

PROLOG-LINDA :
AN EMBEDDING OF LINDA IN muPROLOG

GEOFF SUTCLIFFE
Department of Computer Science,The University of Western Australia,

Nedlands, 6009, Western Australia

and

JAMES PINAKIS
Department of Computer Science,The University of Western Australia,

Nedlands, 6009, Western Australia

ABSTRACT
This paper presents an embedding of the Linda parallel programming paradigm in Prolog. A
mono-processor and a multi-processor implementation are described. Both implementations
provide coarse grain parallelism to Prolog. The embedding of Linda in Prolog extends
Linda's standard tuple space operations, permitting unification and Prolog style deduction in
the tuple space. Examples of the added capabilities introduced by a deductive tuple space, as
well as example applications of Prolog-Linda as a whole, are given.

1 Introduction

The Linda programming paradigm [1] developed by David Gelernter has recently attracted much interest
as a method of enabling communication between, and synchronization of, parallel processes. A recent
paper [2] compared this paradigm with other approaches to parallelism, specifically with the concurrent
logic programming language Parlog86 [3]. Subsequent discussion [4] compared Linda with the FCP
family of languages [5]. In Gelernter's reply to this discussion, he noted that "a Linda based parallel
Prolog is a potentially more elegant, expressive and efficient alternative to the concurrent logic
programming languages."

This paper presents an embedding of the Linda paradigm in Prolog, called Prolog-Linda. Prolog-Linda
extends the standard tuple space operations, permitting unification and Prolog style deduction in the tuple
space. Two implementations of Prolog-Linda are described, the first on a single processor, the second on
a network of processors connected via an Ethernet. The parallelism introduced by these implementations
is very coarse, in that each process is a seperate Prolog interpreter. Some applications of this parallelism
are discussed.

The reader is presumed to be familiar with Prolog.

2 The Linda paradigm

Linda is a programming framework of language-independent operators. These operators may be injected
into the syntax of existing programming languages, such as C [6], Modula-II [7], LISP [8] and Joyce [9],
resulting in new parallel programming languages. Linda permits cooperation between parallel processes
by controlling access to a shared data structure called the tuple space. The tuple space contains ordered
collections of data called tuples. Manipulation of the tuple space is only possible using the set of Linda
operators.

2.1 Tuples
Tuples are collections of fields, of any arity. Every field has a data type drawn from the host language.
The type of a tuple is the cross product of the types of its fields. A field can be a formal field or an actual
field. A formal field has a type but no value, and can be thought of as a variable that has not been
assigned a value. The type of a formal field is the type of the variable. A formal field is specified by the
variable name preceded by a ?. An actual field has both a type and a value. The type of an actual field is
the type of its value. Example : if s1 is a variable of type string containing the value "hello", and
f1 is a variable of type float, then (s1,9,?f1) is a tuple of arity 3. The first two fields are actual
fields, the first being of type string with value "hello", the second being of type integer with
value 9. The third field is a formal field of type float. The type of the tuple is
string _ integer _ float.

The tuple space contains any number of tuples, and identical tuples may exist in the tuple space.
Processes communicate by inserting, removing and examining tuples in the tuple space. Thus the tuple
space is a shared data object. All processes having access to a tuple space have access to all tuples in it.

2.2 Operations on tuples

The out operator inserts a tuple into the tuple space. Following the example above, out(s1,9,?f1)
inserts the tuple ("hello",9,?f1) into the tuple space.

The in operator removes a tuple from the tuple space. Its argument is a template to match tuples against.
A template matches a tuple if all corresponding fields match. Two actual fields match if they have the
same type and value. A formal field and an actual field match if they have the same type. Two formal
fields cannot match. If a match for a template is found, the matched tuple is removed from the tuple space
and formal fields in the template are given the values of the corresponding actual fields in the tuple. For
example, if i1 is an integer variable, the operation in("hello",?i1,27.0) could remove the
previously inserted tuple from the tuple space. In addition to removing the tuple, the value 9 would be
assigned to the variable i1. If more than one tuple matches a template, only one is chosen. If no matching
tuple can be found in tuple space, in will block and wait for a matching tuple to be inserted by an out
operation.

