Discrete Event Calculus Deduction using
First-Order Automated Theorem Proving

Erik T. Muellert and Geoff Sutcliffé

! IBM Thomas J. Watson Research Center,
P.O. Box 704, Yorktown Heights, NY 10598 USAm@us.ibm.com
2 Department of Computer Science, University of Miami,
P.O. Box 248154, Coral Gables, FL 33124 Ugdoff@cs.miami.edu

Abstract. The event calculus is a powerful and highly usable formalism for rea-
soning about action and change. The discrete event calculus limits time to in-
tegers. This paper shows how discrete event calculus problems can be encoded
in first-order logic, and solved using a first-order logic automated theorem prov-
ing system. The following techniques are discussed: reification is used to convert
event and fluent atoms into first-order terms, uniqueness-of-names axioms are
generated to ensure uniqueness of event and fluent terms, predicate completion
is used to convert second-order circumscriptions into first-order formulae, and a
limited first-order axiomatization of integer arithmetic is developed. The perfor-
mance of first-order automated theorem proving is compared to that of satisfia-
bility solving.

1 Introduction

The event calculus (EC) [1] is a powerful and highly usable formalism for reasoning
about action and change, which is rapidly finding application in such areas as natural
language processing [2] and robotics [3]. Kowalski and Sergot [4] introduced the orig-
inal event calculus, which was expressed as a logic program, and Shanahan and Miller
introduced axiomatizations of the event calculus in first-order logic [5, 6].

The discrete event calculus (DEC) was developed by Mueller [7] in order to facil-
itate solution of event calculus reasoning problems using satisfiability (SAT) solvers.
DEC facilitates this by

— limiting time to the integers to allow a SAT encoding (unlike EC, which allows
continuous time), and

— eliminating triply quantified time from many of the axioms to reduce the size of the
SAT encoding.

Mueller [7] proves that if time is restricted to the integers, then DEC is equivalent to
an EC axiomatization of Miller and Shanahan [6]. The DEC axioms are given in the
appendix of this paper. The predicates used in the axioms are:

— happen§E, T'): EventE occurs at timepoint'.
— holdsAt{F, T): FluentF is true atT".
— releasedA{F, T): F is released from the commonsense law of inerti@.at

— initiateg(E, F, T): If E occurs afl’, thenF is true and not released &t+ 1.

— terminate$E, F,T): If E occurs afl’, thenF is false and not released Bt+ 1.

— release§E, F,T): If E occurs afl’, thenF' is released &f + 1.

— trajectory(Fy, 11, F», T»): If F} is initiated by an event that occursAt, andTs is
greater than zero, thef}, is true atT; + Ts.

— antiTrajectory(Fy, T, F», T»): If Fy is terminated by an event that occursTat
andT; is greater than zero, thdn, is true atl; + T5.

Since the introduction of the EC and DEC axiomatizations, several event calculus
reasoning systems have been implemented, including:

— Shanahan’s EC planner [8], which uses abductive logic programming,
— Shanahan and Witkowski's EC planner [9], which uses SAT solvers, and
— Mueller's DEC reasoner [10], which uses SAT solvers.

In this paper, we demonstrate the feasibility of using first-order logic automated
theorem proving (ATP) systems [11] to solve event calculus reasoning problems. To
our knowledge, this is the first time this has been done. We limit ourselves here to
discrete time.

Our long-term goal is to develop a collection of systems for solving event calculus
reasoning problems, both discrete and continuous, using both ATP and SAT. Depending
on the user’s problem and needs, one or more of these systems can be selected. The chief
benefit of ATP is that it produces humanly-understandable proofs (refutations), while
the chief benefits of SAT are its efficiency and ability to perform abduction and model
finding as well as deduction.

In order to make DEC problems solvable using ATP systems, we

— use reification to convert event and fluent atoms into first-order terms,

— generate uniqueness-of-names axioms to ensure uniqueness of event and fluent
terms,

— use predicate completion to convert second-order circumscriptions into first-order
formulae, and

— use a limited first-order axiomatization of integer arithmetic.

Our method has been tested on two benchmark scenarios for the event calculus,
which together cover many of the features of the event calculus: the supermarket trolley
scenario and the kitchen sink scenario. For some theorems, human assistance in the
form of lemma specifications is required to bring the problems within the reach of the
current state of the art in ATP.

