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Abstract

We consider a game in which players select strings over { 0, 1 } and observe a

series of fair coin tosses, interpreted as a string over { 0, 1 }. The winner of this

game is the player whose string appears first. For two players public knowledge of

the opponent’s string leads to an advantage. In this paper, results for three players

are presented. It is shown that given the choices of the first two players, a third

string can always be chosen with probability of winning greater than 1/3. It is also

shown that two players can chose strings such that the third player’s probability

of winning is strictly less than the greater of the other two player’s probability of

winning, and that whichever string is chosen, it will always have a disadvantage to

one of the two other strings.

1 Introduction

We consider a game in which players select strings over W = {0, 1} and observe a series
of fair coin tosses, that is, a string σ = s1s2 . . . where each si is chosen independently at
random from {0, 1}, with equal probability of a 0 or 1 being chosen. The winner of this
game is the player whose string appears first. This problem has been studied both in the
context of games and as a pure probabilistic problem in Chen [1], [2], [3], Guibas et al [4],
Li [5], Gerber et al [6] and Mori [7].

In Chen [3] it was proved that for two players, public knowledge of the opponent’s
string leads to an advantage.
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Theorem 1 For any string σ ∈ W ∗, |σ| ≥ 3, there exists a string τ ∈ W ∗, of the same

length as σ, such that P (Tσ > Tτ ) > 1/2. That is, the first occurrence of τ is likely to be

before that of σ.

In this paper we establish results for three players.
In is quite natural to suspect that under some reasonable conditions we might have

a positive answer to the following conjecture: given k − 1 strings, σ1, σ2, . . . , σk−1 all of
length n, there always exists a distinct string σk, also of length n, which has the best
chance of occurring first among the strings σ1, . . . , σk. However, the answer is negative.

In section 3 we show that if the third player chooses having knowledge of the choices of
the first two players, a string can be chosen so that the probability of this string showing
first is greater than 1/3. In section 4 we show that although the third player can have a
greater than average result, his situation is not the most advantageous. For the other two
players can choose strings such that the third player’s probability of winning is strictly
less than the greater of the other two player’s probability of winning, and that whichever
string he chooses, he will always have a disadvantage to one of the two other players.

We begin with some preliminaries, remarking that lemma 3 of these preliminaries is
a very interesting result in it’s own right. Given a string, the waiting time for the first
occurrence of the string in a random sequence of characters depends on the structure of
repetitions in the string. Lemma 3 states that the second occurrence has waiting time
independent of the string, except for its length.

Some of our proofs require exhaustive testing of cases. In section 5 we provide the
computer codes by which these checks were accomplished.

2 Preliminaries

Let Σ be a finite set. The set of all finite strings over Σ is denoted Σ∗. A string σ ∈ Σ∗ of
length n can be written as σ = s1s2 . . . sn with each si ∈ Σ. Given two strings σ, τ ∈ Σ∗,
their concatenation is denoted στ . The length of string σ is denoted |σ|. The empty
string ε is the unique zero length string. Given a string σ, its prefixes π(σ) are all strings
π such that σ = πτ , for some string τ ; its suffixes λ(σ) are all strings λ such that σ = τλ
for some string τ .

Let {Xi} be a sequence of Σ valued random variables. The probability space Ω is such
that the Xi are i.i.d. with P (Xi = sj) = pj for all i and j. The space Ω can be identified
with the space of semi-infinite strings over Σ by σ = s1s2 . . . with si = Xi(ω). We extend
the definition of the prefix operation π(ω) to apply to semi-infinite ω ∈ Ω under this
identification.

For each string σ ∈ Σ∗, let Tσ be the waiting time for the first occurrence of σ in a
randomly chosen ω ∈ Ω,

Tσ(ω) = min{|τ | | τ ∈ π(ω) and σ ∈ λ(τ)},

or Tσ(ω) = ∞ if σ never appears in ω. For strings τ, σ ∈ Σ∗ let Tσ|τ be the time of
first occurrence of σ after the occurrence of the string τ . If σ ∈ λ(τ) then Tσ|τ (ω) = 0,
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otherwise,
Tσ|τ (ω) = min{|ρ| − |τ | | ρ ∈ π(τω) and σ ∈ λ(ρ)}

or Tσ|τ (ω) = ∞ if σ never appears in τω.
For strings σ = s1s2 . . . sn we define P (σ) =

∏n

i=1 P (Xi = si), that is, the probability
that a randomly chosen ω ∈ Ω begins with σ. For strings σ, τ ∈ Σ∗ define,

σ ◦ τ =
∑

ρ∈λ(σ)∩π(τ)
ρ6=ε

P (ρ)−1

This operation has great significance in the calculation of waiting times for the first
occurrence of strings.

Lemma 1 Suppose Σ = {s1, . . . , sn}, and {Xj} are i.i.d. random variables with P (Xj =
sk) = pk. For any σ ∈ Σ∗ and any i = 1, . . . , n,

n
∑

j=1

pj(σ sj ◦ σ si) = 1 + σ ◦ σ.

Proof: For each τ ∈ π(σ) ∩ λ(σ), the term P (τ)−1 appears on the right hand side of
the equality. For this τ , τ sj ∈ π(σ si), for exactly one j, and it contributes (pjP (τ))−1 to
the sum (σ sj ◦ σ si) on the left hand side of the equality. In addition, the unique single
character string sj ∈ π(σ si) contributes the term 1/pj to the sum (σ sj ◦ σ si) on the
left hand side of the equality. This has no corresponding term in the sum σ ◦ σ, but is
balanced by the constant 1 on the right hand side of the equality.

Lemma 2 Hypotheses as above, for any σ ∈ Σ∗, E(Tσ) = σ ◦ σ; for any σ, τ ∈ Σ∗,

E(Tσ|τ ) = σ ◦ σ − τ ◦ σ.

