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Abstract. Using semantics to guide automated theorem proving sys-
tems is an under-utilised technique. In linear deduction, semantic guid-
ance has received only limited attention. This research is developing se-
mantic guidance for linear deduction in the Model Elimination paradigm.
Search pruning, at the possible loss of some refutation completeness, and
search guidance, are being considered. This paper describes
PTTP+GLiDeS, a PTTP style prover augmented with a semantic prun-
ing mechanism, GLiDeS. PTTP+GLiDeS combines a modified version
of Stickel’s PTTP prover with the model generator MACE.

1 Introduction

Automated theorem proving (ATP) aims to use computer technology to solve
problems that require logical reasoning. Applications for ATP systems include
logic circuit design validation, software verification, mathematical and logical
research [18].

Resolution [9] was developed in 1965 and has formed the basis of much of the
research undertaken in the field since. Resolution uses ‘proof by contradiction’ in
its search for a proof. Assumptions (axioms) about the problem and the negated
conjecture are expressed in the clause normal form of first order logic. The naive
resolution approach takes the input clause set, Sy, and generates the set of all
possible resolvents, Ry. If the empty clause is a member of Ry, a contradiction
has been found and the problem solved. Otherwise, a new set S is created,
S1 = Sp U Ry, and the process continues. If set S, contains the empty clause, S,
forms the search space for a minimal length proof. A large search space means
the time taken to find a proof can be long. In order to find proofs quickly, both
the size of the search space and the path the prover takes through the search
space needs to be controlled in an intelligent manner.

To control the search of a resolution based system, ordering and pruning
strategies are used. Ordering strategies control the order in which resolvents are
generated by giving preference to certain clauses and literals. Pruning strategies
prevent certain combinations of clauses and also discard clauses, preventing them
from taking any further part in the deduction. While ordering strategies attempt
to guide the search along paths that may be more likely to produce the empty
clause, pruning strategies reduce the search space.



Search control may utilise syntactic or semantic methods. Syntactic meth-
ods use some physical feature of the clauses to determine which clauses will be
resolved together and on which literals. Semantic methods use interpretations
to give information about the clauses. This information is then used in choosing
the clauses and literals to resolve. Semantic methods have the potential to per-
form much better than syntactic ones [16]. Semantic search control for forward
chaining resolution strategies has been in use for some time. Set of support (SoS)
[17], model resolution [6], and semantic resolution [10] are all forward chaining
resolution strategies. Two systems that employ semantic guidance are CLIN-S
[2] and SCOTT [11]. SCOTT is a resolution based prover that uses an interpret-
ation to weight clauses and thus give preference to those clauses that are FALSE
in the interpretation. CLIN-S is an instantiation based prover, and uses an in-
terpretation to guide the generation of ground clauses, which are then examined
for unsatisfiablity.

Incorporating semantic methods into backward chaining resolution strategies
is not as easy as for forward chaining ones. Semantic guidance for linear-input
resolution is well understood [1], as described in Section 3. This research aims
to incorporate semantic guidance into general linear resolution [5, 7], primarily
considering pruning strategies.

The next section contains a brief explanation of the Model Elimination (ME)
paradigm and introduces some terminology. Section 3 describes the architecture
of PTTP+GLiDeS and explains the way in which semantic guidance has been
incorporated into the ME based system. Implementation and performance are
discussed in Sections 4 and b respectively. Further enhancements are being ex-
plored and these are outlined in Section 6.

2 Model Elimination

ME is a chain format linear resolution procedure for first order logic, first pro-
posed in [4]. A chain is an ordered list of A- and B-literals, with the disjunction
between the literals being implicit. Chains generated from the input clauses are
called input chains and are composed entirely of B-literals. The chains that form
the linear path in the refutation are called the centre chains. The input chains
that are resolved with the centre chains are called the side chains. A-literals
are those literals in a centre chain that have been resolved upon. A-literals are
indicated by a frame, e.g., @ The first centre chain is called the top chain. One
of the input chains is chosen to be the top chain; a chain generated from the
negated conjecture is the usual choice. All input chains are potential side chains.

