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Abstract. Despite some impressive individual achievements, the ex-
treme difficulty of Automated Theorem Proving (ATP) means that progress
in ATP is slow relative to, e.g., some aspects of commercial information
technology. The (relatively) slow progress has two distinct disadvantages.
First, for the researchers, it is difficult to determine if a direction of in-
vestigation is making a meaningful contribution. Second, for unaware
observers, a lack of progress leads to a loss of interest and confidence
in the field. In this context it is important that progress in ATP be
measured, monitored, and recognized. This paper presents quantitative
measures that show progress in ATP, from mid-1997 to mid-2001. The
measures are based on collected performance data from ATP systems.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use
of systems (computer programs) that automate sound reasoning: the derivation
of conclusions that follow inevitably from facts. This capability lies at the heart
of many important computational tasks, e.g., software verification [19, 7], and
the development of mathematical theories [16, 10]. ATP systems are presented
with problems written in some logic. Classical 1st order logic is widely used
because of its semi-decidability, and all references to ATP systems and problems
in this work are for classical 1st order logic. The ideas presented can, however,
readily be transferred to other cases.

The development of useful ATP systems started in the mid-1960s, and has
progressed to a point now where current ATP systems are capable of solving
non-trivial problems, e.g., EQP solved the Robbins problem [15]. This progress
is impressive, given that ATP is “possibly the hardest subfield of Computer
Science” [23]. Noteworthy landmarks in this history include:

– The resolution inference rule [21].
– The series of early ATP systems developed at the Argonne National Labora-

tories [13], which, among other contributions, introduced the “given clause”
control loop.



– Paramodulation as an alternative to the explicit use of equality axioms [20].
– Subsumption as an effective means for controlling redundant information

[33].
– The tableau and model elimination strategies [5, 11], which are effective ATP

strategies and also the basis for Prolog [9].
– The Knuth-Bendix completion procedure [8] and related methods for unit

equality reasoning [34, 2].
– Indexing techniques for highly efficient storage and access to the data struc-

tures used by ATP systems [24, 18].
– The superposition inference rule [1].

There have also been some impressive implementations of the various calculi and
search strategies, such as Otter [14], Gandalf [30], Waldmeister [6], SPASS [32],
Vampire [31], and E [22].

Despite these individual achievements, the extreme difficulty of ATP means
that progress in ATP is slow relative to, e.g., some aspects of commercial infor-
mation technology. The (relatively) slow progress has two distinct disadvantages.
First, for the researchers, it is difficult to determine if a direction of investigation
is making a meaningful contribution. This is troublesome both in terms of mo-
tivation (obvious progress is always encouraging) and in terms of focus (expend
more energy in directions that are successful). Second, for unaware observers, a
lack of progress leads to a loss of interest and confidence in the field. A serious
outcome of this loss of interest and confidence has been the withdrawal of sig-
nificant funding for ATP research, e.g., the need for revitalized funding in the
USA was highlighted in [12], and in Germany the DFG “Schwerpunktprogramm
Deduktion” ended in 1998 and has not been replaced.

In this context of slow progress, it is important that progress in ATP be
measured, monitored, and recognized. This paper presents quantitative measures
that show progress in ATP, from mid-1997 to mid-2001. The measures are based
on collected performance data from ATP systems. Section 2 describes the source,
organization, and features of the performance data, which is then analyzed in
Section 3. Section 4 concludes the paper.

2 Performance Data

In order to demonstrate progress in ATP, it is necessary to evaluate ATP over
time. Evaluation of individual theoretical results, implementation techniques,
etc, is possible, but from a user perspective these separate contributions are
of little interest. Evaluation of the final product of ATP research, that is, the
combination of theoretical results, implementation techniques, etc, into ATP sys-
tems, satisfies both user and developer perspectives of progress. This work thus
demonstrates progress in ATP through evaluation of ATP systems over time.
Analytic approaches to ATP system evaluation provide insights into theoretical
system capabilities. However, complete analysis of the search space at the 1st
order level is of course impossible (or P=NP). It is therefore necessary to make
empirical evaluations of the ATP systems. Empirical evaluation using artifacts
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specific to ATP, e.g., inference steps or formulae generated, is not possible be-
cause the different calculi and systems mostly have incomparable features. In
any case, such an evaluation would provide little useful information for potential
ATP users. The evaluation methodologies are thus based on the simple measure
of whether or not systems solve the problems (a full explanation of this basis
for empirical evaluation of ATP systems and problems is in [29]). The results
provide information that is relevant to both developers and potential users, and
also encapsulate the more fine grained features.