Proof: It is sufficient to prove the case of conditional waiting times, since Tσ = Tσ|ε

and ε ◦ σ = 0.
The proof is by induction. The result follows from the definitions if σ, τ are the empty

strings. Assume the result is true for all strings of length N or less.
Let σ′ be string of length N +1 and τ ′ a string of length not more than N +1. Without

loss of generality we can assume σ′ = σ s1. If τ ′ = σ′ then Tσ′|τ ′ = Tσ′ |σ′ = 0 and the result
is trivial. Else if |τ ′| = N + 1, we can write τ ′ = si τ for some i, and noting Tσ′ |τ ′ = Tσ′|τ

and τ ′ ◦ σ′ = τ ◦ σ′, reduce to the case of |τ | ≤ N .
The expected waiting time for σ s1 given τ is described recursively as the expected

waiting time for σ given τ followed by the reception of one character, call it sj, followed
by the probability weighted sum of expected waiting times for σ s1 given σ sj for each of
the possible j, except if sj = s1,

E(Tσ s1|τ ) = E(Tσ|τ ) + 1 +

n
∑

j=2

pjE(Tσ s1|σ sj
)

= σ ◦ σ − τ ◦ σ + 1 + S,
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where we have used the induction hypothesis and have let S stands for the summation.
To evaluate the sum S, define strings σj by σ sj = si σj, where si is the initial character
of σ. Note that E(Tσ s1|σ sj

) = E(Tσ s1|σj
) for j 6= 1. For j = 2, . . . , n,

E(Tσ s1|σj
) = σ ◦ σ − σj ◦ σ + 1 + S

= σ ◦ σ − (si σj ◦ σ s1) + 1 + S.

= σ ◦ σ − (σ sj ◦ σ s1) + 1 + S.

Multiply each of these equations by pj and sum over j from 2 to n,

S = (1 − p1)(σ ◦ σ + 1 + S) −
n

∑

j=2

pj(σ sj ◦ σ s1)

= (1 − p1)(σ ◦ σ + 1 + S) −

n
∑

j=1

pj(σ sj ◦ σ s1) + p1(σ s1 ◦ σ s1)

= (1 − p1)(σ ◦ σ + 1 + S) − (1 + σ ◦ σ) + p1(σ s1 ◦ σ s1)

= (1 − p1)S + p1(σ s1 ◦ σ s1 − σ ◦ σ − 1)

using the previous lemma to reduce the sum, Therefore S = σ s1 ◦ σ s1 − σ ◦ σ − 1.
Substituting,

E(Tσ s1|τ ) = σ ◦ σ − τ ◦ σ + 1 + σ s1 ◦ σ s1 − σ ◦ σ − 1

= σ s1 ◦ σ s1 − τ ◦ σ

= σ s1 ◦ σ s1 − τ ◦ σ s1,

completing the induction.

The above lemma was proved in Chen [3] using the Renewal Theorem. The above
proof is new. Note that the lemma also hold in the case of a countably infinite Σ provided
P (s) > 0 for all s ∈ Σ.

Although the first occurrence of a string has a dependency on the repetition structure
inside the string, an easy consequence of the previous lemma is that the following occur-
rences do not. This can also be derived by considering stopping times of an appropriate
Markov chain, see for instance Levin et. al [8].

Lemma 3 For σ ∈ Σ∗, define T ′
σ(ω) to be the additional time to for the next occurrence

of σ after its first occurrence in ω ∈ Ω. Then E(T ′
σ) = P (σ)−1.

Proof: Since T ′
σ = Tσ|σ′ , where σ = s σ′ for the appropriate s ∈ Σ, we need to calculate

σ ◦ σ − σ′ ◦ σ. Note that all terms cancel except for the leading term P (σ)−1.

Extend the prefix operator π to sets of strings S by π(S) = ∪σ∈Sπ(σ). A set of strings
σ1, σ2, . . . , σk ∈ Σ∗ is said to be reduced if no σi is a substring of σj, that is, σi 6∈ π(λ(σj))
for all distinct i, j . Define Nk = min(Tσ1

, Tσ2
, . . . , Tσk

). If the set σ1, σ2, . . . , σk is reduced,
and Nk is finite, there will be a unique i such that Nk = Tσi

.
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Lemma 4 Hypotheses and notation as above, for each i = 1, 2, . . . k,

E(Tσi
) = E(Nk) +

k
∑

j=1

P (Nk = Tσj
)E(Tσi|σj

).

Proof: For i = 1, 2, . . . , k,

E(Tσi
) = E(Nk) + E(Tσi

− Nk)

= E(Nk) + E
(

E(Tσi
− Nk |Nk = Tσj

)
)

= E(Nk) +
k

∑

j=1

E(Tσi
− Nk |Nk = Tσj

)P (Nk = Tσj
)

Because the set of strings is reduced, the distribution of Tσi
−Nk conditioned on Nk = Tσj

is the same as that of Tσi|σj
and therefore E(Tσi

− Nk |Nk = Tσj
) = E(Tσi|σj

). The result
follows.

Lemma 5 Hypotheses and notation as above. We have the following system of k + 1
linear equations, where qi = P (Tσi

= Nk), for i = 1, 2, . . . , k,













0 1 . . . 1
1
...

(σi ◦ σi

−σj ◦ σi)i+1,j+1

1























E(Nk)
q1
...

qk











=











1
σ1 ◦ σ1

...

σk ◦ σk











Proof: Combine the previous two lemmas and the fact that q1 + q2 + . . . + qk = 1.

