
LemmaManagement Techniques
for Automated Theorem Proving

Yuan Zhang and Geoff Sutcliffe

University of Miami, USA
yuan@mail.cs.miami.edu, geoff@cs.miami.edu

Abstract. Lemmas can provide valuable help for constructing a proof, by pro-
viding intermediate steps. However, not all the formulae supplied to an ATP sys-
tem as lemmas are necessarily helpful. It is therefore necessary to develop lemma
management techniques that use the right lemmas at the right time, to improve the
problem-solving ability of ATP systems. This paper presents three lemma man-
agement techniques, reports on their implementation, and illustrates their poten-
tial with example problems.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use of sys-
tems that automate sound reasoning: the derivation of conclusions that follow inevitably
from facts. This capability lies at the heart of many important computational tasks. In
this work we are dealing with ATP for 1st order classical logic, which has well known
computational properties, and henceforth all discussion is in that context. Current ATP
systems are capable of solving non-trivial problems. In practice however, the search
complexity of most interesting problems is enormous, and many problems cannot cur-
rently be solved within realistic resource limits. Therefore a key concern of ATP re-
search is the development of more powerful techniques and systems, capable of solving
more difficult problems within the same resource limits.

In the mathematics world people often use lemmas to help construct proofs for hard
theorems. They first make some trials by using existing lemmas that are pertinent to
the problem. If they cannot solve the problem, they then find or derive more lemmas
that might help solve the problem, and continue the same process until the theorem can
be proved. For example, the famous mathematician Gauss proved the Gauss lemma as
a step along the way to the quadratic reciprocity theorem [1]. There have been sev-
eral previous efforts to use lemmas in ATP systems. Lemmas have been used in model
elimination based systems in the context of an ongoing proof attempt, to avoid repeated
subdeductions, e.g., [2, 3]. Lemmas have also been used to augment a problem before
starting a model elimination system, with a filter being used to select the lemmas that
seem most likely to be useful [4]. A higher level approach to using lemmas, which
breaks a hard problem down into manageable chunks, has been used to find proofs of
hard problems in logical calculi [5]. The approach taken in this work is to augment the
axioms of a problem with lemmas, and prove the theorem from the axioms and lem-
mas. The lemmas are then proved from the axioms, either directly, or using the same



technique recursively. The lemmas’ proofs are combined with the theorem’s proof, to
form a proof of the theorem from the axioms alone. The final proof may be viewed at a
proof structure level, showing the dependencies between the axioms, the lemmas, and
the theorem, or a fully detailed level that includes the inference steps of each component
proof.

Lemmas can provide valuable help for constructing a proof, by providing interme-
diate steps. However, not all the formulae supplied to an ATP system as lemmas are
necessarily helpful. Some may be not provable in the current theory (i.e., they are not
really lemmas), some may not be relevant to the conjecture, and some of them may
make only small steps in the overall proof at the expense of an increased search space.
It is therefore necessary to develop lemma management techniques that use the right
lemmas at the right time, to improve the problem-solving ability of ATP systems. This
paper presents three lemma management techniques, reports on their implementation,
and illustrates their potential with examples. The first technique, iterative lemma usage,
relies on the lemmas being provided in an order that allows each lemma to be proved
from the axioms and the preceding lemmas, even if some of the lemmas are not part
of the final proof structure. The second two techniques, recursive lemma selection and
recursive lemma minimization, are robust to the order in which the lemmas are sup-
plied, and can cope with the lemma set containing formulae that cannot be proved in
from the axioms or are irrelevant to the conjecture. Additionally, iterative lemma usage
is likely to fail is the proof structure is branching, i.e., requires multiple lemmas to be
used together in a component proof, while recursive lemma selection and minimization
are independent of the proof structure. However, in their current forms, the second two
techniques are likely to perform poorly if the lemma set is very large - two possible
solutions are proposed in the conclusion.