2.1 Specialist Problem Classes

An empirical evaluation of ATP systems requires a selection of ATP problems
for the systems to attempt. ATP problems have easily identifiable logical, lan-
guage, and syntactic characteristics. Various ATP systems and techniques have
been observed to be particularly well suited to problems with certain characteris-
tics, e.g., everyone agrees that special techniques are deserved for problems with
equality. Due to this specialization, empirical evaluation of ATP systems must
be done in the context of problem sets that are reasonably homogeneous with
respect to the systems. These problem sets are called Specialist Problem Classes

(SPCs), and are based on problem characteristics. The choice of what problem
characteristics are used to form the SPCs is based on community input and on
analysis of system performance data [3]. The range of characteristics that have
so far been identified as relevant are: theoremhood (theorems vs non-theorems),
order (essentially propositional vs real 1st order), equality (no equality vs some
equality vs pure equality), form (CNF vs FOF), Horness (Horn vs non-Horn),
and unit equality (unit equality vs non-unit pure equality). Based on these char-
acteristics, 16 SPCs have been defined, as indicated by the leaves of the tree in
Figure 1.
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Fig. 1. Specialist Problem Classes

The SPCs are named using mnemonic acronyms, abbreviating theorem to
THM, non-theorem to SAT, real 1st order to RFO, essentially propositional to EPR,
pure equality to PEQ, some equality to SEQ, no equality to NEQ, unit equality to
UEQ, non-unit pure equality to NUE, Horn to HRN, and non-Horn to NHN. CNF and
FOF are retained as is.

3



2.2 The TPTP Problem Library

Currently there are not many “real” applications of 1st order ATP (current ap-
plications of ATP, such as software and hardware verification, largely use propo-
sitional techniques). There is therefore no corpus of application problems that
can be used for testing 1st order ATP systems. The TPTP (Thousands of Prob-
lems for Theorem Provers) problem library is a library of test problems for ATP
systems [27]. The TPTP is large enough to obtain statistical significance, and
spans a diversity of subject matters. The TPTP is regularly updated with new
problems, including problems from “real” applications of ATP. The TPTP is the
best available collection of problems representing general purpose applications of
ATP, and thus is the best source of problems for evaluating ATP systems. Since
the first release of the TPTP in 1993, many researchers have used the TPTP
as an appropriate and convenient basis for testing their ATP systems. Although
other test problems do exist and are sometimes used, the TPTP is now the de
facto standard for testing classical 1st order ATP systems.

Some researchers who have tested their ATP systems over the entire TPTP
problem library have contributed their performance data to the TPTP results
collection [28]. The results are for various ATP systems, various system versions,
and various TPTP versions. The results collection thus provides snapshots of
ATP systems’ performances over time, and forms a basis for measuring progress
in ATP.

2.3 System Performance Curves

The performance data in the TPTP results collection is provided by the individ-
ual system developers, which means that the systems have been tested using a
range of CPU and memory resource limits. Analysis shows that the differences
in resource limits do not significantly affect how many problems are solved by
each ATP system. Figure 2 plots the CPU times taken by several well known
systems to solve problems in the SPC THM RFO SEQ CNF NHN, for each solution
found, in increasing order of time taken.1 The relevant feature of these perfor-

mance curves is that they are exponential in nature, as would be expected for
search in an exponentially growing search space (the performance curves in other
SPCs have the same feature). Each system has a point at which the time taken
to find solutions starts to increase dramatically. This point is called the system’s
Peter Principle Point (PPP), as it is the point at which the system has reached
its level of incompetence.2 A linear increase in the CPU resources beyond the
PPP would not lead to the solution of significantly more problems. The PPP
thus defines a realistic CPU resource limit for the system. From an ATP per-
spective, after the PPP the search space has typically grown to a size where the