In ME there are two deduction operations, extension and reduction, and one
book-keeping operation, truncation. The extension operation is a binary resolu-
tion between a centre chain and a side chain. The resolution takes place between
the rightmost B-literal in the centre chain and a complimentary (after unifica-
tion) B-literal in the side chain. The B-literal in the centre chain then becomes
an A-literal, and the B-literal in the side chain is removed. The remaining B-
literals in the side chain are added to the right of the newly created A-literal in



the centre chain. A reduction operation is a unification between the rightmost
B-literal in the centre chain and an A-literal. The new centre chain is formed by
removing the B-literal. Reduction implements ancestor resolution and factoring.
Truncation is the removal of A-literals from the right-hand end of a centre chain.
See Figure 1 for an example of an ME refutation.
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Fig. 1. An ME refutation of the set { p V q, p V ~q, ~p V q, ~p V ~q }

One method of implementing ME is using the Prolog Technology Theorem
Prover (PTTP) [12] principle. The idea here is to have the theorem prover rewrite
the input clause set into Prolog procedures that implement ME deduction for
the clauses. The procedures are then compiled and executed on a Prolog engine
(see Figure 2). Prolog is based on linear-input deduction for Horn clauses and
has an incomplete search strategy and unsound unification algorithm. A PTTP
style system overcomes these issues by using a bounded depth first search and
unification with an occurs check.
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Fig. 2. Architecture of PTTP-based ATP systems

3 Architecture

The PTTP+GLi1DeS semantic pruning strategy is based upon the strategy that
can be imposed on linear-input deductions, as follows: If there exists a linear-
input refutation, the last centre clause is the empty clause. The empty clause has
the interpretation of FALSE in every interpretation. A FALSE resolvent must
have one or more FALSE parents. If there is a model M of the side clauses,
then this implies that the second last centre clause must be FALSE in M| and
so on up to the top clause. So, if the side clauses are known and a model of
them, M, can be found, then any centre clause that is TRUE in M can be
rejected. A simple possibility is to choose a negative top clause from a set of Horn
clauses, in which case the non-negative clauses are the potential side clauses.
More sensitive analysis is also possible [3, 14]. Linear-input resolution is complete
for Horn clauses only.

Unfortunately, the extension of the linear-input semantic pruning strategy to
linear deduction is not direct. For the non-Horn case, ancestor resolution is re-
quired for refutation-completeness. The possibility of ancestor resolutions means
that centre clauses may be TRUE in a model of the side clauses. Investigation of
how to allow for centre clauses that are TRUE in the model of the side clauses
is a focus of this research.

In PTTP+GLiDeS, rather than placing a constraint on entire centre clauses,
a semantic constraint is placed on selected literals of the centre clauses as follows:
The input clauses other than the chosen top clause of a linear deduction are
named the model clauses. In a completed linear refutation, all centre clause
literals that have resolved against input clause literals are required to be FALSE
in a model of the model clauses. TRUE centre clause literals must be resolved
against ancestor clause literals. This leads to a semantic pruning strategy for
ME deductions that at every stage requires all A-literals in the deduction so far
to be FALSE in a model of the model clauses. The result is that only FALSE
B-literals are extended upon, and TRUE B-literals must reduce.



The completeness of the PTTP+GLiDeS semantic pruning strategy has not
vet been investigated. It is certainly possible that it is an incomplete strategy.
However, the results shown in Section 5 suggest that there is not a ‘large loss of
completeness’, while the benefits are significant.

Figure 3 shows the architecture of the PTTP+GLiDeS system.
PTTP+GLiDeS uses a Prolog technology theorem prover to compile the input
clauses into Prolog code, which is then run on a Prolog engine. An interpretation
generator takes the model clauses from the input clause set and generates an
interpretation which 1s also given to the Prolog engine. The Prolog code uses the
interpretation to implement the semantic guidance.
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Fig. 3. Architecture of the PTTP+GLiDeS system.

4 Implementation

PTTP+GLiDeS consists of modified versions of PTTP (Prolog version 2e) [13]
and MACE (v1.3.2) [8], combined by a csh script. PTTP4+GLiDeS takes prob-
lems in TPTP [15] format as input. The tptp2X utility is used to transform
the input problem to PTTP and MACE formats. The transformation to PTTP
format selects the first conjecture clause as the top chain for the linear deduction.

A perl script is used to remove the first conjecture clause from the MACE
format file, and MACE is called to generate a model of the remaining clauses.
MACE is capable of generating many models, but in this experiment the first
model generated is used. If MACE is unable to generate a model then
PTTP+GLiDeS terminates. Otherwise MACE outputs its model in the form
of Prolog facts, e.g.,

eval(functor,a,0).



eval(predicate,p(0,0),true).
The modified PTTP is then started.

The modified PTTP produces Prolog procedures that i) maintain a list of all
A-literals that have been produced in the deduction so far, and ii) call a semantic
checking procedure after each extension and reduction operation. The facts pro-
duced by MACE are used to interpret the A-literals. If the semantic checking
procedure finds an A-literal that is TRUE then the extension or reduction is
rejected.

5 Performance

Testing has been carried out using 541 “difficult, unbiased” problems from the
TPTP library v2.1.0. The testing was done on a SUN sparc20, with a CPU time
limit of 600 seconds. Table 1 gives an overall summary of the results.