2 Encoding DEC Problems

Encoding DEC problems for ATP systems requires solving several technical and prac-
tical problems, which are discussed in this section. The techniques are described using
examples from the kitchen sink scenario, in which a stopper is put into the drain of
a kitchen sink and the water is turned on (the scenario is fully specified later in this

paper).

2.1 Reification

In a first-order logic language, the proposition that the water level of a sink is
2, is represented using an atom such veasterLeve(2). In the event calculus,

the truth of this proposition at timepoint 3 is represented using an atom such as
holdsAfwaterLeve(2), 3). However, this is not a well-formed first-order logic formula

if waterLeve{2) is an atom, since the first argument to the predicate syimildsAtis

not a term. SimilarlyhappengtapOn 0) is not well-formed iftapOnis a proposition.

The event calculus therefore uses the techniqueiti€ation[12], in which formulae

of one first-order language become terms of another first-order language.

Reification for the event calculus uses techniques originally developed for the situa-
tion calculus by Lifschitz [13], which were adapted for the event calculus by Shanahan
[5]. Flat sorted first-order logic languages are used, with sorts for fluents, events, and
timepoints, and additional sorts as required by the scenario under consideration. Each
DEC predicate and function has a sort signature that defines the sorts of its arguments.
These signatures are specified for each of the DEC predicates in the introduction of this
paper, e.g., the argumentstadldsAtare of sort fluent and timepoint, and the arguments
of happensare of sort event and timepoint. Atoms of the non-reified language become
terms of the reified language, and their sort is determined by their function symbol as
either event or fluent, e.gwaterLevelterms are of sort fluent, artdpOnterms are of
sort event.

Conformance to the sort signatures is ensured in an ATP system’s reasoning
through the conformance of the axioms and conjecture to the sort signatures, and
the one-to-one unification of atoms’ arguments. Note, however, that while this pre-
vents the deduction of anomalies suchhatdsA{tapOn waterLeve(3)), it does not
allow deduction of the negations of such anomalies, e.g., it is not possible to deduce
—holdsAftapOn waterLeve(3)).

2.2 Unique Fluent and Event Objects

With the use of reification, it is necessary to add uniqueness-of-names axioms to ensure
that fluent and event terms denote unique objects. We usd tiwation of Lifschitz
[13], in whichU[f1, ..., fx] is a notational shorthand for the set of axioms

fi(xlv"'vxn) # fj(ylw"vym)u
filxe, oo oszn) = filyrs - syn) = (@1 =1 A AT = Yn),

where f; is an n-ary function symbol, f; is an m-ary function symbol, and
T1, . Ty Y1, - - -5 Ynym are distinct variables, for everyj € {1,...,k} such that
1< J.

The axioms given by f1,. .., fi] @ndUleq, ..., e,] are added to each scenario’s
axiomatization, wheref, ..., f,, are the fluent function symbols ang, ... e, are
the event function symbols. For example, if the fluent function symbole/aterLevel
and waterVolume we addU|waterLevelwaterVolumé From this, we can show, for
example, thatvaterLeve(2) # waterVolumé2) andwaterLeve(2) # waterLeve(3)
(since2 # 3).

2.3 Circumscription
Consider the following scenario axioms:

VT initiates(tapOn filling, T'),
VT terminatestapOff filling, 7'),
happenétapOn 0).

These axioms specify events that initiate and terminate fluents, aapCn event.
However, they do not specify what events mit initiate and terminate particular flu-
ents, and they do not specify what events i occur. Thus there are models of
the DEC and these axioms in which, edZ, terminate$waterOutagefilling, T") and
happenéwaterOutagel) are true. The event calculus uses minimization of the exten-
sion of a predicate, atircumscription[14], to minimize unexpected effects of events
and unexpected event occurrences, by minimizing the extensions of the predicates
initiates, terminatesreleasesandhappens

Computing circumscription is in general difficult [15]. The circumscription of a
predicate in a first-order formula is defined by a second-order formula, and is not al-
ways equivalent to a first-order formula [16]. Fortunately, in many cases, including the
benchmark scenarios considered in this paper, the circumscription can be computed
using the following theorem [16, 17], which reduces circumscription to predicate com-
pletion:

Theorem 1. Let p be ann-ary predicate symbol anfl(x, ..., x,) be a formula with
only zq,...,xz, free. If I'(z4, . .., z,) does not mentiop, then the circumscription

CIRQVzy, ...,z (I(x1,. .. xp) = p(1,. .., 2T0)); P
is equivalent to

Va1, .o @ (D21, ... 20) © p(x1, ..., 20)).