2 Iterative Lemma Usage

Art Quaife successfully used the ATP system Otter to prove theorems in several fun-
damental mathematical theories, such as Von Neumann-Bernays-Gödel set theory [6].
Proofs in these theories are often difficult for ATP systems; theorems that are very easy
for humans to prove are very hard for ATP systems to prove. To attack those chal-
lenging problems, Quaife used a systematic method in which theorems were proved
sequentially, from basic simple theorems through to advanced hard theorems. The se-
quence in which the theorems were proved was determined by Quaife, based on his
mathematical knowledge. Once a theorem was proved, it was added to the axiom list as
a lemma to help prove the next harder theorem. By such iterative lemma addition (also
referred to as lemma adjunction [7]), Quaife proved over 400 theorems in set theory.
Iterative lemma addition has been implemented in our YiLT system, and is activated in
the ILA mode of YiLT. A time limit is imposed on each proof.

Although iterative lemma addition is helpful for solving hard problems, it has some
weaknesses. Lemmas that have been added to the axioms may be redundant with respect
to (in the sense of being easily proved from) subsequently proved lemmas. Humans are
good at ignoring redundant lemmas and focusing on only useful ones, but for ATP sys-
tems redundant lemmas act as noise, disturbing the search for a proof. An alternative to



iterative lemma addition, which counters this adverse effect, is iterative lemma replace-
ment. In iterative lemma replacement each previously proved lemma is replaced by the
newly proved lemma, until the conjecture is proved. Iterative lemma replacement has
been implemented in YiLT, and is activated in the ILR mode. Iterative lemma replace-
ment has the weakness that even if a lemma is not redundant, it is always replaced by
the next lemma proven. Iterative lemma replacement thus cannot produce a branching
proof structure.

Iterative lemma addition and replacement are at two extremes in terms of retaining
or discarding lemmas. A mechanism that retains selected useful lemmas is desirable.
One approach is to discard any previously proved lemmas that are easily proved from
the newly proved lemma, the axioms, and other previously proved (but not discarded)
lemmas. Such easily proved lemmas are redundant with respect to the axioms and the
other lemmas. This technique is called iterative lemma selection. A lemma is consid-
ered to be “easily” proved if the CPU time taken for the proof is below a specified
threshold. In [4] a refined version of this technique is presented, and used to filter out
redundancy from a set of lemmas before they are used to augment a problem. Iterative
lemma selection has been implemented in YiLT, and is activated in the ILS mode.

On average, iterative lemma selection performs better than iterative lemma addition
and replacement. However, iterative lemma addition and replacement have strengths in
some cases. Section 5 shows a case when iterative lemma addition outperforms iterative
lemma selection and replacement. All three variants have the key weakness that each
lemma in turn has to be provable from the axioms and preceding lemmas, and thus fails
if unprovable lemmas are encountered. Additionally, iterative lemma usage is likely to
fail if the proof structure is a branching.

3 Recursive Lemma Selection

The formulae provided as lemmas for a problem may be arbitrarily ordered, may not
all be provable in the current theory (i.e., not really lemmas), may not all be relevant
to the conjecture, and their use may induce a branching proof structure. These situa-
tions may prevent iterative lemma usage from finding a proof of the theorem. We have
therefore developed a demand-driven approach to lemma usage that can cope with these
situations.

Recursive lemma selection starts with the conjecture as the initial target formula.
Helper sets are formed from different combinations of increasing numbers of lemmas,
starting with no lemmas. If the target formula can be proved (within a time limit) from
the axioms and a helper set, then immediately the members of the helper set are itera-
tively treated as the target formula, in a recursive fashion. When all the target formulae
have been proved at all the levels of recursion, with the target formulae at the deepest
levels being proved directly from the axioms (i.e., with empty helper sets), a proof of
the theorem has been found. If at any stage a target formula cannot be proved, the next
alternative helper set is considered. At all stages no helper set element may be a descen-
dant of the target formula in the proof structure, to prevent circular arguments. A cache
is used to recall and reuse previous proofs of target formulae. This technique has been
implemented in our YuLM system.