In the case of two strings, σ1, σ2, such that neither is a substring of the other, we
provide for reference the solution to this matrix equation,

E(N2) = ((σ1 ◦ σ1)(σ2 ◦ σ2) − (σ1 ◦ σ2)(σ2 ◦ σ1))∆
−1,

q1 = (σ2 ◦ σ2 − σ2 ◦ σ1)∆
−1,

q2 = (σ1 ◦ σ1 − σ1 ◦ σ2)∆
−1,

where ∆ = σ1 ◦ σ1 − σ1 ◦ σ2 − σ2 ◦ σ1 + σ2 ◦ σ2. Therefore of two strings σ1 and σ2, σ1 is
strictly favorable to appear first exactly if σ2 ◦ σ2 − σ2 ◦ σ1 > σ1 ◦ σ1 − σ1 ◦ σ2.

3 Advantage of third player

In this section we establish as result for three players, where the third player choses having
knowledge of the choices of the first two players. Given any two strings σ1 and σ2, both
of length n, we exhibit a string τ , also of length n, such that the probability in a random
series of coin tosses that τ appears first among the three is greater than 1/3.
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Theorem 2 (Main Theorem) Let n ≥ 4 and σ1, σ2 ∈ {0, 1}∗ be any two distinct

strings, both of length n. There exists a string τ distinct from σ1 and σ2 such that

P (Tτ = N3) > 1/3.

The proof constructs the string τ . There are two different constructions, depending
on the form of σ1 and σ2. Throughout this section, and without loss of generality, we will
assume σ1 6= σ2 and,

σ2 ◦ σ2 − σ2 ◦ σ1 ≤ σ1 ◦ σ1 − σ1 ◦ σ2.

We adopt a notation for the complement of a bit, c̄ = c − 1, for c ∈ {0, 1}.
For a positive integer n, and two distinct strings σ1, σ2 ∈ {0, 1}∗ both of length n,

define,
Ln(σ1, σ2) = max{|τ | | τ ∈ λ(σ1) ∩ π(σ2)}.

For a single string, define,

Ln(σ) = max{|τ | | τ ∈ λ(σ) ∩ π(σ) \ {σ}}.

Note that in these definitions, the empty string is a possibility, so that Ln ≥ 0.
For a string σ of length n let ln(σ) = n − Ln(σ). This is the number of characters

dropped from the front of σ in the first non-trivial overlap of σ with itself. Similarly, for
strings σ and σ′ both of length n define ln(σ, σ′) = n − Ln(σ, σ′).

One construction takes care of the case that σ2 is one of these four strings,

[0]∗, [0]∗1, [1]∗, [1]∗0,

where, for notational convenience, we write a repeating string such as σ ′σ′ . . . σ′ as [σ′]∗.
Write σ2 = c1τ

′c2 where c1, c2 ∈ {0, 1}, and τ ′ ∈ {0, 1}∗. The winning string is then
τ = c̄1c1τ

′.
Else we construct the winning string βn(σ1, σ2), as follows. Write σ1 = τ1c1τ2 and

σ2 = τ3c2, where c1, c2 ∈ {0, 1} and τ1, τ2, τ3 ∈ {0, 1}∗ and |τ2| = Ln(σ1, σ2). Then
βn(σ1, σ2) = c̄1τ3.

Lemma 6 Strings σ1, σ2 as above, βn(σ1, σ2) is distinct from σ1.

Proof: Recall that σ1 = τ1c1τ2 and σ2 = τ3c2. If |τ2| = |τ3| then σ1 = c1τ2 which is
obviously not equal to βn(σ1, σ2) = c̄1τ3. Else, by choice of τ2, it must be that τ3 is not a
suffix of σ1, and therefore σ1 is not equal to cτ3 for any c.

Lemma 7 Strings σ1, σ2 as above and τ = βn(σ1, σ2), Ln(σ1, τ) ≤ Ln(σ1, σ2).

Proof: Recalling again the construction of τ = c̄1τ3, a prefix of τ overlapping a suffix
of σ1 = τ1c1τ2 cannot match c1 against c̄1, nor can c̄1 match against something in τ1, as
τ2 is the maximum length suffix of σ1 matching against a prefix of σ2 = τ3c2.

Lemma 8 Strings σ1, σ2 as above and τ = βn(σ1, σ2), σ1 ◦ τ ≤ σ1 ◦ σ2.
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Proof: Note σ1 ◦ σ2 = τ2 ◦ τ2. By the previous lemma, σ1 ◦ τ = τ ′ ◦ τ ′ where τ ′ is a
suffix of τ2, and therefore τ ′ ◦ τ ′ ≤ τ2 ◦ τ2.

Lemma 9 Let σ1, σ2, σ3 ∈ {0, 1}∗ be three distinct strings, all of length n ≥ 6. Suppose

that σ1 ◦σ3 ≤ σ1 ◦σ2 and that (σ2 ◦σ2−σ2 ◦σ1) ≤ (σ1 ◦σ1−σ1 ◦σ2). Let pi = P (Tσi
= N3)

be the probability that σi appears first among the three. If either,
(

1 +
σ2 ◦ σ2 − σ2 ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2

) (

σ3 ◦ σ3 − σ3 ◦ σ2

σ2 ◦ σ2 − σ2 ◦ σ3

)

+

(

σ3 ◦ σ2 − σ3 ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2

)

< 2,

or,

2

(

σ3 ◦ σ3 − σ3 ◦ σ2

σ2 ◦ σ2 − σ2 ◦ σ3

)

+

(

σ3 ◦ σ2 − σ3 ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2

)

< 2,

then p3 > 1/3.

Proof: By Lemma 5, there is this system of equations,








0 1 1 1
1 0 σ1 ◦ σ1 − σ2 ◦ σ1 σ1 ◦ σ1 − σ3 ◦ σ1

1 σ2 ◦ σ2 − σ1 ◦ σ2 0 σ2 ◦ σ2 − σ3 ◦ σ2

1 σ3 ◦ σ3 − σ1 ◦ σ3 σ3 ◦ σ3 − σ2 ◦ σ3 0

















e
p1

p2

p3









=









1
σ1 ◦ σ1

σ2 ◦ σ2

σ3 ◦ σ3









where e = E(N3). From the two middle rows,

p1(σ2◦σ2−σ1◦σ2)−p2(σ1◦σ1−σ2◦σ1)+p3(σ2◦σ2−σ3◦σ2−σ1◦σ1+σ3◦σ1) = σ1◦σ1−σ2◦σ2.