2.4 Arithmetic

Problems in the event calculus include the use of integer arithmetic, e.g., to increment
timepoints. Integer arithmetic is in general an undecidable theory, although fragments
are decidable. General purpose first-order axiomatizations of integer arithmetic, such
as Peano arithmetic, may produce very large search spaces and very large terms, which
hinder the performance of ATP systems. An alternative approach is to make a computer
algebra system available to an ATP system as a trusted external tool, and to have the
ATP system recognize arithmetic expressions and relegate their solution to the computer
algebra system [18].

For this work a first-order axiomatization of a small fragment of integer arithmetic
has been encoded as first-order logic axioms. The axioms capture the notions of equal-
ity, addition, and order, for the integers 0 to 9. Equality is dealt with through standard
equality theory. The axioms for addition and order are listed below.

— Addition is dealt with by enumerating the results of adding all pairs of ordered
integers, and providing the axiom of symmetry.

— Ordering is described by axioms that specify the adjacent pairs of integers in con-
junction with a recursive definition of transitivity via the definition.

— The transitive sequence of ordered pairs is terminated by the axiom that specifies
that there is nothing less than 0.

— The totality of the relationship between all pairs of integers is enforced by the last
axiom.

— The last axiom also specifies that ordered integers are unequal (which is analogous
to the uniqueness-of-names axioms generated for fluents and events).

0+0=0,
0+1=1,
8+1=9,

VX,YX+Y =Y + X,
VX,Y (X <Y & (X<YVX=Y)),
VX (X <1e X <0),

VX (X <94 X <8),
-3X X <0,
VXY (X <Y & (+(Y < X)AY # X)).

Note that only the “less” inequalities are used, with “greater” being expressed by
reversal of arguments and negation.

3 Testing

The above encoding techniques have been tested on two benchmark scenarios. In each
case the axioms for the particular scenario are preprocessed by adding the necessary
uniqueness-of-names axioms and performing the necessary predicate completions. The
preprocessed axioms are then added to the DEC and integer arithmetic axioms. A con-
jecture formula is then added to produce a first-order ATP problem. The formulae are
written in the TSTP syntax [19], ready for submission to an ATP system. The ATP
problems were submitted to the ATP system Vampire 7.0 [20]. Vampire is acknowl-
edged to be a state-of-the-art ATP system—Vampire 7.0 won the FOF division of the
2004 CADE ATP system competition [21]. Initial testing was also performed using
other ATP systems, including E [22] and SPASS [23], and the results showed that Vam-
pire consistently outperforms those systems on these problems. Testing was done on a
Dell P3 computer, with a 930 MHz CPU, 512 MB of memory, and the Linux 2.4.20-6
operating system. A CPU time limit of 300s was imposed on each run.

3.1 The Supermarket Trolley Scenario

The supermarket trolley scenario, introduced by Shanahan [5], is used to test the
handling of concurrent events with cumulative and canceling effects. The scenario is
as follows: If a trolley is pushed, it moves forward. If it is pulled, it moves backward.

If the trolley is simultaneously pulled and pushed, it spins around. The axiomatization
of this problem is that of Shanahan [5], reformulated using the technique of Miller and
Shanahan [6], which involves addihgppengreconditions tanitiatesandterminates
axioms. The axiomatization is preprocessed to:

Circumscribed initiates axioms

VE, F,T (initiates(E, I, T) &

((E = pushA F = forwardsA —happenépull, 7)) v
(E = pull A F' = backwards\ —happengpushT')) v
(E = pull A F' = spinningA happengpushT)))).

Circumscribed terminatesaxioms

VE,F,T (terminate$E, F,T) <

((E = pushA F' = backwards\ —happenépull, T)) v
(E = pull A F' = forwardsA —happengpush 7)) v
(E = pull A F = forwardsA happenépush T')) Vv

(E = pull A F = backwards\ happenépush T)) v
(E = pushA F = spinningA —happenépull, T')) v
(E = pull A F' = spinningA —happenspush T)))).

Circumscribed releasesaxioms
VE,F,T —release¢E, F,T).

Circumscribed event occurrences

VE,T (happen§E, T) <

((E=pushAT =0)V(E=pul AT =1)V
(E=pull AT =2)V (E =pushA T = 2))).