1 The numbers of solutions found are not comparable, as the systems attempted the
SPC in different TPTP versions

2 The Peter Principle is “The theory that employees within an organization will ad-
vance to their highest level of competence and then be promoted to and remain at
a level at which they are incompetent.” [17]
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system is unable to find a solution within the space. The PPP thus also defines
a realistic memory resource limit for the system. Provided that enough CPU
time and memory are allowed for the ATP system to pass its PPP, a usefully
accurate measure of what problems it can solve within realistic resource limits
is achieved. Performance curves provide a basis for evaluating the progress in
ATP over time. This is described in Sections 3.1, 3.2, and 3.3.
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Fig. 2. Proof number vs CPU time

2.4 ATP System and Problem Evaluation

[29] presents methodologies for the empirical evaluation of ATP systems and
problems, within individual SPCs. The methodologies may be summarized as
follows. Initially a partial ordering of the systems is determined by subsumption:
a system that solves (with realistic resource limits) a strict superset of the prob-
lems solved by another system subsumes, and is better than, the other system.
The non-subsumed systems are designated rating contributors. If the number of
rating contributors is less than a threshold, then other high performing but sub-
sumed systems are also made rating contributors. (This use of subsumed rating
contributors improves the ratings produced, as is explained in [29]). A problem
is rated according to the fraction of rating contributors that fail to solve the
problem. Problems with a rating of 0.00 are easy, with a rating between 0.00
and 1.00 are difficult, and with a rating of 1.00 are unsolved. Finally, the ATP
systems are rated according to the fraction of difficult problems they can solve.

The TPTP results collection is used to rate the systems and the problems in
the TPTP. The change of a problem rating from unsolved to difficult captures
the point at which a problem is solved for the first time by an ATP system
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(according to the collected data), which is an indication of progress in ATP.
This is described in Section 3.4. Overall reductions in problem ratings over time
are also a measure of progress in ATP. This is described in Section 3.5.

Each year since 1996, an empirical evaluation of ATP systems has been per-
formed at CADE [25].3 The CADE ATP System Competition (CASC) evaluates
the performance of fully automatic ATP systems for classical 1st order logic. The
evaluation is in terms of the number of problems solved and the average runtime
for successful solutions, in the context of a bounded number of eligible problems
chosen from the TPTP, and a specified CPU time limit for each solution attempt.
The CPU time limit, and the memory in the computers used, are adequate for
the ATP systems to reach their PPPs. The CASC results can be influential with
regard to funding and other recognition for the ATP system developers. As a re-
sult, most of the decent contemporary ATP systems are entered, and the CASC
results provide a way to show relative progress of ATP systems over time. This
is described in Section 3.6.

3 Progress in ATP

To measure the progress in ATP, the performance of ATP systems has been
analyzed in two ways. First, the performance data in the TPTP results collection,
over a four year period, has been analyzed. The results analyzed are for TPTP
versions v2.0.0, released on 5th June 1997, v2.1.0, released on 17th December
1997, v2.2.0, released on 11th February 1999, v2.3.0, released on 16th November
1999, and v2.4.0, released in April 2001. Second, the performance of ATP systems
in CASC over a four year period has been analyzed. In all cases, as is explained
above, the analysis is in the context of individual SPCs.

