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Abstract
This paper describes two communication for-
malisms for Automated Theorem Proving (ATP)
tools. First, a problem and solution language has
been designed. The language will be used for writ-
ing problems to be input to ATP systems, and for
writing solutions output by ATP systems. Second,
a hierarchy of result statuses, which adequately ex-
press the range of results output by ATP systems,
has been established. These formalisms will sup-
port application and research in ATP, and will fa-
cilitate direct communication between ATP tools
when they are used as embedded components in
larger systems.

1 Introduction
Automated Theorem Proving (ATP) deals with the develop-
ment of computer programs that show that some statement
(the conjecture) is a logical consequence of a set of state-
ments (the axioms). ATP systems are used in a wide variety
of domains: problems in mathematics have been solved, e.g.,
[Slaney et al., 1995; McCune, 1997], software and hardware
have been designed and verified, e.g., [Whalen et al., 2002;
Claessen et al., 2002], and applications to the WWW seem
possible [Horrocks and Sattler, 2001]. ATP has been highly
successful when the problem is expressed in classical 1st or-
der logic, so that a proof by refutation of the clause nor-
mal form of the problem can be obtained. There are some
well known high performance ATP systems that search for a
refutation of a set of clauses, e.g., Gandalf [Tammet, 1997],
SPASS [Weidenbach et al., 2002], E [Schulz, 2002], Vam-
pire [Riazanov and Voronkov, 2002]. This paper presents two
communication formalisms in the context of ATP systems for
classical 1st order logic. However, the design principles used
are suitable for other logics, and it would be desirable to adapt
or extend these formalisms to provide for communication
between 1st order ATP systems and systems for other log-
ics, e.g., Coq [Coq, 2003], HOL [HOL, 2003], ACL2 [ACL,
2003].
The success of ATP systems is in large part attributable to

progress in ATP research, four important aspects of which
are outlined in Figure 1. The rest of Figure 1 shows lines of
dependence between some other issues, indicating that ATP

applications are dependent on ATP research, and that ATP
research is dependent on many interlinked topics. The sub-
paths in the diagram that particularly motivate the work de-
scribed here are:
• From the need for a Problem library for testing and eval-
uation, to the need for a Common problem language, to
the need for Syntax and standards.

• From the need for a Solution library for analysis and de-
velopment, to the need for aCommon solution language,
to the need for Syntax and standards.

• From the demand for series of Filters, common Analysis
tools, and Communicating systems, to the need for Com-
patible solution and problem languages, to the need for
Syntax and standards.

These paths motivated the creation of two formalisms for
ATP. First, a problem and solution language has been de-
signed. The language will be used for writing problems to
be input to ATP systems, and for writing solutions output by
ATP systems. Second, a hierarchy of result statuses, which
adequately express the range of results output by ATP sys-
tems, has been established. Details of these formalisms are
given in Sections 2 and 3 respectively.

2 The TSTP Problem and Solution Language
Several different syntaxes exist for writing the problems that
are input to ATP systems. The Knowledge Interchange For-
mat (KIF) [Genesereth and Fikes, 1992] is a logically com-
prehensive language for the for the representation of knowl-
edge, and has declarative semantics. KIF is LISP like, and
provides expressive power beyond that required for ATP. The
“DFG” syntax [Hähnle et al., 1996] was designed as a com-
mon exchange format for logic problems used by members of
the German DFG-Schwerpunktprogramm Deduction. DFG
has a prefix-style grammar that is neither particularly easy for
programs to parse nor for humans to read and write. More-
over, despite its aim, it is not very widely used. The Common
Logic (CL) syntax [CL-, 2003] is a framework for a fam-
ily of logic-based languages. It does not specify any con-
crete syntax, but rather specifies an abstract syntax that can
be specialized to a concrete language. CL grew out of work
on the KIF language. The OmDoc [Kohlhase, 2000], Open-
Math [Caprotti and Carlisle, 1999], and MathML [Caprotti
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Figure 1: Motivation Paths for Communication Standards
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and Carlisle, 1999] languages specify XML based syntaxes
for writing mathematical notions. These languages are quite
expressive, but require a large amount of mark-up for quite
simple content. As a result, reading and writing problems
written in these languages is difficult without specialized soft-
ware. The syntax used for problems in the TPTP problem li-
brary [Sutcliffe and Suttner, 1998] is widely used in the ATP
community. It has a simple syntax, but has the weakness that
the Clause Normal Form (CNF) syntax is not a subsyntax of
the First Order Form (FOF) syntax (while CNF formulae are
a subset of FOF formulae).
All of the above syntaxes were designed for expressing the