Uniqueness-of-names axioms for events
push pull.

Unigueness-of-names axioms for fluents
forwards# backwards

forwards# spinning

spinning# backwards

Initial conditions
—holdsAtforwards 0),
—holdsAtbackwards0),
=holdsAgspinning 0),
VE, T —releasedAtF, T').

The axiomatization of the supermarket trolley scenario consists of 47 axioms
(23 axioms for integer arithmetic, 12 axioms for DEC, 8 axioms for the domain theory,
and 4 axioms for initial conditions).

Given the above axioms, the DEC axioms, and the integer arithmetic axioms, Vam-
pire is quickly (less than 1s each) able to prove the theorems:

—holdsAtspinning 1),
holdsAtbackwards2),
—holdsAtforwards 2),
—holdsA{spinning 2),
—holdsAtbackwards3),
—holdsAtforwards 3),
holdsAtspinning 3).

3.2 The Kitchen Sink Scenario

The kitchen sink scenario, introduced by Shanahan [24], is used toniastes and
terminatesaxioms representing the effects of eventgasesaxioms representing
release from the commonsense law of inettiajectory axioms representing gradual
change, trigger axioms representing triggered events, and state constraints. In this
scenario, a stopper is put into the drain of a kitchen sink and the water is turned on.
The task is to perform temporal projection, a form of deduction, in order to infer that
the water level will rise, the water level will reach the rim of the sink, and then the
water will overflow and start spilling. The axiomatization of this problem is taken from
Shanahan [5], and preprocessed to:

Circumscribed initiates axioms

VE, F,T (initiates(E, F, T) &

((E = tapOnA F = filling) v

(E = overflown F = spilling) v

3H (holdsAtwaterLevelH), T) A E = tapOffA
F = waterLevelH)) v

3H (holdsAtwaterLevelH),T) A E = overflowA
F = waterLevelH)))).

Circumscribed terminatesaxioms
VE,F,T (terminate$E, F, T) <
((E = tapOffA F =filling) v

(E = overflown F = filling))).

Circumscribed releasesaxioms
VE,F,T (release$E, F,T) <
JH (E = tapOnA F = waterLevelH))).

Circumscribed event occurrence and trigger axiom
VE,T (happensE,T) < ((E =tapOnAT = 0) vV
(holdsAfwaterLeve(3), T) A holdsAtfilling, T') A

E = overflow)).

Trajectory axiom
VH,, Ty, Ha, O ((holdsAfwaterLeve(H), T1) A
H, = Hy + O) = trajectory(filling, Ty, waterLeve{ Hz), O)).

State constraint
VT, Hy, Hy ((holdsAfwaterLeve(H,),T) A
holdsAtwaterLevelH,),T)) = H; = Ha).

Unigueness-of-names axioms for events
tapOff#£ tapOn

tapOff £ overflow

overflow## tapOn

Unigueness-of-names axioms for fluents

VX filling # waterLevelX),

VX spilling # waterLeve{X),

filling # spilling,

VX,Y (waterLevelX) = waterLevelY) < X =Y).

Initial conditions
holdsAtwaterLeve(0), 0),
—holdsAtfilling, 0),
—holdsAtspilling, 0),

VH —releasedAjwaterLeve(H), 0),
—releasedA(filling, 0),
—releasedA(spilling, 0).

The axiomatization of the kitchen sink scenario consists of 54 axioms (23 ax-
ioms for integer arithmetic, 12 axioms for DEC, 13 axioms for the domain theory, and
6 axioms for initial conditions).

These axioms, in conjunction with the DEC axioms and the integer arithmetic ax-
ioms, form a specification of the problem for times and heights within the axiomatized
integer range. Various theorems that describe the state of the system at specified times
can be proved directly from the axioms, including (the CPU times taken are given in

0s):

holdsAtfilling, 1) (1s)

holdsAfwaterLeve(l),1) (2s)

holdsAtfilling, 2) (3s)

holdsAtwaterLeve(2), 2) (3s)

—3F (happens§E, 2) A terminatesFE, filling, 2)) (42s)
holdsAtwaterLeve(3), 3) (104s)

—stoppedIio, filling, 3) (110s)

holdsAtfilling, 3) (174s)