The power of recursive lemma selection lies in its robustness with respect to the
lemmas supplied. Recursive lemma selection identifies lemmas necessary for a proof,
and uses them to construct the proof. This robustness is achieved through the combina-
torial formation of helper sets of increasing size. If the proof has a branching structure,
in which multiple lemmas are required to prove the theorem or some lemma, a helper
set with all the necessary lemmas is used. As the helper sets are formed in increasing
order of size, less branching is preferred at each stage. The formation of all alternative
helper sets makes it possible for recursive lemma selection to find multiple proof struc-
tures for the theorem, which may then be compared in terms of some quality measure,
e.g., proof size. Section 5 shows cases when recursive lemma selection solves problems
that cannot be solved by iterative lemma usage.

4 Recursive Lemma Minimization

Recursive lemma selection has no regard for proof quality. This is due to the greedy
immediate recursion to prove the members of a successful helper set. We have therefore
developed a modified branch-and-bound style approach to lemma usage, which makes
it possible to find a proof that is optimized with respect to the number of lemmas used
or CPU time taken, while maintaining the robustness of recursive lemma selection.

Recursive lemma minimization starts with an initial proof candidate, formed by
placing the conjecture of the problem in the target queue of the initial proof candi-
date. This proof candidate is the initial target proof candidate. A list of alternative
proof candidates is initialized to empty. At each iteration, the head of the target queue
of the target proof candidate is the target formula.Helper sets are formed from different
combinations of increasing numbers of lemmas, starting with no lemmas. If the target
formula can be proved (within a time limit) from the axioms and a helper set, then no
larger helper sets are considered. All helper sets of that size, for which a proof of the
target formula can be obtained from the axioms and the helper set, are collected. Each
collected helper set is used to form a new proof candidate, by appending the helpers to
the target queue of the target proof candidate. (This is akin to the extension operation of
tableaux based ATP systems.) If the quality of the best new proof candidate is not more
than a (user supplied) tolerance factorworse than the quality of the best proof candidate
on the alternatives list, then the best new proof candidate is the target proof candidate
for the next iteration, and the remaining new proof candidates are added to the alterna-
tives list. If the quality of the best new proof candidate is more than the tolerance factor
worse than the quality of the best proof candidate on the alternatives list, then the best
proof candidate is removed from the alternatives list as the target proof candidate for
the next iteration, and all the new proof candidates are added to the alternatives list. The
quality of a proof candidate is measured as either the number of lemmas used, or the
CPU time taken for all proofs in the candidate (the quality of the initial proof candidate
is optimal - no lemmas, no CPU time taken). When a proof candidate with an empty
target queue is the target proof candidate, a proof has been found. It’s quality is within
the tolerance factor of optimal. If the alternatives list becomes empty then no proof can
be found (with the time limit). At all stages no helper set element may be a descendant
of the target formula in the proof structure, to prevent circular arguments. A cache is



used to recall and reuse previous proofs of target formulae. This technique has been
implemented in our YuLM+ system.

Besides possessing all the strengths of recursive lemmas selection, recursive lemma
minimization finds a proof that is within the tolerance factor of optimal, with respect to
the number of lemmas used or CPU time taken. Recursive lemma minimization is also
more stable than recursive lemma selection, and finds the same proof regardless of the
order in which the lemmas are supplied. This is due to the policy of using all helper sets
of the successful size at each iteration. Finally, the tolerance factor can be used to tune
the performance of the approach, with a larger tolerance factor leading to a less optimal
proof, but with less swapping between alternative proof structures and therefore less
overall CPU time taken. As the tolerance factor goes to infinity YuLM+ converges to
YuLM. Section 5 illustrates situations where these advantages are evident.

5 Illustrative Experiments

YiLT, YuLM, and YuLM+ have been implemented as meta-systems on top of the Syste-
mOnTPTP [8] interface to ATP systems. This allows flexible selection and control of
the ATP system used for each proof. Final proof structures are output in TPTP format
[9], and can optionally include the full details of the component proofs. Output in TPTP
format allows use of the YuTV proof tree viewer to examine proof structures.