input to logical reasoning tools. There appear to be no con-
sistently used formalisms for output from reasoning tools.
Although many of the above could be reasonably used for
writing the logical formulae output by reasoning tools, none
were designed or contain features specific for comprehen-
sively capturing output information. To provide seamless
communication between reasoning tools it is necessary that
the output from one tool should immediately be suitable as
input for other tools.
The goal of designing a language for communication be-

tween reasoning tools cannot ignore the requirement of hu-
man readability. Humans are often the source of initial input
and the destination of final output. It is thus necessary that
the input and output be human readable. In an ideal world
it would not be necessary for humans to look at intermedi-
ate results being passed between tools, but in reality close
examination of intermediate data is necessary for debugging,
understanding of system behaviour, and development of ideas
[Wos and Pieper, 1999]. Different users have different needs
for reading and writing the input, intermediate, and output
data. It may not be possible to design a language that per-
fectly suits all the needs, but certainly a syntax that is de-
signed for machine processing and ignores human readability
is unlikely meet any of those needs (a classic case, in one au-
thor’s opinion, is XML based syntaxes). One way around this

issue is to provide two languages, one for human interfaces
and one for machine interfaces. This approach, however, re-
quires extra software support, and the necessary translations
may hide relevant details.
The TSTP syntax is an outgrowth of the TPTP syntax. It

is a comprehensive syntax, suitable for writing the input and
output of ATP tools. The TSTP syntax was designed with the
following aims and constraints:

• It must be able to completely express the problems that
are input to ATP systems.

• It must be able to capture sufficient details of ATP sys-
tems’ outputs to allow presentation and other forms of
postprocessing, e.g., various styles of proof verification.

• The same syntax must be used for both input and output.
• It must be possible to annotate formulae with arbitrary
information.

• It must be easy for humans to read and write.
– It must be easy to write using a plain text editor.
– It must be compact.

• It must be easy for programs to parse.
• It should be backward compatible with the TPTP syn-
tax, but a single syntax must be used for CNF and FOF
formulae.

• It must be extensible, to allow for expression of new
types of formulae.

• It need have only local context and semantics, i.e., the
syntax need not support universal denotation, as in, e.g.,
the semantic web1.

An annotated TSTP formula has the following structure
(where items in <>s are placeholders for specific values, and
items in []s are optional):2

<language>(<name>,<type>[-<subtype>],
<formula>[,
<source>[,
<useful info>]]).

An example of a FOF input formula in TSTP syntax is:

fof(subclass_defn,axiom,
! [X,Y] :

( subclass(X,Y)
<=> ! [U] :

( member(U,X)
=> member(U,Y) ) ),

file(’SET005+0.ax’,subclass_defn),
[description(’Definition of subclass’),

relevance(0.9)]).

1Such worldly goals seem doomed to failure in the absence of
worldly cooperation.

2The full BNF of the TSTP syntax is available from the TSTP
WWW site [Sutcliffe, 2003]. The BNF is reasonably stable, but not
final.
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An example of a CNF output formula in TSTP syntax is:
cnf(140,derived,

( equal_sets(a,aUa)
| member(member_of(a,aUa),a) ),
inference(unit_del,[status(thm)],[

inference(hyper,[status(thm)],[
5,16]),11]),

[iquote(’hyper,5,16.1,unit_del,11’)]).