The rd operation (pronounced read) is similar to in, but leaves the matched tuple in the tuple space. rd
is used for its binding and synchronization side-effects.

Two related operators are inp and rdp. These perform tasks equivalent to in and rd but are non-
blocking. Instead they return a boolean value which indicates the success of the operation. Recent
research [10] argues against the use of these operators.

2.3 Process creation

The final operation provided by Linda is the eval operation. The eval operation is syntactically similar
to out except that a new process is created to evaluate each of the fields in the tuple. When the
evaluation of all fields has terminated, the tuple becomes an ordinary tuple in the tuple space. For
example, let sqrt be the square root function. The operation eval("hello",sqrt(81),?f1) will
create a new process to evaluate each of the fields. The first and last fields evaluate trivially, but the
second process will continue to execute in parallel with others. When the process finally terminates, the
tuple ("hello",9,?f1) will appear in the tuple space and can be manipulated in the usual ways.
While the sqrt process is executing the tuple is unavailable.

3 Prolog-Linda

Prolog-Linda implements the Linda tuple space as a collection of Prolog clauses in the Prolog database.
Both Prolog rules and facts can exist in the tuple space. The effect of rules in the tuple space is discussed
in section 5. Facts correspond almost directly to standard Linda tuples. The necessity of a predicate
symbol in a fact is analogous to requiring that the first field of a tuple be an actual field with a string
literal value, as enforced by some Linda implementations [10] (This requirement does not reduce the
generality of the system). Formals in tuples are implemented by unbound variables. As data in Prolog is
untyped (everything is a term) the data in Prolog-Linda's tuples is untyped.

Tuples are added to and removed from the tuple space using Prolog's database operations, assertz and
retract. Tuple space interrogation is implemented simply, by using Prolog's query mechanism. The
tuple matching method is thus generalised to Prolog's unification. As a consequence of this formals can
match and be extracted from the tuple space. Prolog-Linda's eval operation differs from that of the
original Linda paradigm. An eval operation is used to start a new Prolog environment containing
specified clauses and evaluating a specified Prolog query. The evaluation of the query may of course
cause a tuple to be inserted in the tuple space. This form of eval is more general than the original, and
can implement the orginal.

4 Implementation

Prolog-Linda has been implemented in muProlog [11] under the UNIX operating system. muProlog
provides ways of performing UNIX system calls. These are used to perform process creation and inter-
process communication. For the multi-processor implementation, two new UNIX system calls had to be
added to muProlog to facilitate inter-machine process creation and communication. The multi-processor
implementation runs on a network of Sun SPARC station-1s running SunOS 4.0.3, and connected via an
Ethernet. This provides access to a shared file system via Sun's Network File System [12].

In Prolog-Linda the tuple space and associated operations are implemented in a server process. Linda
operations in client processes are translated into requests which are passed to the server. The requests are
serviced by evaluating them as Prolog queries in the server. Requests for tuple space operations are
simply queries on Prolog procedures which implement those operations. The use of Prolog evaluation to
service requests is a general mechanism, and allows any query to be passed to the server for evaluation.
For example, clients indicate their termination using this mechanism.

4.1 The mono-processor implementation : Prolog-1-Linda

In Prolog-1-Linda, requests for tuple space operations from all clients are passed directly to the server on
a single UNIX pipe, the request pipe. Each client process has a reply pipe on which results of its requests
are returned. This is illustrated in figure 1.

Figure 1. Prolog-1-Linda process and communication structure.

Prolog-1-Linda is started by executing the server. It creates the request pipe and starts the first client
using an eval operation. The server then repeatedly reads and services requests from the request pipe.
The server maintains a record of the number of clients, and terminates when this number drops to 0.

Prolog-1-Linda's eval operation takes two arguments : the name of a Prolog source file and a query on
that file. A new client is created by forking the server. Before forking, the server creates a reply pipe for
the new client, thus permitting both the server and the new client to access both the request and reply
pipes. The newly created client removes the server procedures and tuple space from the Prolog database,
loads the client procedures and the specified Prolog source, and then evaluates the query. On completion
of the query, the client sends requests to the server to close the reply pipe at the server end and decrement
the server's record of the number of clients. The client then terminates.

