this dominates the wall clock time taken (i.e., the time the user has to wait for a

proof to be verified). In this reality, it is preferable to have fewer but harder theorem

obligations to discharge, as offered by EP.

Of the 590 theorem obligations discharged for EP, 361 had the parents verified

as satisfiable, confirming the relevance of the parents to the inferred clause. The

remaining 229 theorem obligations were not relevance checked because either one of

the parent clauses was derived from the negation of the conjecture or the inferred

clause was false.

Testing GDV on the program certification examples has provided a high level of

confidence in the soundness of GDV (the soundness and completeness of derivation

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

Semantic Derivation Verification: Techniques and Implementation 15

verifiers, as opposed to the soundness of an ATP system whose derivations are ver-

ified, is discussed in Section 6). However, it was expected that all those derivations

would be correct, and therefore failure to find fault with them was expected. In order

to test the completeness of GDV, faults have been inserted by hand into derivations

taken from the TSTP solution library 26, and GDV has successfully found these.

In order to accumulate empirical evidence of the completeness of GDV it would be

necessary to have a test library of faulty derivations - something that seems difficult

to find or generate.

6. Trusting the Verifier

A derivation verifier is complete if it will find every fault in a derivation. A derivation

verifier is sound if it claims to have found a fault only when a fault exists. Conversely

to the case of ATP systems, completeness is more important than soundness - if

a verifier mistakenly claims a fault the derivation can be further checked by other

means, but if a fault is bypassed the flawed derivation may be accepted and used.

All verifiers that rely on a trusted system must contend with the possibility that

the trusted system is unsound or incomplete. This is the case for all except the

first of the verification techniques described in Section 1. In the case of IVY, the

trusted system is implemented in ACL2 10, and has been verified in ACL2 as being

sound in the context of finite models (it is believed that this may be extended to

infinite models). In this case the trust has ultimately been transferred to ACL2’s

verification mechanisms. In Bliksem’s case the 1st order proof is translated into

type theory with in-house software, and the higher order reasoning system Coq is

used to check the type correctness of the translated proof. The combination of the

translator and Coq thus forms the trusted system. For semantic verification, trust

is placed in the ATP systems that are used to discharge the obligations. In the

first order case, even if the trusted systems are theoretically complete and correctly

implemented, the finite amount of resources allocated to any particular run means

that the trusted systems are practically incomplete.

For semantic verification, incompleteness of the trusted system means that some

obligations may not be discharged due to that incompleteness. In such a situation

the verifier can possibly make an unsound claim to have found a fault in the deriva-

tion. Although undesirable, this is not catastrophic, as explained above. In contrast,

unsoundness of the trusted system leads to incompleteness of the semantic verifier,

and must be avoided. The question then naturally arises, “How can the trusted

system be verified (as sound)?” The first approach to verifying a system - empirical

evidence, provides an exit from this circle of doubt. The trust may be enhanced by

making the trusted system as simple as possible. The simpler the trusted system,

the less likely that there are bugs. At the same time, simpler systems are less pow-

erful. If a derivation has to be semantically verified using a weak trusted system,

that requires that the inference steps be reasonably simple. This may be a desirable

feature of derivations, depending on the application. Thus, as the trusted system

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

16 Geoff Sutcliffe

gets weaker, the level of confidence in the trusted system rises and the inference

steps in the derivation being verified must get simpler. The weakest form of trusted

system seems to be one that implements something like “obvious inferences” 20,4.

In GDV the trusted systems are configured to use small but (refutation) complete

sets of inference rules, e.g., Otter is configured to use binary resolution, factoring,

and paramodulation.

A further technique to enhance the level of confidence in semantic verification

is cross verification. For a given input problem and a set of ATP systems, cross-

verification requires that every system be used as the trusted system for verifying

the inference steps of every other system’s solution to the problem. In this manner

it is ensured that either all or none of the systems are faulty.