Since p1 = 1 − p2 − p3 and σ1 ◦ σ1 − σ1 ◦ σ2 > 0 this simplifies to,

1 =

(

1 +
σ2 ◦ σ2 − σ2 ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2

)

p2 +

(

1 +
σ3 ◦ σ2 − σ3 ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2

)

p3. (1)

From the third and fourth row of the matrix equality,

(σ2◦σ2−σ1◦σ2+σ1◦σ3−σ3◦σ3)p1+(σ2◦σ3−σ3◦σ3)p2+(σ2◦σ2−σ3◦σ2)p3 = σ2◦σ2−σ3◦σ3.

Using that p1 = 1 − p2 − p3, this implies,

(σ3 ◦ σ3 − σ3 ◦ σ2)p3 − (σ2 ◦ σ2 − σ2 ◦ σ3)p2 = (σ1 ◦ σ2 − σ1 ◦ σ3)p1

Since we assumed σ1 ◦ σ3 ≤ σ1 ◦ σ3, this value is non-negative, hence,

p2 ≤

(

σ3 ◦ σ3 − σ3 ◦ σ2

σ2 ◦ σ2 − σ2 ◦ σ3

)

p3.

Combining this with equation (1):

1 ≤

((

1 +
σ2 ◦ σ2 − σ2 ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2

) (

σ3 ◦ σ3 − σ3 ◦ σ2

σ2 ◦ σ2 − σ2 ◦ σ3

)

+ 1 +
σ3 ◦ σ2 − σ3 ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2

)

p3.

The assumptions of the lemma serve to bound the large expression within parenthesis by
3, hence the result.

the electronic journal of combinatorics 16 (2009), #R29 7



Lemma 10 Let σ1, σ2 be distinct strings in {0, 1}∗, both of length n ≥ 6, and σ2◦σ2−σ2◦
σ1 ≤ σ1 ◦σ1−σ1 ◦σ2, and ln(τ ′) ≥ 4 where σ2 = τ ′c′, c′ ∈ {0, 1}. Let τ = βn(σ1, σ2) = c τ ′.
Then P (Tτ = N3) > 1/3.

Proof: Since ln(τ ′) ≥ 4, τ 6= σ2. By Lemma 8, σ1 ◦ τ ≤ σ1 ◦ σ2, and recall that we have
assumed σ2 ◦ σ2 − σ2 ◦ σ1 ≤ σ1 ◦ σ1 − σ1 ◦ σ2. Therefore it is sufficient to show,

2

(

τ ◦ τ − τ ◦ σ2

σ2 ◦ σ2 − σ2 ◦ τ

)

+

(

τ ◦ σ2 − τ ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2

)

< 2

and invoke lemma 9. The inequality is a straightforward consequence of the following four
inequalities,

τ ◦ τ − τ ◦ σ2 ≤ 2n−1 + 2n−4, (2)

τ ◦ σ2 ≤ 2n−1 + 2n−4, (3)

2n − 2n−4 − 2n−5 ≤ σ2 ◦ σ2 − σ2 ◦ τ, (4)

2n − 2n−2 ≤ σ1 ◦ σ1 − σ1σ2. (5)

We verify these inequalities directly for n = 6, and therefore assume n ≥ 7.
Since ln(τ ′) ≥ 4 (meaning that the first non-trivial overlap of τ ′ with itself drops at

least four characters from the string) we have τ ◦τ < 2n +2n+3 and σ2 ◦τ < 2n−2. Suppose
τ ◦ τ ≥ 2n + 2n−4. Then c is the fourth character of σ2, the fifth character of σ2 equals
the first character of σ2, the sixth character equals the second, and so forth. Therefore
τ ◦ σ2 ≥ 2n−1 + 2n−5 and so inequality 2 holds. Suppose τ ◦ τ ≤ 2n + 2n−4. Then since
τ ◦ σ2 ≥ 2n−1 inequality 2 holds.

Noticing that τ ◦ σ2 = τ ′ ◦ τ ′, we conclude that inequality 3 holds.
Note also that for 2 ≤ k ≤ n − 2, if 2k appears in σ2 ◦ τ then 2k−1 will appear in

σ2 ◦σ2, and if 2n−3 appears in σ2 ◦ τ then 2n−4 will not appear in σ2 ◦ τ (since ln(τ ′) ≥ 4).
Therefore inequality 4 holds.

Suppose 5 does not hold. Since σ2◦σ2−σ2◦σ1 ≤ σ1◦σ1−σ1◦σ2, then σ2◦σ2−σ2◦σ1 ≤
2n − 2n−2 as well. Hence either 2n−1 or 2n−2 appears in σ1 ◦ σ2, and either 2n−1 or 2n−2

appears in σ2 ◦ σ1. If 2n−1 appears in either σ1 ◦ σ2 or σ2 ◦ σ1 we have a contradiction
against the fact that ln(τ ′) ≥ 4. If 2n−2 appears in σ1 ◦ σ2 and σ2 ◦ σ1, then 2n−4 appears
in σ1 ◦ σ1 and neither 2n−3 and 2n−4 will appear in either σ1 ◦ σ2 or σ2 ◦ σ1. This implies
that inequality 5 holds, giving a contradiction.

Those all the cited inequalities hold, and the lemma is proven.

Lemma 11 With all the hypothesis of the previous lemma except that ln(τ ′) = 3, P (Tτ =
N3) > 1/3.