3.1 SOTA System Performance, part I

To evaluate overall quality and progress in ATP, the individual ATP systems
tested on an SPC in a TPTP version are combined to form a state-of-the-art

(SOTA) system. For any problem, a SOTA system has the performance of the
best available individual system for the problem, i.e., the time taken by the
SOTA system to solve a problem is the minimum of the times taken by the
available individual systems. A SOTA system can really be built, by running
the individual systems in competition parallel, as done in the SSCPA system
[26]. A SOTA system’s performance is thus a realistic measure of the combined
quality of the ATP systems of the time. A comparison of the SOTA systems’
performances for an SPC in two TPTP versions provides evidence of progress
in ATP for that SPC. Note that the contributions of the individual systems to
a SOTA system are dependent on the problems being attempted, but like the
individual system performance curves, the performance curve of a SOTA system
has an exponential shape.

3 CADE, the Conference on Automated Deduction, is the major forum for the pre-
sentation of new research in automated deduction.
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An initial comparison of the SOTA systems for two TPTP versions can be
made by comparing their raw performance on problems that were in both TPTP
versions. Part I of Table 1 gives the results for TPTP versions v2.0.0 and v2.4.0.
For each SPC, the second column gives the number of problems in both TPTP
versions, the third and fourth columns give the number of problems solved and
the maximal time taken by the v2.0.0 SOTA system, and the fifth and sixth
columns give that information for the v2.4.0 SOTA system (the last column and
Part II give the results of the analysis described in Section 3.3). In most of the
SPCs there is significant increase in the number of problems solved between the
TPTP versions, indicating progress in ATP. Section 3.3 refines this analysis to
compensate for the small dependence on resources available.

Part I: SPC # v2.0.0 v2.4.0 HIF
SAT EPR CNF 17 14 1s 17 1s 1.00
SAT RFO NEQ CNF 45 26 1s 44 156s 1.00
SAT RFO EQU CNF NUE 17 10 4s 16 13s 1.07
SAT RFO EQU CNF UEQ 12 8 4s 11 15s 1.30
SAT EPR FOF 13 11 1s 13 1s 1.00
SAT RFO FOF 10 5 1s 10 4s 1.00
THM EPR CNF 304 301 11s 304 1s 1.02
THM RFO NEQ FOF 15 15 1s 15 1s 1.00
THM RFO EQU FOF 20 7 1s 19 9s 1.00
THM RFO NEQ CNF HRN 326 265 364s 289 225s 1.80
THM RFO NEQ CNF NHN 125 105 81s 113 124s 1.25
THM RFO SEQ CNF HRN 213 176 434s 197 165s 1.43
THM RFO SEQ CNF NHN 314 181 831s 221 204s 2.49
THM RFO PEQ CNF NUE 111 69 875s 97 129s 3.75
THM RFO PEQ CNF UEQ 357 309 329s 333 118s 1.59
THM EPR FOF 157 145 4s 157 292s 0.99
Part II: SPC # v2.4.0 ↓ v2.0.0 ↑ v2.0.0 requires
THM RFO NEQ CNF HRN 326 288 202s 267 405s 1938s 8.61
THM RFO NEQ CNF NHN 125 113 65s 107 155s 1848s 14.91
THM RFO SEQ CNF HRN 213 200 304s 174 236s 662011s 401.22
THM RFO SEQ CNF NHN 314 229 334s 178 507s 306675s 1503.31
THM RFO PEQ CNF NUE 111 99 233s 67 484s 1610855s 12487.25
THM RFO PEQ CNF UEQ 357 336 207s 307 187s 2244s 18.02
THM EPR FOF 157 155 4s 152 290s 6941s 23.77

Table 1. Performance and exponential curve analysis

3.2 Exponential Curve Fitting

The increase in the number of problems solved by SOTA systems, from one
TPTP version to another, may be extrapolated to resource limits beyond those
found in the performance data. This is achieved by fitting exponential curves of
the form f(x) = aebx to the SOTA systems’ performance curves. For the purpose
of demonstrating progress in ATP, it is important that the exponential curves
fit the performance curves most accurately at the higher solution numbers, as
these data points correspond to harder ATP problems.

Exponential curves have been fitted to the performance curves of the SOTA
systems for each of the SPCs in TPTP versions v2.0.0 and v2.4.0. For the SPCs
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above the dividing line in Part I of Table 1, there is insufficient data for mean-
ingful curve fitting and analysis. The performance and exponential curves for the
other seven SPCs are shown in Figure 3. The gaps between the steep parts of
the exponential curves are visual evidence of the progress in ATP in that period,
for those SPCs.