In addition to the verification-level issues described above, there are questions

regarding the underlying programming system, operating system, hardware, etc,

upon which the verification process relies. These issues are addressed in 16, in which

the bottom line is to build trust in the overall system through empirical testing in

all environments. The use of GDV by the ATP community, e.g., in the CADE ATP

system competitions 15, may provide this.

7. Conclusion

This paper describes techniques for semantic verification of derivations, focusing

particularly on derivations in 1st order logic. The techniques have been imple-

mented in the GDV system, resulting in a verifier that can verify any TPTP format

derivation output by any ATP system. It has been successfully tested on proofs

from SPASS and EP. This is the first systematic development of a general purpose

derivation verifier.

The most salient future work is to deal more completely with Skolemization

steps in FOF to CNF conversion. Verification of Skolemization can be done directly

in second order logic, and an approach that converts the resultant second order

obligation to a first order oned is being investigated. Although the resultant first

order obligation may not always be solvable, i.e., the approach is not complete, it

is expected to be an improvement on the technique described in Section 2.3. As

well as improving the verification aspects of this work, it is planned to integrate

some user level derivation analysis into the process, e.g., a check that all formulae

output as part of a derivation are necessary for the derivation - already in this work

it has been noticed that some ATP systems output superfluous formulae in their

derivation output.

References

1. Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development

- Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer

dConceived by Koen Claessen of Chalmers University of Technology.

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

Semantic Derivation Verification: Techniques and Implementation 17

Science. Springer-Verlag, 2004.
2. D. Bezem and H. de Nivelle. Automated Proof Construction in Type Theory using

Resolution. Journal of Automated Reasoning, 29(3-4):253–275, 2002.
3. K. Claessen and N. Sorensson. New Techniques that Improve MACE-style Finite

Model Finding. In P. Baumgartner and C. Fermueller, editors, Proceedings of the

CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications, 2003.
4. M. Davis. Obvious Logical Inferences. In Hayes P., editor, Proceedings of the 7th

International Joint Conference on Artificial Intelligence , pages 530–531, 1981.
5. E. Denney and B. Fischer. Correctness of Source-level Safety Policies. In K. Araki,

S. Gnesi, and D. Mandrioli, editors, Proceedings of FM 2003: Formal Methods, number
2805 in Lecture Notes in Computer Science, pages 894–913. Springer-Verlag, 2003.

6. E. Denney, B. Fischer, and J. Schumann. Using Automated Theorem Provers to Cer-
tify Auto-generated Aerospace Software. In M. Rusinowitch and D. Basin, editors,
Proceedings of the 2nd International Joint Conference on Automated Reasoning, num-
ber 3097 in Lecture Notes in Artificial Intelligence, pages 198–212, 2004.

7. B. Fischer and J. Schumann. A Method for Generating Data Analysis Programs from
Statistical Models. Journal of Functional Programming, 13(3):483–508, 2003.

8. R. Hähnle, M. Kerber, and C. Weidenbach. Common Syntax of the DFG-
Schwerpunktprogramm Deduction. Technical Report TR 10/96, Fakultät für Infor-
matik, Universät Karlsruhe, Karlsruhe, Germany, 1996.

9. R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal of

the ACM, 40(1):143–184, 1993.
10. M. Kaufmann, P. Manolios, and J. Strother Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, 2000.
11. W. McCune and O. Shumsky-Matlin. Ivy: A Preprocessor and Proof Checker for

First-Order Logic. In M. Kaufmann, P. Manolios, and J. Strother Moore, editors,
Computer-Aided Reasoning: ACL2 Case Studies, number 4 in Advances in Formal
Methods, pages 265–282. Kluwer Academic Publishers, 2000.

12. W.W. McCune. Mace4 Reference Manual and Guide. Technical Report ANL/MCS-
TM-264, Argonne National Laboratory, Argonne, USA, 2003.

13. W.W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263,
Argonne National Laboratory, Argonne, USA, 2003.

14. L.C. Paulson and T. Nipkow. Isabelle: A Generic Theorem Prover. Number 828 in
Lecture Notes in Computer Science. Springer-Verlag, 1994.