Proof: By direct computation, the lemma is true when n = 6, therefore assume n ≥ 7.
Since ln(τ ′) = 3, σ2 is of the form [σ′]∗σ′′c where σ′ ∈ {001, 010, 011, 100, 101, 110}, σ ′′

is any proper prefix of the σ′, including the empty string, and c ∈ {0, 1}. This gives 36
cases for possible σ2.
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Let τ = c̄1[σ
′]∗σ′′, for some c1 ∈ { 0, 1 }. We give the proof only for the four cases

arising from σ′ = 001, σ′′ = 00 by having c, c̄1 ∈ {0, 1}. The other many cases are similar.
Consider the case when c = c̄1 = 0, i.e. σ2 = [001]∗000 and τ = 0[001]∗00. Note that

τ 6= σ2, and that,

σ2 ◦ σ2 = τ ◦ τ = 2n + 6,

σ2 ◦ τ = 14,

τ ◦ σ2 = 2n−1 + 2n−4 + . . . + 25 + 6.

Therefore,

2

(

τ ◦ τ − τ ◦ σ2

σ2 ◦ σ2 − σ2 ◦ τ

)

+

(

τ ◦ σ2 − τ ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2

)

≤ 2

(

2n−1 − 2n−4 − . . . − 25

2n − 8

)

+

(

τ ◦ σ2

σ1 ◦ σ1 − σ1 ◦ σ2

)

≤ 1 +

(

2n−1 + 2n−4 + . . . + 25 + 6

2n − σ1 ◦ σ2

)

We show that the second term in the above inequality is strictly less than 1 so that
we can invoke lemma 9. Suppose otherwise, 2n−1 + 2n−4 + . . . + 6 ≥ 2n − σ1 ◦ σ2. Then
σ1◦σ2 > 2n−2+2n−3, and therefore ln(σ1, σ2) ≤ 2. If ln(σ1, σ2) = 1 then in the construction
of τ = c̄1τ3 we have σ1 = c1τ3, and therefore σ1 = 1[001]∗00. We then calculate that
σ1 ◦ σ1 − σ1 ◦ σ2 < σ2 ◦ σ2 − σ2 ◦ σ1, contradicting an hypothesis of our construction.

Suppose instead that ln(σ1, σ2) = 2. Then σ1 = c′c1τ3 and σ2 = τ3c
′′c2, that is,

σ1 = c′1[001]∗0. If c′ = 0 then σ1 ◦ σ2 < 2n−2 + 2n−3, and we have our contradiction.
If c′ = 1 then σ1 ◦ σ2 − σ1 ◦ σ2 < σ2 ◦ σ2 − σ2 ◦ σ1, contradicting an hypothesis of our
construction.

Consider the case when c = 1 and c̄1 = 0, i.e. σ2 = [001]∗001 and τ = 0[001]∗00. Note
that τ 6= σ2 and,

σ2 ◦ σ2 = 2n + 2n−3 + . . . + 23,

σ2 ◦ τ = 0,

τ ◦ τ = 2n + 6,

τ ◦ σ2 = 2n−1 + 2n−4 + . . . + 22 + 2.

Thus 2(τ ◦ τ − τ ◦ σ2)/(σ2 ◦σ2 − σ2 ◦ τ) < 1, and we need only show (τ ◦ σ2 − τ ◦σ1)/(σ1 ◦
σ1 − σ1 ◦ σ2) ≤ 1. If inequality is not satisfied, then ln(σ1, σ2) ≤ 2, and the i-th letter in
σ1 is 1, for i = ln(σ1, σ2).

As in the previous case, we argue contradictions for ln(σ1, σ2) = 1 and ln(σ1, σ2) = 2
individually by considering possible values of σ1.
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Consider the case when c = 0 and c̄1 = 1, i.e. σ2 = [001]∗000 and τ = 1[001]∗00. Note
that τ 6= σ2 and,

σ2 ◦ σ2 = 2n + 6,

σ2 ◦ τ = 0,

τ ◦ τ = 2n + 2n−3 + . . . + 23,

τ ◦ σ2 = 2n−1 + 2n−4 + . . . + 22 + 2.

By lemma 9 it is sufficient to show,

2n + 2n−3 + . . . + 23 − 4

2n + 6
+

2n−1 + 2n−4 + . . . + 22 + 2

σ1 ◦ σ1 − σ1 ◦ σ2
< 2.

If σ1 ◦ σ1 − σ1 ◦ σ2 ≥ 2n − 2n−2, then the above inequality is satisfied. On the other hand,
if σ1 ◦ σ1 − σ1 ◦ σ2 < 2n − 2n−2, then σ1 ◦ σ2 > 2n−2, since σ1 ◦ σ1 ≥ 2n, and this implies
ln(σ1, σ2) ≤ 2 and the i-th letter in σ1 is 0, for i = ln(σ1, σ2).

As in the previous case, we argue contradictions for ln(σ1, σ2) = 1 and ln(σ1, σ2) = 2
individually by considering possible values of σ1.

Finally, consider the case when c = c̄1 = 1, i.e. σ2 = [001]∗001 and τ = 1[001]∗00.
Note that τ 6= σ2 and,

σ2 ◦ σ2 = τ ◦ τ = 2n + 2n−3 + . . . + 23,

σ2 ◦ τ = 2n−2 + 2n−5 + . . . + 24 + 2,

τ ◦ σ2 = 2n − 1 + 2n−2 + . . . + 22 + 2.

By lemma 9 it is sufficient to show,

2n + 2n−3 + . . . + 23 − 4

2n − 2n−3 − . . . − 23 − 2
+

2n−1 + 2n−4 + . . . + 22 + 2

σ1 ◦ σ1 − σ1 ◦ σ2

< 2.

The first term in the sum on the left hand side, above, is strictly less than 4/3, in any
case. Hence it is sufficient to show that the second term on the left hand side is not
more than 2/3. Assuming otherwise, we have σ1 ◦ σ2 > 2n−3, so ln(σ1, σ2) ≤ 3 and the
i-th letter in σ1 is 0, for i = ln(σ1, σ2). Given these facts, we have the contradiction
σ1 ◦ σ1 − σ1 ◦ σ2 < σ2 ◦ σ2 − σ2 ◦ σ1.

