A Framework for Building Parallel ATPs

Geoff Sutcliffe and Kalvinder Singh

James Cook University

1 Introduction

Automated Theorem Proving (ATP) systems attempt to prove proposed theorems from given
sets of axioms. The one major problem with ATP systems is that proving difficult theorems
requires searching extremely large search spaces. This makes the use of ATP systems imprac-
tical in most situations, due to the too high resource requirements. Parallel ATP systems,
such as ROO, PARROT, HPDS, METEOR, RCTHEQO, and SPTHEO, have tackled this
problem by harnessing more computing power and using proof-search strategies that have no
obvious corresponding sequential strategies. Parallel ATP systems are successful in that they
are often many times more effective (in terms of resource requirements) than sequential ATP
systems. Most parallel ATP systems show good to very good processor utilization, when
compared to other parallel and distributed applications.

Parallel ATP systems are often based on existing sequential ATP systems. For example,
ROO is based on OTTER, and SPTHEQ is based on SETHEQ. This approach allows the
sophistication of the underlying sequential ATP systems to be inherited by the parallel ATP
systems. The underlying sequential ATP systems have inevitably been designed and written
to run on workstations, and the corresponding parallel ATP systems are designed to (or are
capable of) run on networks of such workstations. Further, some parallel ATP systems, e.g.
RCTHEOQ, have been explicitly designed to run on networks of workstations. These types of
parallel ATP systems exploit a coarse-grain approach to parallelism. A primary benefit of
this parallelization strategy is the ready availability of the 'parallel hardware’.

Considering that parallel ATP systems improve the efficacy of theorem proving and that
coarse grained parallel hardware is readily available in the form of workstation networks, par-
allel ATP systems are not as widely developed and used as they could be. This is presumably
because parallel ATP systems are significantly harder to design, implement, and use.

o At the design level, an appropriate (in senses such as completeness, fairness, etc) par-
allel ATP algorithm has to be developed, which in itself is a difficult task. Issues of
intercomponent communication and synchronization have to be addressed. It can be
the case that the design will be the work of a logician (as opposed to a computer sci-
entist) who does not have the requisite skills to translate the design into a operational
parallel ATP system.

e At the implementation level, the implementor often has to cope with low level com-
munication primitives. Such primitives may or may not work harmoniously with the
implementation language. The implementation will often capture the system configura-
tion in code, and reconfiguration requires significant effort. As a result experimentation
with different designs is limited.

e At the user level, it is hard to monitor and interact with the execution of a parallel
ATP system. A technical reason for this is that the component processes often do not
have user I/O streams. A more human reason is that parallel ATP systems are often
designed and implemented by computer scientists for computer scientists, and the user
interface is cryptic.

The need is for a framework within which parallel ATP system designs can easily be trans-
lated into working systems. The framework must allow existing sequential ATP systems to

be combined with little or no modification. Interprocess communication and synchronization
must be simple, and implemented in terms of well known programming constructs. The
framework must provide an easy to use interface to allow the user (who may be only semi-
computer literate) to monitor and control all aspects of the parallel system. The X-windows
Parallel ATP (XPATP) framework meets these requirements.

XPATP is a graphical user interface for building parallel ATP systems out of compo-
nent sequential ATP systems, to run on networks of machines connected on the InterNet.
This particular type of Parallel ATP system is called a PATP system, and the component
sequential ATP systems are called PATP components. Intercomponent communication and
synchronization is implemented in terms of the standard input and output streams of each
PATP component, so that this facet is easily codable in the PATP components. The user
interacts with XPATP using a point-and-click mouse interface, so very little keyboard inter-
action is required. The interface makes it easy to specify the PATP system’s architecture, in
terms of the PATP components and the required communication links. The user is able to
monitor and control the execution of the PATP system in terms of the PATP components
and the communication links.

2 The Basics

(@] XPATP =]
File ATP| TPTP| |GRPO01-1| Process Control| Communication Control| |
otter_hyper otter_UR
coral «—— URResolvants Control| «— | daydream
Control| Ports| Control| Ports|

Demodulators Control URResolvants Control|

Demodulators Cuntmll
setheo

Max:hinel
Control Purtsl

Figure 1: An Example XPATP Window

The execution of XPATP will cause a window to appear on the screen. Figure 1 shows a
sample window. The window has two sections, the menu bar and the work area. The menu
bar has five menus and a display area. Their uses are described in Sections 3 and 5. The
work area is used to display the configuration of the PATP system. FEach PATP component
is represented by an ATP frame, in which the component name and host machine name
are given. Fach ATP frame also has two menus, one for controlling the execution of the
component and one that lists the output ports of that component. Each output port can
be attached to multiple simplex communication links that lead to other PATP components.
Any data or control messages written to an output port are placed onto all the associated
communication links. The communication links are represented in the work area by link lines
between the corresponding ATP frames. Link lines have arrow heads indicating the direction
of flow, and are broken by link frames. Each link frames contains the name of the output
port from which the communication link receives messages, and a menu for controlling the
communication link.

3 Configuration

The available PATP components and host machines are specified by the user, in configuration

files.

The XPATPComponents file lists the available PATP components, using the syntax
<ATP Name>:<Command>:<0utput port name>,...,<0Output port name>. For exam-

ple,

otter_hyper: “geoff\ATPSystems\otter <Js.hyper_in:Demodulators
otter_UR: "geoff\ATPSystems\otter <Js.ur_in:URResolvants,Demodulators
setheo: “geoff\ATPSystems\setheo %s:Lemmas

The <ATP Name>> field contains the name of the PATP component. The <Command> field
is the command line instruction that invokes the PATP component. This field can contain %s
parts. Before the command line is executed, each occurrence of a %s is replaced by the user
specified string (typically the name of the input file containing the theorem to be proved) in
the menu display area. The <Output port name>> field lists the output ports of that PATP
component.