3.3 SOTA System Performance, part II

In the period between TPTP versions there may be hardware improvements
that would make even an unchanged system perform better. Such hardware im-
provements may undermine confidence in the conclusion drawn in Section 3.1.
However, hardware improvements can be taken into account, as follows. In order
to estimate the hardware improvement factor (HIF) between two TPTP ver-
sions, the times taken to solve those problems solved by both versions’ SOTA
systems are extracted. The geometric average of the ratios of the times is com-
puted, and used as an upper bound on the HIF. The computed HIF is an upper
bound because it assumes that all changes in the times taken are caused by
hardware improvements, while in reality some portion of the changes is caused
by improvements in the systems. The HIFs are shown in the last column of Part
I of Table 1. The HIF is used to scale the SOTA systems’ exponential curves,
and a comparison of the results then provides a lower bound on the progress
in ATP. First, an estimate of the number of problems the v2.4.0 system would
solve, if run on the v2.0.0 system’s hardware with a time limit of the maximal
time taken by the v2.0.0 system, is computed. To do this, the maximal time
taken by the v2.0.0 system is scaled down by the HIF, and the inverse of the
v2.4.0 system’s exponential curve is applied. The result can be compared to the
number of problems solved by the v2.0.0 system. Conversely, an estimate of the
number of problems the v2.0.0 system would solve, if run on the v2.4.0 system’s
hardware with a time limit of the maximal time taken by the v2.4.0 system, is
computed. The result can be compared to the number of problems solved by
the v2.4.0 system. Finally, an estimate of the CPU time required by the v2.0.0
system to solve the number of problems solved by the v2.4.0 system is com-
puted. The ratio of this time and the maximal time taken by the v2.4.0 system
is the required HIF for the v2.0.0 system to solve the same number of problems
as the v2.4.0 system, within the same maximal time. The required HIF can be
compared to the actual computed HIF and to reality.

This hardware sensitive analysis has been applied to the performance curves
shown in Figure 3, and the results are given in Part II of Table 1. The third and
fourth columns give the scaled down v2.0.0 maximal time and the estimated
number of problems that would be solved by the v2.4.0 system in this time.
These values can be compared with the figures directly above in Part I of the
table. The fifth and sixth columns give scaled up v2.4.0 maximal time and the
estimated number of problems that would be solved by the v2.0.0 system in this
time. The seventh and eight columns give CPU time and HIF required for the
v2.0.0 system to solve the same number of problems as the v2.4.0. The extra
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problems solved by the v2.4.0 systems is evidence of progress in ATP, in these
SPCs.

3.4 Problems Solved for the First Time

The first time solution of a problem that ATP systems had previously failed to
solve is an indication of progress at the leading edge of ATP, and indicates that
the solving system defines that part of the edge. This is particularly noticeable
when the problem is one that humans have an interest in, but have failed to solve,
e.g., EQP’s solution of the Robbins problem [15], and MGTP’s characterization
of quasigroups [4]. As is the case with humans, major breakthroughs are few and
far between. This is partly because it is hard to solve hard problems, and partly
because hard problems that ATP systems have solved have not been a focus of
human attention. It is therefore necessary to make a more senstive analysis of
first time solutions, as a measure of progress in ATP.

The first time solution of a TPTP problem is easily detected from the TPTP
problem ratings, which have been included in the TPTP since version v2.0.0.
When a problem rating changes from 1.00 (unsolved) to less than 1.00 (difficult),
the problem has been solved for the first time. Table 2 gives data about the first
time solution of problems that were unsolved when TPTP v2.0.0 was released.
The second column gives the number of such problems, and the subsequent
columns give the numbers of problems that were solved for the first time in
the periods between the TPTP versions. The numbers in Table 2 show regular
first time solution of problems, indicating regular progress at the leading edge of
ATP. Note that the first time solution of the problems becomes more impressive
as the TPTP version increases, because the “easier” problems have already been
solved. The analysis of Section 3.3 shows that hardware can account for only
some small fraction of the first solutions.