This completes consideration of all cases, and the proof of the lemma.

Lemma 12 With all the hypothesis of the previous lemma except that ln(τ ′) = 2, P (Tτ =
N3) > 1/3.

Proof: By direct computation, we verify the lemma for n = 6, therefore assume n ≥ 7.
Since ln(τ ′) = 2, σ2 is of the form [σ′]∗σ′′c where σ′ ∈ {01, 10}, σ′′ is any proper prefix of
σ′, including the empty string, and c ∈ {0, 1}. That gives 8 different cases for possible σ2.

Let τ = c̄1[σ
′]∗σ′′, for some c1 ∈ { 0, 1 }. We give the proof only for the four cases

arising from σ′ = 01, σ′′ = 0 and c, c̄1 ∈ {0, 1}. The many other cases are similar.
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Consider the case when c = c̄1 = 0, i.e. σ2 = [01]∗00 and τ = 0[01]∗0. Then σ2 6= τ
and,

σ2 ◦ σ2 = τ ◦ τ = 2n + 2,

σ2 ◦ τ = 6,

τ ◦ σ2 = 2n−1 + 2n−3 + . . . + 23 + 2.

By lemma 9 it is sufficient to show,

2
τ ◦ τ − τ ◦ σ2

σ2 ◦ σ2 − σ2 ◦ τ
+

τ ◦ σ2 − τ ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2
< 2.

By the values determined, the first term of the sum on the left hand side can be shown to
be strictly less than 1. It is therefore sufficient to show that the second term is less than
1.

In the case where 2n−1 appears in σ1 ◦ σ2, it must be that σ1 = c′[01]∗. If c′ = 0 then
σ1 ◦ σ1 − σ1 ◦ σ2 < σ2 ◦ σ2 − σ2 ◦ σ1, which is a contradiction. If c′ = 1 then 2n−2 and 2n−4

will appear in σ1 ◦ σ1 and σ1 ◦ σ1 − σ1 ◦ σ2 > 2n − 2n−1. Also 2n−2 will appear in σ1 ◦ τ
and τ ◦ σ2 − τ ◦ σ1 < 2n−1. This will make the second term less than 1, as required.

Next consider the case 2n−2 ≤ σ1 ◦ σ2 < 2n−1. Then ln(σ1, σ2) = 2 and the second
character of σ1 is a 1. That is, σ1 = c′1[01]∗. If c′ = 1 then σ1◦σ1−σ1◦σ2 < σ2◦σ2−σ2◦σ1,
which is a contradiction. If c′ = 0 then σ1 ◦ σ1 − σ1 ◦ σ2 = 2n, which makes the second
term less than 1, as required.

If σ1 ◦ σ2 < 2n−2, then second term is also less than 1.
Consider the case when c = 1 and c̄1 = 0, i.e. σ2 = [01]∗00 and τ = 0[01]∗0. Given

that σ1 6= σ2, that σ1 ◦ σ1 − σ1 ◦ σ2 ≥ σ2 ◦ σ2 − σ2 ◦ σ1, and the character at the ln(σ1, σ2)
location of σ1 is a 1, we deduce that the possible values for σ1 are either [01]∗1 or [1]∗. In
either case, it is possible to check that the second inequality of lemma 9 holds.

Consider the case when c = 0 and c̄1 = 1, i.e. σ2 = [01]∗00 and τ = 1[01]∗0. Then,

σ2 ◦ σ2 = 2n + 2,

σ2 ◦ τ = 0,

τ ◦ τ = 2n + 2n−2 + . . . + 24 + 22,

τ ◦ σ2 = 2n−1 + 2n−3 + . . . + 23 + 2.

To apply the first inequality of lemma 9, we first note that these values imply that,

τ ◦ τ − τ ◦ σ2

σ2 ◦ σ2 − σ2 ◦ τ
<

2

3
.

After using this bound in the first inequality of lemma 9, multiplying through by σ1 ◦σ1−
σ1 ◦ σ2, we have that it is sufficient for the lemma to establish that,

σ2 ◦ σ2 − σ2 ◦ σ1 + (3/2)(τ ◦ σ2 − τ ◦ σ2) ≤ 2(σ1 ◦ σ1 − σ1 ◦ σ2).
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Notice that (3/2)τ ◦ σ2 = 2n − 1. So it is sufficient to show,

2n+1 + 1 − σ2 ◦ σ1 − (3/2)τ ◦ σ1 ≤ 2(σ1 ◦ σ1 − σ1 ◦ σ2). (6)

If σ1 ◦σ2 = 0 or σ2 ◦σ1 ≤ 2, then σ1 ◦σ1 −σ1 ◦σ2 ≥ 2n and also either σ2 ◦σ1 or τ ◦σ1

will be at least 2. Therefore we can assume for the remainder of the proof that σ1 ◦σ2 > 0
and σ2 ◦ σ1 > 2.

Recall the notation Ln(σ, σ′), the number of characters in the maximum overlap of
a suffix of σ with a prefix of σ′, where the strings σ and σ′ have common length n;
and the notation Ln(σ) for Ln(σ, σ), disallowing for the trivial overlap of length n. If
Ln(σ1) ≥ Ln(σ1, σ2) then σ1 ◦ σ1 − σ1 ◦ σ2 ≥ 2n and inequality 6 is satisfied. We continue
are arguments under the assumption that Ln(σ1) < Ln(σ1, σ2).

If Ln(σ2, σ1) < Ln(σ1, σ2) since, Ln(σ2, σ1) ≥ 2,

σ2 ◦ σ2 − σ2 ◦ σ1 ≥ 22 − 2Ln(σ2,σ1)

> 2n + 2Ln(σ1) + 2Ln(σ1)−2 + . . . − 2Ln(σ1 ,σ2) − 2Ln(σ1,σ2)−2 − . . .