The XPATPMachines file lists the names of the machines that XPATP can use, using the
syntax <Machine Name>:<InterNet Name>. For example,

coral:coral.cs.jcu.edu.au
daydream:daydream.cs.jcu.edu.au
sailfish:sailfish.jcu.edu.au

Configuration of a PATP system is done interactively using the menus and the work area.
Initially the work area is empty. PATP components are selected from the ATP menu, which
lists the PATP components given in the XPATPComponents file. The selection of a PATP
component from the menu causes a movable ATP frame to appear in the work area. The
frame’s Machine menu button is used to select what machine the component is to execute
on. The Machine menu lists the machines given in the XPATPMachines file.

A communication link between two PATP components is formed by selecting an output
port from the Ports menu of the source component’s ATP frame, and dragging to the
destination component’s ATP frame. The Ports menu lists the output ports specified for
that PATP component in the XPATPComponents file.

The File menu contains options to save and load configurations, allowing configured
PATP systems to be reused.

4 Execution of a PATP System

To specify the theorem to be attempted by a configured PATP system, the display area in
the menu bar needs to contain a value. This value is used to replace %s parts of the command
lines supplied in the XPATPComponents file. The value may be obtained using the TPTP
menu, which allows the user to browse the TPTP Problem Library (if available, which it
should be!) for a theorem to attempt. Otherwise, the display area can be entered manually.

When all is ready, the PATP system is executed by selecting the Start option in the
Process Control menu. This causes all the PATP components to be executed on the spec-
ified machines, by executing the specified command lines (after replacement of %s parts).
The PATP components execute as normal, with the exception of their standard output.
XPATP filters the stdout streams of the PATP components for lines with the formats
:1:<Port>:<Message> and :::<Port>!<Message>. Such output lines are used to im-
plement intercomponent communication and synchronization. Data messages, of the form
11 :<Port>:<Message>, are copied onto all the communication links connected to the
<Port>. Control messages, of the form :::<Port>!<Message>>, are intercepted and inter-
preted by XPATP. The possible values for <Message> in control messages are start, kill,
suspend, resume, and interrupt(N). The effect of these messages on the recipient compo-
nents is described in Section 5. As well as the output ports listed in the XPATPComponents
file, there are two special <Port> values, all and self, which can be used by an XPATP
component. If the <Port> value is all then the <Message> is destined for all output ports
of the PATP component. If the <Port> value is self then the <Message> is destined for
the sending PATP component itself.

Any standard output lines that are not filtered out are put in a stdout window for that
ATP frame, as described in Section 6.

5 System Control

As indicated in Section 4, overall control of a PATP system is exercised through the Pro-
cess Control menu. The process control options are Start, Stop, Suspend, Resume,
Interrupt(N), View, and Remove. These menu options are duplicated at the individual
component level in the Control menus of the ATP frames, and are also used in intercom-
ponent control messages as described in Section 4. The effects of the process control options
are:

e Start: Start the PATP components(s), on the specified machine(s), by executing the
command line specified.

o Stop: Stop the PATP components(s). This kills the ATP component’(s’) process(es).

e Suspend: Suspend the PATP components(s). If a component is already suspended then
this has no effect.

¢ Resume: Resume execution of the suspended PATP components(s). If a component is
not suspended then this has no effect.

o Interrupt(N): Send interrupt number N to the PATP components(s). The Stop option
is implemented in terms of this option, with N = 9.

e View: Creates a display window(s) containing the genuine standard output from the
PATP component(s).

e Remove: Removes the PATP component(s) from the PATP system. Any communica-
tion links attached to the PATP component(s) are also removed.

In combination with the special <Port> values, control messages facilitate neat control of
PATP components. For example, if one PATP component needs to synchronize with another,
it can send a suspend control message to itself, and the second PATP component sends a
resume message when it is ready.

Overall control of the communication links is exercised through the Communication
Control menu. The communication control options are Clear, Suspend, Resume, View,
and Remove. These menu options are duplicated at the individual link level in the Control
menus of the link frames. The effects of the control options are:

o Clear: Remove all messages from the communication link(s).

e Suspend: Stop placing messages on the communication link(s). Messages written to
the output port(s) are buffered.

e Resume: Resume placing messages on the communication link(s). Any buffered mes-
sages are placed on the communication link(s) first.

o View: Creates a display window(s) containing messages on the communication link(s).

e Remove: Removes the communication link(s) from the PATP system. Any messages
on the communication link(s) are discarded.

6 System Monitoring

All genuine standard output from PATP components and all intercomponent messages can be
monitored in separate display windows. Genuine standard output from PATP components is
viewed in scrollable stdout windows. Intercomponent messages are viewed in scrollable mes-
sage windows. All windows are accessed through the View option in the Control menus of
the ATP frames and link frames, or from the main Process Control and Communication
Control menus.

Control of display windows is exercised through the option bar at the top of the window.
The options are Quit, Pause, Add, and Delete. The effects of the control options are:

o Pause: Stops the display of any new output. To resume the display of output click on
the pause option again.

o Add: Add a user specified message to the communication link. This option only appears
in message windows.

o Delete: Remove an indicated message from the communication link. This option only
appears in message windows.

e Quit: Removes the window from the screen.

7 Conclusion

XPATP is being implemented in tcl/tk. Tcl/tk is a simple scripting language which is freely
distributed from a number of sites around the world. The language is specifically designed
to build user interfaces. XPATP fully utilises the facilities of tcl/tk, to make an easy to use
interface for designing and implementing PATP systems.