15. F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI Com-

munications, 15(2-3):79–90, 2002.
16. R Pollack. How to Believe a Machine-Checked Proof. Technical Report RS-97-18,

BRICS, 1997.
17. A. Riazanov and A. Voronkov. Splitting without Backtracking. In B. Nebel, editor,

Proceedings of the 17th International Joint Conference on Artificial Intelligence , pages
611–617. Morgan Kaufmann, 2001.

18. A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI Com-

munications, 15(2-3):91–110, 2002.
19. A. Robinson and A. Voronkov. Handbook of Automated Reasoning. Elsevier Science,

2001.
20. P. Rudnicki. Obvious Inferences. Journal of Automated Reasoning, 3(4):383–393, 1987.
21. P. Rudnicki. An Overview of the Mizar Project. In Proceedings of the 1992 Workshop

on Types for Proofs and Programs, pages 311–332, 1992.
22. S. Schulz. A Comparison of Different Techniques for Grounding Near-Propositional

CNF Formulae. In S. Haller and G. Simmons, editors, Proceedings of the 15th Florida

October 6, 2005 11:40 WSPC/INSTRUCTION FILE GDV

18 Geoff Sutcliffe

Artificial Intelligence Research Symposium, pages 72–76. AAAI Press, 2002.
23. S. Schulz. E: A Brainiac Theorem Prover. AI Communications, 15(2-3):111–126, 2002.
24. J.H. Siekmann, C. Benzmüller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler, A. Franke,

H. Horacek, M. Kohlhase, A. Meier, E. Melis, M. Moschner, I. Normann, M. Pollet,
V. Sorge, C. Ullrich, C.P. Wirth, and J. Zimmer. Proof Development with OMEGA. In
A. Voronkov, editor, Proceedings of the 18th International Conference on Automated

Deduction, number 2392 in Lecture Notes in Artificial Intelligence, pages 143–148.
Springer-Verlag, 2002.

25. G. Sutcliffe. SystemOnTPTP. In D. McAllester, editor, Proceedings of the 17th In-

ternational Conference on Automated Deduction, number 1831 in Lecture Notes in
Artificial Intelligence, pages 406–410. Springer-Verlag, 2000.

26. G. Sutcliffe. The TSTP Solution Library. http://www.TPTP.org/TSTP, URL.
27. G. Sutcliffe and C. Suttner. The TPTP Problem Library. http://www.TPTP.org,

URL.
28. G. Sutcliffe and C.B. Suttner. Evaluating General Purpose Automated Theorem Prov-

ing Systems. Artificial Intelligence, 131(1-2):39–54, 2001.
29. G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP Data-Exchange Formats for Automated

Theorem Proving Tools. In W. Zhang and V. Sorge, editors, Distributed Constraint

Problem Solving and Reasoning in Multi-Agent Systems, number 112 in Frontiers in
Artificial Intelligence and Applications, pages 201–215. IOS Press, 2004.

30. T. Tammet. Towards Efficient Subsumption. In C. Kirchner and H. Kirchner, editors,
Proceedings of the 15th International Conference on Automated Deduction, number
1421 in Lecture Notes in Artificial Intelligence, pages 427–440. Springer-Verlag, 1998.

31. R. Veroff. Using Hints to Increase the Effectiveness of an Automated Reasoning Pro-
gram: Case Studies. Journal of Automated Reasoning, 16(3):223–239, 1996.

32. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and D. Topic.
SPASS Version 2.0. In A. Voronkov, editor, Proceedings of the 18th International

Conference on Automated Deduction, number 2392 in Lecture Notes in Artificial In-
telligence, pages 275–279. Springer-Verlag, 2002.

33. J. Whittle and J. Schumann. Automating the Implementation of Kalman Filter Al-
gorithms. ACM Transactions on Mathematical Software, 30(4):434–453, 2004.