≥ σ1 ◦ σ1 − σ1 ◦ σ2

we have a contradiction.
If Ln(σ2, σ1) ≥ Ln(σ1, σ2) + 2,

2(σ1 ◦ σ1 − σ1 ◦ σ2) ≥ 2n+1 − 2Ln(σ1,σ2)+2

≥ 2n+1 − 2Ln(σ2,σ1) − (3/2) τ ◦ σ1

> 2n+1 − σ2 ◦ σ1 − (3/2) τ ◦ σ1

establishing inequality 6.
If Ln(σ2, σ1) = Ln(σ1, σ2) and even, the Ln(σ1) = Ln(σ2, σ1) − 2 and,

σ1 ◦ σ1 − σ1 ◦ σ2 = 2n − 2Ln(σ2 ,σ1),

σ2 ◦ σ1 = 2Ln(σ2,σ1) + 2,

τ ◦ σ1 = (2/3) (2Ln(σ2,σ1) − 1),

establishing inequality 6.
If Ln(σ2, σ1) = Ln(σ1, σ2) and odd, the Ln(σ1) = Ln(σ2, σ1) − 1 and,

σ2 ◦ σ1 = 2Ln(σ2,σ1),

τ ◦ σ1 = 2Ln(σ2,σ1)−1 + 2Ln(σ2,σ1)−3 + . . . + 22,

σ1 ◦ σ1 = 2n + 2Ln(σ2,σ1)−1 + 2Ln(σ2,σ1)−3 + . . . + 22,

σ1 ◦ σ2 = 2Ln(σ2,σ1) + 2Ln(σ2,σ1)−2 + . . . + 2.

Therefore,

2n+1 − σ2 ◦ σ1 − (3/2) τ ◦ σ1 = 2n+1 − 2Ln(σ2,σ1)+1 + 2

< 2n+1 − 2Ln(σ2,σ1) − 2Ln(σ2 ,σ1)−1

< 2(σ1 ◦ σ1 − σ1 ◦ σ2),
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establishing inequality 6.
If Ln(σ2, σ1) = Ln(σ1, σ2) + 1 and Ln(σ2, σ1) is odd then,

Ln(σ1) = Ln(σ1, σ2) − 1 = Ln(σ2, σ1) − 2

so

2n+1 − σ2 ◦ σ1 − (3/2) τ ◦ σ1 = 2n+1 − 2Ln(σ2,σ1)+1 + 2

< 2n+1 − 2Ln(σ2,σ1)−1 − 2Ln(σ2 ,σ1)−2

< 2(σ1 ◦ σ1 − σ1 ◦ σ2),

establishing inequality 6.
If Ln(σ2, σ1) = Ln(σ1, σ2) + 1 and Ln(σ2, σ1) is even then,

Ln(σ1) = Ln(σ2, σ1) − 1 = Ln(σ1, σ2),

contradicting the assumption Ln(σ1) < Ln(σ1, σ2).
Consider the case when c = c̄1 = 1, i.e. σ2 = [01]∗01 and τ = 1[01]∗0. Since

σ1 ◦ σ1 − σ1 ◦ σ2 ≥ σ2 ◦ σ2 − σ2 ◦ σ1, and the ln(σ1, σ2) character of σ1 is 0, the possible
values of σ1 are either [0]∗ or [01]∗00. For these two situations we compute p3 directly,
showing it is strictly greater than 1/3.

We have shown the lemma for the four cases under consideration. The many other
cases can be shown in a similar manner.

Lemma 13 With all the hypothesis of the previous lemma except that ln(τ ′) = 1. In

which case, we use an alternative construction, for which P (Tτ = N3) > 1/3.

Proof: Since ln(τ ′) = 1, σ2 is one of these four strings, [0]∗, [0]∗1, [1]∗, [1]∗0. Write
σ2 = c1τ

′c2 where c1, c2 ∈ {0, 1}, and τ ′ ∈ {0, 1}∗. The winning string is then τ = c̄1c1τ
′.

We give the proof for σ2 = [1]∗ and [1]∗0, the other two cases are similar.
Suppose σ2 = [1]∗. Then τ = 0[1]∗ and, since σ2 ◦ σ2 − σ2 ◦ σ1 ≤ σ1 ◦ σ1 − σ1 ◦ σ2,

σ1 = [0]∗ or [1]∗0. From this we can directly compute that p3 > 1/3.
Suppose σ2 = [1]∗0. Then τ = 0[1]∗ and we can directly compute,

σ2 ◦ σ2 = τ ◦ τ = 2n,

σ2 ◦ τ = 2,

τ ◦ σ2 = 2n − 2,

σ1 ◦ τ − σ1 ◦ σ2 = τ ◦ τ − τ ◦ σ2 = 2,

σ2 ◦ σ2 − σ2 ◦ τ = 2n.

Using these values in the equation,

(

(σ1◦τ−σ1◦σ2)+(σ2◦σ2−σ2◦τ)
)

p2+
(

(σ1◦τ−σ1◦σ2)−(τ ◦τ−τ ◦σ2)
)

p3 = σ1◦τ−σ1◦σ2

we have that p2 = 2/2n.
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Using the equation,

(

(σ1◦σ1−σ1◦σ2)+(σ2◦σ2−σ2◦σ1)
)

p2+
(

(σ1◦σ1−σ1◦σ2)+(τ◦σ2−τ◦σ1)
)

p3 = σ1◦σ1−σ1◦σ2

it is sufficient for p3 > 1/3 that,

τ ◦ σ2 − τ ◦ σ1

σ1 ◦ σ1 − σ1 ◦ σ2
< 2 −

12

2n
.