For more complex theorems such as:

happengoverflow 3),
—holdsAtfilling, 4),
holdsAtwaterLeve(3), 4),
holdsAtspilling, 4),

Vampire was unable to prove them directly from the axioms within the 300s time limit.
For each of these it was necessary to specify which of the previously proved theorems
should be used as lemmas, so that the harder theorem could be proved from the axioms
and lemmas. Such an incremental approach to proving hard theorems has been used in
previous ATP applications, e.g., Art Quaife’s development of Neumann-Bernays-Godel
set theory [25]. Figure 1 shows the lemma structure used, leading to proofs of the most
difficult theorems. Each link shows the CPU time taken to prove the lemma or theorem.
When proving the theorems, the axioms as well as the indicated lemmas are used.

Fig. 1. Lemmas for the Kitchen Sink Theorems

9s

—holdsAt(filling,4) happens(overflow,3)

holdsAt(water Level (3),4) hol dsAt(spilling,4)

3.3 ATPvs. SAT

In this section we compare the performance of ATP and a SAT-based DEC reasoner
[10] on a version of the supermarket trolley scenario witagents ana trolleys: For

eachi in {1,...,n}, agenti pushes and pulls trolley at timepoint 0. The problem

is to prove that for eachin {1,...,n}, trolley i spins at timepoint 1. The results are
shown in Table 1. The columns of this table are:rflpumber of agents and trolleys,

(2) time: wall time for the DEC reasoner, including running the Relsat 2.0 SAT solver,
(3) SAT time: wall time for the SAT solver alone, (4)ars: number of variables in

the SAT problem, (5rlauses number of clauses in the SAT problem, (8ye: wall

time for Vampire, (7)gclausesnumber of generated clauses, andr(®uses number

of retained clauses. Times here are elapsed wall-clock time in seconds, averaged over
10 trials, on an IBM T30 computer, with a 1.8 GHz Intel Pentium 4 CPU, 512 MB of
memory, and the Linux 2.4.9-31 operating system. Though SAT is more efficient than
ATP for this scenario, ATP has the benefit that the derivation retains meaning and can
be understood by humans.

DEC reasoner Vampire
n||time|SAT time|vars|clausegtime|gclausesrclauses
1| 0.2 0.0 16 70| 1.0 12,791 3,828
2| 0.3 0.00 61 328| 1.1} 13,002 4,003
4|l 0.7 0.0 190 1,084| 1.4 13,637 4,350
8| 2.4 0.1 625 3,562| 7.8 79,754 5,091
9| 3.0 0.1 765 4,446|26.0 276,582 5,287
10| 3.9 0.1 919 5,428 fall

Table 1.DEC reasoner (SAT) vs. Vampire (ATP) on supermarket trolley problems (wall times in
seconds)

4 Related Work

The general topic of commonsense reasoning is widely and deeply studied. It includes
work that uses automated reasoning, whose roots are in John McCarthy’s paper “Pro-
grams with Common Sense” [26]. The use of automated reasoning techniques in com-
monsense reasoning produced significant output, including, e.g., a special issue of the
Journal of Automated Reasonifi@j7]. Despite the high level of activity, there appears

to be little work on performing commonsense reasoning using classical first-order logic
ATP systems. A similar state of affairs appears to exist in the subfield of reasoning
about action and change. Existing systems for reasoning about action and change use
task-specific logics and reasoning techniques, including: active logic reasoning [28],
abductive logic programming [8], answer set computing algorithms [29], argumenta-
tion programming [30], model finding via constraint propagation [31], and SAT solving
[32,10,9].

Planning is one type of reasoning about action and change in which first-order ATP
systems have been employed. Green [33] implemented a system that used resolution
theorem proving for planning. Citing performance problems with Green’s system, Fikes
and Nilsson [34] introduced STRIPS, which used means-ends analysis to search the
space of plans, and resolution theorem proving only for proving subgoals and opera-
tor preconditions. Kautz and Selman [35] demonstrated the efficiency of SAT solving
for planning. Modern planning systems use a variety of techniques including planning
graph analysis, forward heuristic search, SAT solving, model checking, and planning
by rewriting [36]. The TPTP problem library [37] contains a planning domain with 38
planning problems solved by ATP systems.

5 Conclusions

This paper shows, with techniques and examples, how DEC reasoning problems can be
encoded in first-order logic. Solutions to the technical issues regarding the translation
of DEC problems into pure first-order logic have been found, and the resulting ATP
problems have been successfully tackled with a state-of-the-art ATP system. The result
is a new and practical technology for solving DEC problems.