Total number of problems: 541

Number of models generated: 260

Number of problems solved from 260: PTTP PTTP+GLiDeS
68 54

Number of useful models generated: 144
Number of problems solved from 144: PTTP PTTP+GLiDeS
21 19

Table 1. Summary of experimental data.

For PTTP+GLiDeS, MACE produced models for only 260 of the 541 prob-
lems, and thus PTTP+GLiDeS could attempt only those problems. Of the
260 problems for which models were generated, plain PTTP solved 68 and
PTTP+GLiDeS solved 54. Altogether, there were 69 problems that had models
generated and were solved by either system. Of the 260 models, only 144 proved
to be useful in that they provided guidance that pruned the search space of
PTTP+GLiDeS. Of these 144 problems, PTTP solved 21 and PTTP+GLiDeS
solved 19. In total, there were 22 problems that had useful models generated
and were solved by either system.

For the 22 problems solved, Table 2 shows the CPU times taken, the num-
ber of inferences made, and the number of inferences rejected during the search.
The “CPU time” column for PTTP+GLiDeS includes the time taked for pre-
processing the MACE input file to exclude the choosen top clause leaving only
the model clauses, model generation and output time, writing of the Prolog pro-
cedures, and the Prolog search time. For PTTP, the CPU time includes the time
for writing the Prolog procedures, and the Prolog search time. The “Inferences”
columns give the total number of extension and reduction operations performed
during the search for a solution. The “Rejected Inferences” are the numbers of
inference operations that were rejected by the semantic pruning routine. The



“Inference Ratio” shows the number of inferences made by PTTP+GLiDeS rel-
ative to PTTP.

The number of inferences made during the search gives an indication of the
search space being covered during the search. A smaller inference count on the
same problem does not necessarily indicate that the proof itself was any smaller.
Instead, it shows that less of the search space was covered before the proof was
found.

Table 2. Results for problems where semantic guidance rejected some inferences

Problem PTTP PTTP+GLiDeS Inference
CPU time Inferences|CPU time Inferences Rejected| Ratio
(sec) (sec) Inferences

B00004-1 11.0 10515 19.5 9355 365 0.89
B0O0012-1 392.8 1579178 TIMEOUT

CAT001-4 108.5 427522 549.0 376020 37716 0.89
CAT002-4 23.9 84480 87.6 80428 5220 0.95
CAT003-3 TIMEOUT 230.2 217996 34840

CAT003-4 8.6 11077 16.7 10816 585 0.98
CAT012-3 84.5 175367 49.1 49150 4124 0.28
CATO018-1 73.0 226900 343.2 183518 19806 0.81
GRP012-3 362.8 1282139 TIMEOUT

HEN003-3 17.2 47136 50.5 44322 1093 0.94
HEN0O08-1 17.7 72068 65.9 69959 803 0.97
HEN008-3 7.7 11524 17.7 10905 308 0.95
HENO12-3 25.2 85312 101.1 80481 1857 0.94
PUZ032-1 15.4 26947 19.8 18629 4427 0.69
RNG0O02-1 13.7 27867 36.9 27313 756 0.98
RNG003-1 14.3 31150 38.0 23867 1412 0.77
RNG040-1 9.0 563 11.9 533 67 0.95
RNGO41-1 11.1 8826 16.8 4859 824 0.55
ROBO16-1 8.0 4546 22.8 3738 92 0.82
SET008-1 7.4 276 9.2 370 56 1.34
SYNO71-1 411.8 832600 53.3 84908 27653 0.10
SYN310-1 438.0 1476442 TIMEOUT

Average 87.25 254354.80 91.54 71545.11 7868.83 0.82

PTTP+GLiDeS solved one problem, CAT003-3, that PTTP failed to solve,
but timed out on three that PTTP did solve. In all but one case PTTP4+GLiDeS
took less inferences than PTTP, and in many cases significantly less. The times
taken by PTTP+GLiDeS are higher than for PTTP in most cases. Two inter-
esting cases to note are CAT012-3 and SYNO71-1. These are non-Horn problems,
and have the best reduction in inference counts and less CPU time than PTTP.
Of the 22 problems, 7 are non-Horn and it is in these cases that PTTP+GLiDeS
performs best on average for CPU time and inference counts, as shown in Table 3.