The potential of the three systems is illustrated here with three example problems:
the “graph triangles” problem, to prove that the maximal length of a shortest path be-
tween two vertices in a complete directed graph is the number of triangles in the graph
plus one; the “short 5 lemma part 2” [10] that proves surjectivity in a given commuta-
tive diagram of homological algebra; and the “kitchen sink” problem [11] in a first-order
encoding of the event calculus [12]. Lemmas for each problem were extracted from hu-
man proofs of the theorems, producing 11 lemmas for the graph triangles problem, 15
lemmas for the short 5 lemma, and 12 lemmas for the kitchen sink problem. The lem-
mas are all known to be provable from the axioms, but as the results show, not all are
necessary for an automated proof. The lemmas were supplied to the systems in the or-
der they were used in the hand-proofs, and additionally for the kitchen sink problem in
reversed order and two randomized orders. Using the lemmas, the proof structure of the
graph triangles problem is linear, while the proof structures of the short 5 lemma and
the kitchen sink problems are branching, i.e., expected to be out of the reach of YiLT.

SPASS 2.1 [13] was used as the ATP system inside YiLT, YuLM, and YuLM+. Nei-
ther the graph triangles problem nor the short 5 lemma problem can be solved by SPASS
alone with a 6200s time limit. The kitchen sink problem can be solved by SPASS in
400s, so the use of lemmas may be considered unnecessary, but the results usefully il-
lustrate differences between our three systems. For the testing,YuLM was configured to
stop when the first proof was found. For YuLM+ the tolerance factor was set to 1, i.e.,
forcing YuLM+ to find an optimal proof, and the quality measure was to minimize the
number of lemmas in the proof structure. The tests were done on a 930MHz Pentium
III computer with 512MB memory, running Linux 2.4. A 20s CPU limit was imposed
on each SPASS proof. Table 1 summarizes the results. Each result gives the number of



lemmas in the final proof structure in ()s, followed by the total CPU time taken (to the
nearest second) to find the proof structure.

Table 1. YiLT, YuLM, and YuLM+ Results

System Graph Short 5 Kitchen sink
triangles lemma Ordered Random 1 Random 2 Reversed

YiLT ILA (11) 37 Failed Failed Failed Failed Failed
YiLT ILR Failed Failed Failed Failed Failed Failed
YiLT ILS (1) 88 Failed Failed Failed Failed Failed
YuLM (1) 34 (9) 4195 (5) 1509 (6) 2422 (8) 2333 (11) 2036
YuLM+ (1) 4882 (8) 5042 (5) 5315 (5) 5312 (5) 5320 (5) 5310

These are only illustrative test problems, and extrapolating general conclusions from
the results is not possible. The results do however illustrate performance features of the
systems. As expected, YiLT fails on the two examples that have a branching proof struc-
ture, illustrating the value of the more general lemma management techniques. Note
that iterative lemma addition outperforms iterative lemma replacement and selection in
the graph triangles problem. The solutions of the graphs triangles and short 5 lemma
problems show how the use of lemmas can extend the capabilities of SPASS.

The consistency of the results for YuLM+ across the four lemma orderings of the
kitchen sink problem contrasts with the variation of the results for YuLM. The extra
CPU time taken by YuLM+’s search for an optimal proof produces the desired result -
the same optimal proof regardless of the order in which the lemmas are supplied.With a
higher tolerance factorYuLM+ takes less time and produces less optimal proofs. Table 2
illustrates this for the kitchen sink problem with the ordered lemmas.

Table 2. YuLM+ Results for different Tolerance Factors

TF = 1 TF = 2 TF = 3 TF = 4 TF = 5
YuLM+ (5) 5315 (8) 4922 (9) 4530 (9) 3215 (9) 2318

Figure 1 shows the proof structures for YuLM and YuLM+ for the kitchen sink
problem. The left structure is from YuLM using the ordered lemmas and YuLM+ for
all lemma orders. The right structure is from YuLM using the reversed lemmas. The
inverted triangle add axioms represents all the axioms of the problem, the elongated
hexagons are lemmas, and the height 4 house is the final theorem. The lines from
the axioms to the lemmas have been drawn for only those lemmas that were proven
directly from the axioms, but of course the axioms are used in all proofs. The right
structure illustrates how YuLM greedily takes many small steps when the lemmas are



provided in reverse order. At each stage it uses the next lemma(s) in the reverse lemma
sequence, hence using all 11 lemmas. This is in contrast to the smaller structure on the
left, produced by the other configurations, using only 5 of the lemmas.