A rd operation queries the database, and an in operation attempts to retract the required clause. The
result of a satisfied in or rd request is passed back to the requesting client on its reply pipe. If the server
is unable to satisfy an in or rd request, the request is placed on a global wait queue. An out operation
asserts the supplied clause into the Prolog database and causes the wait queue to be examined for in and
rd requests that may have become satisfiable. These requests are removed from the wait queue and re-
evaluated. The inp and rdp operations return the atom fail to the requesting client if the operation
cannot be immediately satisfied. This is used in the client to cause the operation to fail.

4.2 The multi-processor implementation : Prolog-N-Linda

In Prolog-N-Linda, requests from clients are passed to the server via a communicator process, which
resides on the same processor as the server, as shown in figure 2. (The communicator program is the only
part of the system not implemented in Prolog. It is written in C.) The communicator reads client requests
off a stream socket attached to the client. The eval operation, and a special system request,
close_socket, are executed by the communicator. All other requests are passed to the server on a
request pipe. Server replies are returned on a reply pipe, and forwarded to the appropriate client on the
client's socket.

Figure 2. Prolog-N-Linda process and communication structure.

Prolog-N-Linda is started by executing the server. It creates the request and reply pipes, then forks and
execs to create the communicator. To create the first client the server sends an eval request to the
communicator on the reply pipe. This is the only time that the server initiates a Linda operation. The
server then repeatedly reads and services requests from the request pipe. Every such request is followed
by an integer descriptor, being the descriptor for the socket attached to the client that originated the
request. The server also reads the descriptor and appends it to replies, which are written on the reply pipe.
This enables the communicator to forward replies to the appropriate client. The generality of the server
request evaluation system is especially useful in Prolog-N-Linda, as it enables terminal i/o requests from
clients to be serviced. This is in fact the only way that clients can perform terminal i/o, and forces the i/o
operations to be atomic.

The first task of the communicator is to read the start-up eval request off the reply pipe and execute it.
The communicator then waits for client requests on client socket descriptors, and for server replies on the
reply pipe. eval and close_socket requests are implemented by the communicator. The
implementation of eval is described below. close_socket requests come from clients that wish to
disconnect themselves from the tuple space, typically when the client is about to terminate. Upon receipt
of a close socket request the communicator closes the socket on which the request was received, and
decrements its counter of the number of client processes. If there are no client processes left the
communicator sends a termination request to the server, and then terminates itself. Other client requests,
including out, rd, rdp, in and inp requests, are passed to the server on the request pipe, followed by
the descriptor number of the socket from which the request was read. Server replies and the associated
descriptor are read off the reply pipe and the reply is forwarded to the appropriate client.

Prolog-N-Linda's eval operation takes three arguments : the name of a processor on which to execute
the client, the name of a Prolog source file, and a query on that file. The new client is created by a remote
exec of the muProlog interpreter on the specified processor passing the name of the Prolog source file as a
command line argument. (The shared file system provides transparent access to files on remote
processors.) The descriptor returned by the rexec is then used for communication with the standard input
and output of the new client. The communicator writes the Prolog query to the descriptor. The new
Prolog interpreter loads the client procedures and the specified Prolog source, then reads the query from

its standard input and evaluates it. On completion of the query, the client sends a request to close the
socket at the communicator end, and then terminates.

5 Deductive tuple spaces

The Linda tuple space and associated operations are very similar to a standard concurrent access
relational database system. The in and out operations effect database updates, and the rd operation
effects database queries. The difference is that the Linda paradigm is viewed as providing communication
between, and synchronization of, parallel processes, whereas a relational database is only viewed as
storing data. Much research has been done on the generalisation of relational database to deductive
database, in Prolog. [13] provides a good summary of this work. It is a logical step to extend the Prolog-
Linda tuple space to a deductive tuple space.

The use of a deductive tuple space means that rules as well as facts may be added to and removed from
the tuple space by in and out operations. rd and rdp requests may be satisfied by facts, or using rules.
Rules are evaluated using normal Prolog deduction, including backtracking. It is possible that a rd
request may not be satisfied if a sub-query in a rule cannot be solved. An ideal deductive tuple space
implementation would keep track of sub-queries whose solution could allow the rd request to be
satisfied. The subsequent out of a rule or fact that could lead to the solution of such a sub-query would
then cause the original request to be completely re-evaluated. Complete re-evaluation would be necessary
as rules used in the deduction may have been removed. Prolog-Linda is not yet this refined, and simply
re-evaluates all waiting rd requests after an out operation.