Table 3. Results for non-Horn problems

Problem PTTP PTTP+GLiDeS Inference
CPU time Inferences|CPU time Inferences Rejected| Ratio

(sec) (sec) Inferences

CAT003-3 TIMEOUT 230.2 217996 34840

CAT012-3 84.5 175367 49.1 49150 4124 0.28

PUZ032-1 15.4 26947 19.8 18629 4427 0.69

RNG040-1 9.0 563 11.9 533 67 0.95

RNGO41-1 11.1 8826 16.8 4859 824 0.55

SET008-1 7.4 276 9.2 370 56 1.34

SYNO71-1 411.8 832600 53.3 84908 27653 0.10

Average 89.87 174097 55.76 53778 10284 0.65

There were 15 problems out of the group of 260 problems that were solved by
PTTP and not PTTP+4+GLiDeS. Of these, 12 were Horn problems that had mod-
els generated where the positive literals were TRUE, i.e., the models were trivial.
PTTP+GLiDeS performed badly on these 12 problems as semantic checking was
done when it was not going to have any effect on the search for a solution other
than to slow its progress. It is a simple matter to check for this situation and
omit the semantic guidance. Future implementations of PTTP4+GLiDeS will
have this feature. Of course, a better solution is to not generate trivial models
in the first place. MACE is capable of producing many models for a given set
of model clauses. In this experiment, the first model generated was used for the
interpretation. A better approach may be to generate more than one model and
select the ‘best’ one for use, or at least select a non-trivial model, as discussed
in Section 7.

6 Using Multiple Models

Work is currently under way on two different multiple model versions of
PTTP+GLiDeS. Version 1 generates several different models for a problem and
perform the semantic checking using all models, 1.e., the A-literals must be ac-
ceptable to all models before an inference operation is accepted. By using more
than one model it is hoped that greater pruning will be achieved. Preliminary
testing has shown that while some extra pruning is achieved, the time taken
to perform the semantic checking 1s greatly increased. For this approach to be
practical a much more efficient implementation of the semantic checking routine
needs to be written.

Version 2 runs PTTP+4+GLiDeS in parallel with different models; the first
one to find a solution kills the others. It has been observed that in some cases
one model results in a timeout and another produces a solution for the same
problem. By running in parallel with different models, it is hoped that one of
the models will be a ‘good” model and produce a solution. It may also assist in
overcoming any incompleteness problems.



Table 4 shows data for PTTP+GLiDeS using the different multiple model
versions and the data for PTTP. The models were hand coded rather than gener-
ated by MACE. The parallel approach of version 2 was simulated - PTTP4+GLiDeS
was run with each of the eight different models, then the best time was selected
and multiplied by eight. The number of inferences was also multiplied by eight,
but the rejected inferences count was not.

Table 4. Results for PT'TP and multiple model versions of PTTP+GLiDeS

PTTP 8 Models 8 Models
Problem Version 1 Version 2
CPU Inferences| CPU Inferences Rej.| CPU Inferences Rej.
time time Inf.| time Inf.
(sec) (sec) (sec)
LCLOO7-1| 3.7 3| 4.3 3 0] 34.4 24 0
LCLO10-1| 4.5 1349(672.4 1321 11|374.4 10584 7
LCL118-1| 4.7 1897(532.9 1392 64|327.2 11136 64

Version 1 can produce greater pruning than using a single model. However,
this is at the cost of greatly increase CPU time, greater than for version 2 where
the best CPU time was multiplied by 8.

Version 2 is of no benefit when all models result in solutions being found, as
in the problems shown in Table 4. Its usefulness is more apparent in cases where
one of the models does not produce a solution but another does. In such a case,
version 1 would timeout but version 2 would not.

7 Conclusion

The preliminary experiments are encouraging. In the cases where both PTTP
and PTTP+4+GLiDeS find a solution, PTTP+GLiDeS makes fewer inferences
on average. This indicates that the semantic guidance is successfully pruning
the search space. A side effect of the pruning may be a loss of refutation com-
pleteness. Further work needs to be done to assess the extent of this. The time
taken by PTTP+GLiDeS is greater than PTTP in the majority of cases where
both systems find a solution. It may be possible to improve the time taken by
PTTP+GLiDeS by making the semantic checking code more efficient.

Currently the tptp2X utility chooses the first conjecture clause in the problem
as the top centre chain for PTTP. The failure to generate models in some cases
is due to this unintelligent selection of the top chain. The performance of both
PTTP and PTTP+GLiDeS are likely to be improved if this selection is done
more intelligently. In particular, it is hoped that MACE will be able to produce
models for many more problems, hence giving PTTP+GLiDeS an opportunity
to attempt more problems.



Trivial model generation is another problem that needs to be overcome. It
is possible to examine the model generated by MACE and determine if it is
unlikely to be of use, as in the case of a trivial model, and reject it. It would
be preferable to prevent generation of such a model in the first place. Further
examination of this issue is needed.

Using multiple models should enable PTTP+GLiDeS to achieve greater prun-
ing of the search space. Preliminary results show that this is the case but the
increase in CPU time is currently too high.
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