3.5 Decreasing Problem Ratings

While the change of a problem rating from 1.00 to less than 1.00 shows progress
at the leading edge of ATP, overall reductions in problem ratings show general
improvement of ATP systems. A problem’s rating decreases when a higher frac-
tion of the rating contributors, as described in Section 2.4, are able to solve the
problem. Either the number of rating contributors stays the same but a new
system that can solve the problem replaces a previous rating contributor, or the
number of rating contributors increases with a new system that can solve the
problem. In both cases the new system has improved the overall quality of the
available ATP systems, which is progress in ATP. Note that a subsumed system
cannot cause a rating change.

The average problem ratings have been computed for those problems that
have been in all the TPTP versions being considered. For some SPCs the prob-
lems that were in v2.0.0, and hence all subsequent versions, are almost all easy.
Thus there is no meaningful change in the average rating. For the SPCs that
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SPC 1.00 v2.0.0 v2.1.0 v2.2.0 v2.3.0
in ↓ ↓ ↓ ↓

v2.0.0 v2.1.0 v2.2.0 v2.3.0 v2.4.0
SAT EPR CNF 53 2 50 0 0
SAT RFO NEQ CNF 11 3 0 1 7
SAT RFO EQU CNF NUE 10 6 1 1 1
SAT RFO EQU CNF UEQ 11 7 1 1 1
SAT EPR FOF 0 0 0 0 0
SAT RFO FOF 1 0 0 0 1
THM EPR CNF 2 0 0 2 0
THM RFO NEQ CNF HRN 52 7 9 14 1
THM RFO NEQ CNF NHN 18 2 0 4 0
THM RFO SEQ CNF HRN 41 15 3 6 3
THM RFO SEQ CNF NHN 130 18 5 15 6
THM RFO PEQ CNF NUE 36 17 1 6 2
THM RFO PEQ CNF UEQ 54 16 1 18 0
THM EPR FOF 0 0 0 0 0
THM RFO NEQ FOF 0 0 0 0 0
THM RFO EQU FOF 1 0 0 1 0

Table 2. Numbers of problems solved for the first time

have some meaningful change in average rating, the change is shown as a func-
tion of time in Figure 4. There is a clear overall downward trend in the problem
ratings, which means that the systems are getting better, i.e., there is progress
in ATP. The most marked decrease is between TPTP versions 2.2.0 and v2.3.0.
The analysis of Section 3.3 shows that only a small part of the progress can be
attributed to hardware improvements.

In some SPCs there is an increased average rating between some TPTP
versions. This is caused by the introduction of new rating contributors that could
not solve problems that were solved by the existing rating contributors, and is
to be expected in the experimental environment of ATP system development.
Such fluctuations should thus not be interpreted as a deterioration of the state-
of-the-art.

3.6 CASC Fixed Points

CASC is organized into divisions, which correspond closely to the SPCs. The
divisions are MIX – mixed CNF real 1st order theorems (“mixed” means Horn and
non-Horn problems, with or without equality, but not unit equality problems),
UEQ – unit equality CNF real 1st order theorems, SAT – mixed CNF real 1st
order non-theorems, and FOF – mixed FOF theorems. A winner is announced
in each division of each CASC. For the last three CASCs (-16, -17, and -JC),
the CASC organizers have entered the previous CASC’s division winners into
their divisions. The previous winners provide fixed points against which the new
systems, using the same resources, can be judged.

Table 3 shows the performance of the previous CASC’s winners in CASCs-16,
-17, and -JC. With the exception of the SAT division of CASC-JC, the previous
winners have been beaten by one or more of the new systems. These results
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indicate that there is progress in ATP between each CASC. It may be claimed
that the different eligible and randomly selected problems of each CASC is the
cause of a new system beating the previous winner, but the consistency with
which previous winners are outperformed makes this claim most unlikely. Con-
versely, the addition of new problems to the TPTP each year, and the different
selection of problems used in the competition, means that the improvements in
the new systems cannot be attributed to simple tuning for the previous CASC’s
problems.