Fig. 1. YuLM and YuLM+ Proof Structures

6 Conclusion

This paper presents three lemma management techniques, reports on their implemen-
tation, and illustrates their potential with example problems. Appropriate lemma man-
agement allows ATP systems to use lemmas to their advantage, and provides robustness
against poorly constituted lemma sets.

The principle weakness of the two recursive approaches is their combinatorial for-
mation of helper sets. If a large set of lemmas is supplied, a very large number of helper
sets can be formed. This can be overcome by pruning the lemma set before use. Prun-
ing may be achieved using the redundancy elimination technique described in [4], or by
using the Prophet tool1 to select lemmas that seem most relevant to the conjecture.
1 To be documented in a paper real soon.



The next phase of this project will be to use the AGInT system [14] to generate the
lemmas, rather than rely on a human source. This will provide a strong challenge to the
lemma management techniques, because the automatic generation of lemmas is more
likely to supply lemmas that are irrelevant to the conjecture at hand. The lemma pruning
techniques will almost certainly have to be used.

References

1. Nagell, T.: Introduction to Number Theory. Wiley (1951)
2. Astrachan, O., Loveland, D.: The Use of Lemmas in the Model Elimination Procedure.
Journal of Automated Reasoning 19 (1997) 117–141

3. Fuchs, M.: Controlled Use of Clausal Lemmas in Connection Tableau Calculi. Journal of
Symbolic Computation 29 (2000) 299–341

4. Draeger, J., Schulz, S.: Improving the Performance of Automated Theorem Provers by
Redundancy-free Lemmatization. In Russell, I., Kolen, J., eds.: Proceedings of the 14th
Florida Artificial Intelligence Research Symposium, AAAI Press (2001) 345–349

5. Veroff, R.: A Shortest 2-Basis for Boolean Algebra in Terms of the Sheffer Stroke. Journal
of Automated Reasoning 31 (2003) 1–9

6. Quaife, A.: Automated Development of Fundamental Mathematical Theories. Kluwer Aca-
demic Publishers (1992)

7. Wos, L., Pieper, G.: AutomatedReasoning and the Discovery of Missing and Elegant Proofs.
Rinton Press (2003)

8. Sutcliffe, G.: SystemOnTPTP. In McAllester, D., ed.: Proceedings of the 17th International
Conference on Automated Deduction. Number 1831 in Lecture Notes in Artificial Intelli-
gence, Springer-Verlag (2000) 406–410

9. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-ExchangeFormats for Automated Theorem
Proving Tools. In Zhang, W., Sorge, V., eds.: Distributed Constraint Problem Solving and
Reasoning in Multi-Agent Systems. Number 112 in Frontiers in Artificial Intelligence and
Applications. IOS Press (2004) 201–215

10. Weibel, C.: An Introduction to Homological Algebra. Cambridge University Press (1994)
11. Shanahan, M.: Representing Continuous Change in the Event Calculus. In L.C., A., ed.:

Proceedings of the 9th European Conference on Artificial Intelligence , Pitman Press (1990)
598–603

12. Mueller, E., Sutcliffe, G.: Reasoning in the Event Calculus using First-Order Automated
Theorem Proving. In Russell, I., Markov, Z., eds.: Proceedings of the 18th Florida Artificial
Intelligence Research Symposium, AAAI Press (2005)

13. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS
Version 2.0. In Voronkov, A., ed.: Proceedings of the 18th International Conference on
Automated Deduction. Number 2392 in Lecture Notes in Artificial Intelligence, Springer-
Verlag (2002) 275–279

14. Gao, Y.: Automated Generation of Interesting Theorems. Master’s thesis, University of
Miami, Miami, USA (2004)