The DEC problems are a reasonable challenge for ATP systems, from two perspec-
tives. First, the use of arithmetic requires either an axiomatic solution (as described in
this work), or the integration of arithmetic capabilities into the ATP system. Both of
these alternatives are the focus of research in the ATP community, and this work in
DEC further motivates that research. We are already in the process of replacing the
small fragment of integer arithmetic, described in Section 2.4, with a more robust ax-
iomatization of equality, addition, and order for byte arithmetic. The real arithmetic
that is necessary for non-discrete time will be implemented using the built-in arithmetic
capabilities of an ATP system, such as Otter [38]. To make ATP systems more applica-
ble, it will be important for the ATP community to address the issue of standardizing
mechanisms for built-in arithmetic.

Second, in the form described in this paper, the problems are suitable for testing ATP
systems, because they lie at the frontier of the current state of the art. The problems have
been incorporated into version 3.1.0 of the TPTP problem library [37] in a new domain
focusing on commonsense reasoning.

In the future it is planned to extend this work to the standard event calculus, in
which time is not forced to be discrete. We also plan to investigate the possibility of
transforming problems into those with a finite Herbrand universe, so that specialized
EPR (effectively propositional) solvers can be used.

6 Appendix: Discrete Event Calculus Axioms

The following DEC axioms were formed by Mueller [7], by introducing the new
axioms DECS5 through DEC12, and adding them to the existing axioms DEC1 through
DEC4 of Miller and Shanahan [6]:

Axiom DEC1
VT, F, T, (stoppedifTy, F, Ts) <
JE, T (Th < T < Ty NhappensE, T) A terminate$E, F, T))).

Axiom DEC2
VT, F, T, (startedi Ty, F, Ts) <
JE,T (11 < T < Ty, Ahappen§E, T') Ainitiates(E, F,T))).

Axiom DEC3

VE, Ty, F1, Ty, F> ((happenéE, Th) A initiates(E, F1, T1) A0 < Ty A
trajectory(Fy, 11, F», T) A —stoppedlfTy, Fy, Ty + T3)) =
hOldSA(FQ, T + Tg))

Axiom DEC4

VE, Ty, Fy, Ty, F> ((happenéE, T1) A terminatesE, F;,T1) A0 < Ty A
antiTrajectory(F, T}, F», To) A —startedIn(Ty, Fy, Ty + T3)) =
hOldSA(FQ, T + T3)).

Axiom DEC5

VF,T ((holdsAtF,T) A —releasedAtF, T + 1) A
—3FE (happen§E, T') A terminatesE, F,T))) =
holdsAtE, T + 1)).

Axiom DEC6

VF,T ((—holdsA{F,T) A —releasedAtF, T + 1) A
—3F (happen§E, T) A initiates E, F,T))) =
—holdsA{F, T + 1)).

Axiom DEC7

VF, T ((releasedAtF, T) A

—3F (happengE, T') A (initiates(E, F, T') V terminate$E, F, T)))) =
releasedAtF, T + 1)).

Axiom DECS8

VF,T ((—releasedAtF, T') A

—3F (happen§E, T) A release§E, F,T))) =
—releasedAtF, T + 1)).

Axiom DEC9
VE,T, F ((happen§E, T) A initiates(E, F, T)) = holdsAtF, T + 1)).

Axiom DEC10
VE, T, F ((happengE, T) A terminatesE, F,T')) = —holdsAtF, T + 1)).

Axiom DEC11
VE,T,F ((happen§E, T) A release$E, F,T)) = releasedAtF, T + 1)).

Axiom DEC12
VE, T, F ((happen$E, T) A (initiates(E, F,T) V terminate$E, F,T))) =
—releasedAtF, T + 1)).