A deductive tuple space greatly increases the capabilities of the tuple space, but not without some penalty.
The first problem is the increased possibility of a bottleneck on the execution of the client, as the server
must spend time evaluating deductive rds. The second problem, which is an extreme case of the first, is
the danger of the server entering an infinite deduction. Client requests will not be evaluated, in particular
requests that may terminate the infinite deduction. Clients that make in or rd requests will be blocked
indefinitely. A solution to this second problem is to restrict the nature of the deductive database to be
hierarchical [13]. Despite the problems associated with a deductive tuple space, it provides facilities that
are not available from a standard tuple space :

In Linda it is awkward to simultaneously rd tuples of two different signatures. A method suggested
in [10] requires the outing process to know that the tuples will be requested in this way. A deductive
tuple space provides a direct solution :

make_switch(Tuple1,Tuple2):-
 out((switch(Tuple1):-Tuple1)),
 out((switch(Tuple2):-Tuple2)),
%----Wait for Tuple1 or Tuple2 to be outed
 rd(switch(Which)).
%----Which contains the outed tuple

A deductive tuple space has the potential for extreme space saving. There are indeed some groups of
tuples that can only be finitely stored in a deductive manner. For example :

recognise_even:-
 out((even(Negative):-Negative < 0,!,fail)),
 out(even(0)),
 out((even(Number):-Number_less_2 is Number-2,
even(Number_less_2))).

would effectively place all tuples even(X) into the tuple space, where X is even.

6 Applications

6.1 Automated deduction

The Linda-Prolog system may be used to introduce parallelism into automated deduction systems. The
axioms from which deductions are made may be stored in the tuple space, and accessed by several
independant client inference engines, using rd and rdp operations. The inference engines may be
attempting the same problem with different methods or angles of attack, or may be attempting distinct
problems with the same set of axioms. Lemmas generated at derivation time can be inserted into the tuple
space using out operations. Subsumed axioms and lemmas may be removed from the tuple space using
in and inp operations.

A second application of Prolog-Linda in automated deduction is to perform syntactic and semantic checks
of the derivation in parallel with inference steps. This approach is being used in the GCTP system [14].

6.2 Parallel function evaluation

Prolog-Linda may be used to apply a function to a list of values in parallel. An effective implementation
is to use one process to insert function evaluation requests in the tuple space, and for other processes to
perform the evaluations. The results are placed in the tuple space for the first process to retrieve. The
tuple space holds tuples for values that have been, or are being, evaluated, to prevent duplicate
evaluations. An example application is the static evaluation of game positions in the MiniMax algorithm.

%===
%----File 'maplist.pro', which controls function evaluations
%----Start the evaluation clients then send out the
%----evaluation requests
map_list(Input_list,Available_machines):-
 start_evaluators(Available_machines),
 map_each_element(Input_list,Output_list),
 send_request(writeln(Output_list)).
%---

map_each_element([],[]).

map_each_element([First_value|Rest_of_values],[First_result|
Rest_of_results]):-
%----Made sure this value is being evaluated
 start_evaluation(First_value),
%----Start the evaluations of the other values before collecting
%----the result for this value
 map_each_element(Rest_of_values,Rest_of_results),
 rd(evaluated(First_value,First_result)).
%---
%----If a value is waiting for evaluation then do nothing
start_evaluation(Value):-
 rdp(evaluate(Value)),
 !.

%----If a value has been evaluated then do nothing
start_evaluation(Value):-
 rdp(evaluated(Value,_)),
 !.

%----If a value is being evaluated then do nothing
start_evaluation(Value):-
 rdp(being_evaluated(Value)),
 !.

%----Otherwise, send out an evaluation request
start_evaluation(Value):-
 out(evaluate(Value)).
%---
start_evaluators([]).