This is verified by noticing that since Ln(σ1, σ2) ≥ 3 then σ1 ◦ σ1 − σ1 ◦ σ2 ≥ 2n − 2n−2

and τ ◦ σ2 − τ ◦ σ1 ≤ 2n.

We can now complete the proof of the Main Theorem. For n = 4 and n = 5, the proof
is demonstrated by direct computation. We provide Mathematica code which solves the
matrix equation for the pi. For n ≥ 6, we use the above lemmas, remarking that we have
exhausted all possible values of ln(τ ′).

4 Advantage of coalition of two of three players

Although in a two-person game, it is possible for one player to react to the other in order
to pick a favorable string, in a three-person game, two players can collude to attain an
advantage.

Theorem 3 For n ≥ 3, let σ1, σ2 and σ3 be three distinct strings of length n in {0, 1}∗,
where σ1 = [1]∗0, σ2 = [0]∗1 and σ3 is arbitrary. Let pi = P (Tσi

= N3) be the probability

that σi appears first among the three. Then p3 < max(p1, p2).

Proof: The set of strings {σ1, σ2, σ3} is reduced. Note that σ1 ◦ σ1 = σ2 ◦ σ2 = 2n and
σ1 ◦ σ2 = σ2 ◦ σ1 = 2. Putting these values into the system of linear equations of lemma
5,









0 1 1 1
1 0 2n − 2 2n − σ3 ◦ σ1

1 2n − 2 0 2n − σ3 ◦ σ2

1 σ3 ◦ σ3 − σ1 ◦ σ3 σ3 ◦ σ3 − σ2 ◦ σ3 0

















E(N3)
p1

p2

p3









=









1
2n

2n

σ3 ◦ σ3









Without loss of generality, σ3 begins with a 1. The argument proceeds by considering
four cases.

Case 1. Suppose σ3 = 1n, a sequence of n ones. Note that σ3 ◦ σ1 = 2n − 2
and σ3 ◦ σ2 = 0. Subtracting the second row from the third, and using these values,
(2n − 2)p1 − (2n − 2)p2 + (2n − 2)p3 = 0. Therefore p1 − p2 + p3 = 0 and p1 + p2 + p3 = 1,
implying p2 = 1/2. Intuitively, σ1 and σ3 must be equally likely to occur first (or continue
to formally solve this system of equations) hence p1 = p3 = 1/4. Therefore p2 > p3.

Case 2. Suppose σ3 = 1i0j, a sequence of i ones followed by a sequence of j zeros,
1 < i, j < n− 1, distinct from σ1 and σ2. Note that σ3 ◦ σ1 = 0, σ1 ◦ σ3 = 2i+1, σ2 ◦ σ3 = 2
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and σ3 ◦ σ3 = 2n. Subtracting the second row from the fourth, and using these values,
(2n − 2i+1)p1 − 2np3 = 0. Therefore p1 > p3.

Case 3. Suppose σ3 = 1iτ1j, a sequence of i ones, followed by the string τ , followed
by a sequence of j ones, 0 < i, j < n − 1, where either τ = 0 or τ = 0τ ′0 for any string
τ ′ ∈ {0, 1}∗. Note that σ3 ◦ σ3 = 2n + α, where α > 0. Also σ3 ◦ σ2 = 0, σ1 ◦ σ3 = 2i+1

and σ2 ◦ σ3 = 2. Subtracting the third row from the fourth, and using these values,
(α − 2i+1 + 2)p1 + (2n + α − 2)p2 − 2np3 = α. Collecting terms in α on the right hand
side, and using that α(1 − p1 − p2) > 0, then p2 > p3.

Case 4. Suppose σ3 = 1i0τ10j, a sequence of i ones and a zero, followed by the string
τ , followed by a one and a sequence of j zeros, 0 < i, j < n−2, where τ ∈ {0, 1}∗. Note that
σ3◦σ3 = 2n+α, where α ≥ 0. Also, σ3◦σ1 = 0, σ1◦σ3 = 2i+1 and σ2◦σ3 = 2.. Subtracting
the second row from the fourth, and using these values, (2n +α−2i+1)p1 +αp2−2np3 = α.
Collecting terms in α on the right hand side, and using that α(1 − p1 − p2) ≥ 0, we have
p1 > p3.

Since any string starting with a 1 follows one of these cases, and strings starting with
a 0 must follow similar results by symmetry, the theorem is proved.

Theorem 4 For n ≥ 3, let σ1, σ2 and σ3 be three distinct strings of length n in {0, 1}∗,
where σ1 = 11 . . . 10, σ2 = 00 . . . 01 and σ3 is arbitrary. Then either P (Tσ3

< Tσ1
) < 1/2

or P (Tσ3
< Tσ2

) < 1/2.

Proof: The proof is the same as the previous theorem, and we will omit it.

5 Computer Codes

LeadNumList[s_, t_] :=

Table[

Take[s, -i] == Take[t, i],

{i, Min[Length[s], Length[t]]}]

LeadNumAux[l_, p_] :=

If[(Length[l] ==0),

0,

If[First[l],

p + LeadNumAux[Rest[l], 2*p],

LeadNumAux[Rest[l], 2*p]]]

LeadingNumber[s_,t_] := LeadNumAux[ LeadNumList[s,t], 2]

LeadNumMatrix[sl_] :=

Table[ If[i==0,
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If[j==0, 0, 1],

If[j==0, 1,

LeadingNumber[sl[[i]],sl[[i]]]

-LeadingNumber[sl[[j]],sl[[i]]]

]],

{i,0,Length[sl]},{j,0,Length[sl]}]

LeadNumVector[sl_] :=

Table[ If[i==0, 1,

LeadingNumber[sl[[i]],sl[[i]]]

],

{i,0,Length[sl]}]

SolveLeadNum[sl_] :=

Inverse[LeadNumMatrix[sl]] . LeadNumVector[sl]
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