The <language> field makes the syntax extensible.
New types of formulae are possible by specifying the new
<language> name and defining the <formula> syn-
tax. The <type> indicates the semantics of input formulae,
with values such as axiom, definition, assumption,
conjecture. For output the <type> is either initial
or derived, and is optionally followed by a subtype that
indicates the semantics.
The <formula> uses the FOF syntax of the TPTP, with

CNF formulae expressed as FOF disjunctions with the uni-
versal quantifiers omitted. This syntax was very carefully de-
signed, following a survey of notation used for 1st order logic.
It has features that make it easy for humans to read and write,
e.g., it uses only characters available on a qwerty keyboard,
and uses short notations for connectives, e.g., ! rather than a
word such as forall for universal quantification. It is easy
for programs to parse, and a parser is easily constructed using
a parser generated (such as bison).
The <source>may be an external source such as a file or

human creator, or for derived formulae may be an inference
term. An inference term has the form:

inference(<rule name>,<useful info>,
[<parent info>,<parent info>, ...])

Each <parent info> is either the name of another an-
notated formula, or another inference term. All <useful
info> fields are lists of terms, and are used for annotations.
For inferred formulae the <useful info> in the inference
term is used to capture the status of the formula, as described
in Section 3. In the future a selection of defined <rule
name>s will be explicitly supported in the TSTP syntax, and
the <parent info> will be annotated sufficiently for de-
terministic reproduction of inference steps.
The TSTP syntax is already in use in the TSTP project

[Sutcliffe, 2003], where it is being used to capture the outputs
from contemporary ATP systems on problems in the TPTP.
Parsing tools, written in C, are available, and the tptp2X
utility distributed with the TPTP is now compatible with the
TSTP syntax.

3 ATP System Result Statuses
The output from current ATP systems varies widely in quan-
tity, quality, and meaning. At the low end of the scale, sys-
tems that search for a refutation of a set of clauses may out-
put only an assurance that a refutation exists (the wonderful
“yes” output). At the high end of the scale a systemmay out-
put a natural deduction proof of a problem expressed in FOF,
e.g., [Meier, 2000]. In some cases the output is misleading,
e.g., when a CNF based system claims that a FOF input prob-
lem is “unsatisfiable” it typically means that the negated CNF
of the problem is unsatisfiable.

In order to use ATP systems’ results, e.g., as input to other
tools, it is necessary that the ATP systems correctly and pre-
cisely specify what has been established. To this end a hier-
archy of result status values has been established. The hierar-
chy was based on initial work [Armando et al., 2000] done to
establish communication protocols for systems on the Math-
Web Software Bus [Zimmer and Kohlhase, 2002]. The hier-
archy is shown in Figure 2

Figure 2: Status Hierarchy for ATP Systems’ Outputs
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The hierarchy assumes that the input F to the ATP system
is of the form Ax ⇒ C. If Ax is empty, i.e., F is a mono-
lithic formula (a particular example is a set of clauses), that’s
the same as Ax being true. If C is empty, e.g., testing the
satisfiability of a set of axioms, that’s the same as C being
true. By showing that F is valid, an ATP system shows that
the conjecture C is a theorem (a logical consequence) of the
axioms Ax, i.e., Ax |= C, where |= is the standard 1st order
entailment. If F is not valid there are several other possible
relationships between Ax and C, as shown in the hierarchy
and enumerated below. Associated with each possible sta-
tus are the possible outputs from the ATP system. The status
values and possible outputs are ordered as follows:
1. Every interpretation is a model of Ax and a model of C

• F is valid; ∼F is unsatisfiable; C is a tautology
• TSTP status: Tautologies
• Outputs: Assurance; Proof of F ; Refutation of ∼F

2. Every model of Ax (and there are some) is a model of
C, but not case Tautologies
• F is valid; C is a theorem of Ax

• TSTP status: Theorem
• Outputs: Assurance; Proof of C from Ax; Refu-
tation of Ax ∪ {∼C}; Refutation of CNF (Ax ∪
{∼C})

3. Some models of Ax (and there are some) are models of
C
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• F is satisfiable;∼F is not valid; C is not a theorem
of Ax

• TSTP status: Satisfiable
• Outputs: Assurance; Model; Saturation

4. There is a bijection between the models ofAx (and there
are some) and models of C
• Example: Skolemization, splitting by new predi-
cates

• TSTP status: Satisfiability bijection
• Outputs: Assurance

5. There is a mapping from the models of Ax (and there
are some) to models of C
• TSTP status: Satisfiability mapping
• Outputs: Assurance

6. There is a partial mapping from the models of Ax (and
there are some) to models of C
• Example: Ax = p|q, C = p&r
• TSTP status: Satisfiability partial mapping
• Outputs: Assurance; Pairs of models; Pairs of satu-
rations