%----Start each available machine with an eval request
start_evaluators([First_machine,Rest_of_machines]):-
 eval(First_machine,’evaluate.pro’,poll_requests),
 start_evaluators(Rest_of_machines).
%===
%----File 'evaluate.pro', which does the function evaluations
poll_requests:-
 in(evaluate(Value)),
 out(being_evaluated(Value)),
 do_function(Value,Result),
 out(evaluated(Value,Result)),
 in(being_evaluated(Value)),
 poll_requests.
%---

6.3 Interactive Linda

As Prolog does not differentiate syntactically between code and data, it is easy to implement an
interactive front end to the tuple space. This example also illustrates how terminal i/o is implemented for
client processes on remote machines.

%===
%----This query is evaluated on a remote host to provide

%----interaction

go:-

 repeat,

%----Send a prompt and a request for input

 send_request(write(?-)),

 send_request(remote_read(interact)),

%----Remove the input from the tuple space and evaluate

 in(interact(Query)),

 Query,
 fail.

%===
%----This is loaded in with the server procedures to provide

%----remote input

remote_read(Reply_predicate):-

%----Read some input

 read(Input),
%----Build a tuple using the supplied predicate and place into

%----the tuple space

 Tuple =.. [Reply_predicate,Input],

 out(Tuple).

%---

7 Conclusion

The Prolog-Linda embedding is very natural. The pattern matching and database features of Prolog have
been used directly in the embedding. Furthermore, garbage collection and hashing in the tuple space are
provided free by the Prolog implementation. This naturalness contrasts with the FCP(↑) implementation
described in [4].

The direct use of Prolog features to implement the tuple space and tuple space operations adds useful
flexibility to the Linda paradigm. The implementation of formals in tuples is direct, in contrast to other
Linda embeddings.

The introduction of a deductive tuple space is a significant enhancement to the capabilities of the Linda
paradigm. A deductive tuple space provides direct solutions to problems that were previously difficult or
impossible.

Acknowledgement - Thanks to Nick Lewins for his input on deductive tuple spaces, and comments on
early drafts of this paper.

8 References

1. D. Gelernter, Generative Communication in Linda, ACM Transactions on Programming Languages,

7(1) (1985), pp 80-112.
2. N. Carriero, and D. Gelernter, Linda in Context, C. ACM, 32(4) (1989), pp 444-458.
3. G.A. Ringwood, Parlog86 and the Dining Logicians, C. ACM, 31(1) (1988), pp 10-25.
4. E. Shapiro, et. al., Technical Correspondence, C. ACM, 32(10) (1989), pp 1244-1258.
5. E. Shapiro, Concurrent Prolog : Collected Papers, Volumes 1 & 2, (MIT Press, Cambridge, MA,

1987).
6. D.J. Berndt,C-Linda Reference Manual, Version 2.0, (Scientific Computing Associates Inc., New

Haven, 1989).
7. L. Borrmann, M. Herdieckerhoff, A. Klein, Tuple Space Integrated into Modula-2, Implementation

of the Linda Concept on a Hierarchical Multiprocessor, Proceedings of CONPAR '88, (Cambridge
University Press, 1988).

8. C.K. Yuen, W.F. Wong, BaLinda Lisp: A Parallel Lisp Dialect for Biddle with the Concurrent
Facilities of Linda, Technical Report TRA1/90, (Department of Information Systems and Computer
Science, National University of Singapore, Kent Ridge, Singapore, 1990).

9. J. Pinakis, C. McDonald, The Inclusion of the Linda Tuple Space Operations in a Pascal-based
Concurrent Language, (Unpublished manuscript, 1989).

10. J.S. Leichter, Shared Tuple Memories, Shared Memories, Buses and LAN's - Linda Implementations
Across the Spectrum of Connectivity, Ph.D. Thesis, (Yale University, Yale, CT, 1989).

11. L. Naish, muProlog 3.2 Reference Manual, Technical Report 85/11, (Department of Computer
Science, University of Melbourne, Melbourne, Australia, 1985).

12. R. Sandberg, The Design and Implementation of the Sun Network File System, USENIX Association
Conference Proceedings, (1985), pp 119-130.

13. J.W. Lloyd, Foundations of Logic Programming, (Springer-Verlag, Berlin, 1987).
14. G. Sutcliffe, A General Clause Theorem Prover, in Proceedings of 10th International Conference on

Automated Deduction, Lecture Notes in Artificial Intelligence 449, ed. M.E. Stickel (1990), pp 275-
276.