References

1. Shanahan, M.: The event calculus explained. In: Artificial Intelligence Today. Springer-
Verlag, Heidelberg (1999) 409-430

2. Mueller, E.T.: Understanding script-based stories using commonsense reasoning. Cognitive
Systems Researéh(2004) 307-340

3. Shanahan, M.: Perception as abduction: Turning sensor data into meaningful representation.
Cognitive Scienc9 (2005) 103-134

4. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Computing

4 (1986) 67-95

. Shanahan, M.: Solving the Frame Problem. MIT Press, Cambridge, MA (1997)

6. Miller, R., Shanahan, M.: Some alternative formulations of the event calculus. In: Computa-
tional Logic: Logic Programming and Beyond. Springer-Verlag, Heidelberg (2002) 452—490

(62}

~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

Mueller, E.T.: Event calculus reasoning through satisfiability. Journal of Logic and Compu-
tation14 (2004) 703-730

. Shanahan, M.: An abductive event calculus planner. Journal of Logic Programing

(2000) 207240

. Shanahan, M., Witkowski, M.: Event calculus planning through satisfiability. Journal of

Logic and Computatiod4 (2004) 731-745

Mueller, E.T.: A tool for satisfiability-based commonsense reasoning in the event calculus.
In: Proceedings of the 17th FLAIRS Conference, Menlo Park, CA, AAAI Press (2004) 147—
152

Robinson, A., Voronkov, A.: Handbook of Automated Reasoning. Elsevier Science (2001)
McCarthy, J.: First order theories of individual concepts and propositions. In: Machine
Intelligence 9. Ellis Horwood, Chichester, UK (1979) 129-148

Lifschitz, V.: Formal theories of action. In: The Frame Problem in Artificial Intelligence,
Los Altos, CA, Morgan Kaufmann (1987) 35-57

McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial Intelligence
13(1980) 27-39

Doherty, P., Lukaszewicz, W., Szatas, A.: Computing circumscription revisited: A reduction
algorithm. Journal of Automated Reasonit®)(1997) 297-336

Lifschitz, V.: Computing circumscription. In: Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Altos, CA, Morgan Kaufmann (1985) 121-127
Reiter, R.: Circumscription implies predicate completion (sometimes). In: Proceedings of
the National Conference on Artificial Intelligence, Menlo Park, CA, AAAI Press (1982)
418-420

Kapur, D., Wang, D.: Special issue: Combining logical reasoning and algebraic computation.
Journal of Automated Reasonig (1998)

Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP data-exchange formats for automated theorem
proving tools. In: Distributed and Multi-Agent Reasoning. 10S Press (2004)

Riazanov, A., Voronkov, A.: The design and implementation of Vampire. Al Communica-
tions15(2002) 91-110

Nieuwenhuis, R.: Special issue: The CADE ATP System Competition. Al Communications
15(2002)

Schulz, S.: E: A Brainiac Theorem Prover. Al Communicatibmi002) 111-126
Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS
Version 2.0. In Voronkov, A., ed.: Proceedings of the 18th International Conference on
Automated Deduction. Number 2392 in Lecture Notes in Artificial Intelligence, Springer-
Verlag (2002) 275-279

Shanahan, M.: Representing continuous change in the event calculus. In: Proc. of ECAI
1990. (1990) 598-603

Quaife, A.: Automated Development of Fundamental Mathematical Theories. Kluwer Aca-
demic Publishers (1992)

McCarthy, J.: Programs with common sense. In: Proceedings of the Symposium on Mecha-
nisation of Thought Processes, Her Majesty’s Stationery Office (1959)

Lifschitz, V.: Special issue: Commonsense and honmonotonic reasoning. Journal of Auto-
mated Reasoning5 (1995)

Perlis, D.: Active logic, metacognitive computation, and mindhttp://www.
activelogic.org (2004)

Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

Kakas, A., Miller, R., Toni, F.: E-RES - A system for reasoning about actions, events and
observations. In: Proc. of the 8th International Workshop on Non-Monotonic Reasoning.
(2000)

31.

32.

33.

34.

35.

36.

37.

38.

Kvarnstom, J.: VITAL: Visualization and implementation of temporal action logic. Techni-
cal report, Linlkdping University (2001)

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence153(2004) 49-104

Green, C.C.: The Application of Theorem Proving to Question-Answering Systems. PhD
thesis, Department of Electrical Engineering, Stanford University (1969)

Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligenc@ (1971) 189-208

Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic
search. In: Proc. AAAI/IAAI 1996. (1996) 1194-1201

Long, D., Fox, M.: The 3rd International Planning Competition: Results and analysis. Jour-
nal of Artificial Intelligence Researc®0 (2003) 1-59

Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF release v1.2.1. Journal of Auto-
mated Reasoningl (1998) 177—-203

McCune, W.: Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263, Argonne
National Laboratory, Argonne, USA (2003)