7. If there exists a model of Ax then there exists a model
of C
• TSTP status: Satisfiability preserving
• Outputs: Assurance

8. There are no models of Ax

• F is valid; Anything is a theorem of Ax
• TSTP status: Vacuous theorem
• Outputs: Assurance; Refutation of Ax; Refutation
of CNF (Ax)

9. Some models of Ax (and there are some) are models of
C, and some are models of ∼C.
• F is not valid; F is satisfiable;∼F is not valid;∼F
is satisfiable; C is not a theorem of Ax

• TSTP status: Neither
• Outputs: Assurance; Pair of models; Pair of satura-
tions

10. If there exists a model of Ax then there exists a model
of ∼C

• TSTP status: Counter satisfiability preserving
• Outputs: Assurance

11. There is a partial mapping from the models of Ax (and
there are some) to models of ∼C

• TSTP status: Counter satisfiability partial map-
ping

• Outputs: Assurance; Pairs of models
12. There is a mapping from the models of Ax (and there

are some) to models of ∼C

• TSTP status: Counter satisfiability mapping
• Outputs: Assurance

13. There is a bijection between the models ofAx (and there
are some) and models of ∼C

• TSTP status: Counter satisfiability bijection
• Outputs: Assurance

14. Some models of Ax (and there are some) are models of
∼C

• F is not valid;∼F is satisfiable; C is not a theorem
of Ax

• TSTP status: Counter satisfiable
• Outputs: Assurance; Model; Saturation

15. Every model of Ax (and there are some) is a model of
∼C, but not Unsatisfiable
• F is not valid;∼C is a theorem of Ax C cannot be
made into a theorem by extendingAx;

• TSTP status: Counter theorem
• Outputs: Assurance; Proof of ∼C from Ax; Refu-
tation of Ax ∪ C; Refutation of CNF (Ax ∪ C)

16. Every interpretation is a model of Ax and a model of
∼C

• F is unsatisfiable; ∼F is valid; ∼C is a tautology
• TSTP status: Unsatisfiable
• Outputs: Assurance; Refutation of F ; Proof of ∼F

It is hoped that future releases of ATP systems will use this
hierarchy of result statuses. It is already expected that the
next release of the E prover [Schulz, 2002] will do so.

4 Conclusion
Two communication formalisms for ATP tools have been pre-
sented. In their common role as embedded components in
larger systems, the ability of ATP tools to interface directly
with other components has an important influence on usabil-
ity and uptake. These formalisms facilitate direct and correct
communication between ATP tools.
The formalisms presented in this paper are finding im-

mediate application in various projects (that the authors are
involved with). Most directly these include the various
ARTists’ projects at the University of Miami [ARTists, 2003],
MathWeb, the MPTP project [Urban, 2003], and the E sys-
tem. A reason why these formalisms can be put to use im-
mediately is that they are highly pragmatic. The formalisms
are sufficient to be immediately useful, and have not become
embroiled in any attempt to encompass highly abstract and
global ambitions - such goals seem to be difficult to achieve,
as is evidenced in some other larger projects3. It will be im-
portant now to use these formalisms in more systems, to re-
veal the strengths and any weaknesses. As with the TPTP
syntax, which in some sense is now a standard in the ATP
community, these formalisms are most likely to succeed if
there is sufficient successful real usage. If they are success-
fully adopted, they may too become standards.
In order to assist the ATP community to use the TSTP syn-

tax for input to ATP systems, TPTP v3.0.0 will be distributed
3Names may be named only at the workshop.
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in both the TPTP syntax and in the TSTP syntax. To encour-
age adoption of the TSTP syntax and the output statuses, the
TSTP library will be distributed in the TSTP syntax, and a
suite of TSTP postprocessing tools (which necessarily use the
TSTP syntax and status values) will be made freely available.
Future versions of the MathWeb Software Bus will provide
full support for the TSTP language.
Future work includes designing formalisms for the output

from model generation programs such as MACE [McCune,
2001] and FINDER [Slaney, 1994], and building a hierar-
chy of possible outputs (outputs such as “assurance”, “refuta-
tion”, “proof”) from ATP systems.
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