Division winner
Problems/Solved by winner/Previous winner (Place)

CASC-15 CASC-16 CASC-17 CASC-JC
MIX Gandalf c-1.1 Vampire 0.0 E 0.6 VampireJC 2.0/

E-SETHEO csp01
80/61/– 75/51/39 (4th) 75/57/37 (5th) 120/93/81 (4th)

UEQ Waldmeister 798 Waldmeister 799 Waldmeister 600 Waldmeister 601
30/30/– 30/30/19 (2nd) 30/30/29 (2nd) 90/69/69 (2nd)

SAT SPASS 0.95T OtterMACE 437 GandalfSat 1.0 GandalfSat 1.0
30/22/– 30/16/9 (3rd) 30/25/21 (4th) 90/48/48 (1st)

FOF SPASS 0.95T SPASS 1.00T VampireFOF 1.0 E-SETHEO csp01
40/39/– 30/22/19 (3rd) 60/53/51 (2nd) 90/75/72 (2nd)
Table 3. Performance of previous CASC division winners

4 Conclusion

This paper presents quantitative measures that show progress in ATP, from mid-
1997 to mid-2001. The measures are based on collected performance data from
ATP systems, and from the results of the CADE ATP System Competitions. The
performance data comes from testing ATP systems on TPTP problems, which
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are divided into 16 Specialist Problem Classes. The performance data has been
analyzed in five different ways, and for six of the SPCs the analyses consistently
indicate significant progress in ATP. The six SPCs are the THM RFO * CNF * SPCs
that represent the mainstream of ATP and ATP applications. There is also some
evidence of progress in the other SPCs. The comparisons of ATP systems based
on the CASC results similarly provide convincing evidence of progress in ATP,
especially in the mainstream divisions.

A concern that has been discussed in the ATP community, and that has
not been addressed in this paper, is that ATP systems are being tuned to get
better at solving TPTP problems, but are not really increasing in deductive
power. In one sense this concern may be viewed as somewhat self-contradictory;
tuning is a way of increasing the deductive power of a system, and tuning for the
TPTP is most likely to improve performance in the general sense. Anyway, an
initial investigation into this claim was made at CASC-JC, where some problems
previously unseen by the entrants were used. Table 4 shows, for each system,
the fractions of old (in the TPTP before the competition, and thus available for
system tuning), new, and all problems solved. Only VampireJC did not solve a
higher fraction of new problems than old or all problems, which may be expected
because VampireJC was explicitly tuned for the old TPTP problems that were
predicted to be eligible for the MIX division. CHECK THIS CLAIM WITH
ANDREI. The regular solution of new problems suggests that any tuning towards
the existing TPTP problems is effective in general. A more conclusive experiment
would be to run old and new versions of ATP systems on a larger set of unseen
problems, and compare their performances. It is expected that the new versions
would outperform the old versions, and this evidence would further support the
conclusion that there is progress in ATP.

The conclusion that ATP is making progress sends out messages to users,
researchers, and observers. Take heed . . .

– To users: ATP research is steadily producing more powerful systems that
can solve your problems.

– To researchers: The long hard effort is paying off.
– To funding bodies: Your money is being well spent, as support for ATP

research is producing real results.

System Old New All System Old New All
E-SETHEO 0.77 0.79 0.78 Gandalf 0.47 0.74 0.51
VampireJC 0.79 0.68 0.78 Otter 0.21 0.53 0.26
E 0.62 0.69 0.74 0.70 SCOTT 0.22 0.42 0.25
E 0.6 0.67 0.68 0.68 Bliksem 0.22 0.37 0.24
Vampire 0.62 0.68 0.63 DCTP 0.07 0.37 0.12
EP 0.60 0.63 0.61

Table 4. Fractions of old, new, and all problems solved, in the CASC-JC MIX division
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