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Abstract

n applicants of similar qualification are on an interview list and their salary de-
mands are from a known and continuous distribution. Two managers, I and II, will
interview them one at a time. Right after each interview, manager I always has the first
opportunity to decide to hire the applicant or not unless she has hired one already. If
manager I decides not to hire the current applicant, then manager II can decide to hire
the applicant or not unless he has hired one already. If both managers fail to hire the
current applicant, they interview the next applicant, but both lose the chance of hiring
the current applicant. If one of the managers does hire the current one, then they
proceed with interviews until the other manager also hires an applicant. The interview
process continues until both managers hire an applicant each. However, at the end of
the process, each manager must have hired an applicant. In this paper, we first derive
the optimal strategies for them so that the probability that the one he hired demands
less salary than the one hired by the other does is maximized. Then we derive an
algorithm for computing manager II’s winning probability when both managers play
optimally. Finally we show that manager II’s winning probability is strictly increasing
in n, is always less than c, and converges to c as n →∞, where c =̇ 0.3275624139 · · · is
a solution of the equation ln(2) + x ln(x) = x.

Secretary Problem; Optimal Strategy
AMS 1991 Subject Classification: Primary 60G40, Secondary 60K99

1 Introduction

There are n applicants of similar qualification on an interview list. Their salary demands
are from a known distribution. Two managers, I and II, will interview them one at a time.
Right after each interview, manager I always has the priority to decide to hire the current
applicant or not unless he has hired one already. If manager I decides not to hire the current
applicant, then manager II can decide to hire the current applicant or not unless he has hired
one already. If both managers decide not to hire the current applicant, they will interview
the next applicant, but both lose the chance of hiring the current applicant. If one of the
managers does decide to hire the current one, then they will proceed with the interview until

1



the other manager also hires an applicant. The interview process will continue until both
managers hire an applicant. However, by the end of the list, each manager should have hired
an applicant. This means that manager II has to hire applicant n− 1 if both managers have
not yet hired one from the first n− 2 applicants and manager I wants to hire applicant n.

Even though their salary demands are from a known distribution, they come in in a
random order. The following questions are meaningful and interesting.

1. What is the optimal strategy for manager I so that the probability that the one he
hired demands less salary than the one hired by manager II does is maximized ?

2. What is the optimal strategy for manager II so that the probability that the
one he hired demands less salary than the one hired by manager I does is maximized ?

3. When both managers use their optimal strategies, what is manager II’s winning prob-
ability and what is the limit of this probability as n →∞?

In [1], Berry, Chen, and Rosenberg studied the setting in which both managers only
know that applicants come in in a random order and their salary demands are distinct.
They showed that for all n ≥ 3 and both managers play optimally, manager II’s winning
probability is always less than 1

2
− a for some constant a in (0, 0.1], but is not a monotone

function of n in this setting. In [4], Yang presented this setting as a classroom game. He
derived a simple strategy for manager I. However, his simple strategy performs well but not
optimal for manager I.

In this note, we consider the setting in which the distribution of applicants’ salary de-
mands is known and continuous. We first derive the optimal strategy for manager I and
the optimal strategy for manager II. Then we derive an algorithm for computing manager
II’s winning probability when both managers play optimally. Finally we show that in this
new setting, manager II’s winning probability is strictly increasing in n, is always less than
c, and converges to c as n → ∞, where c =̇ 0.3275624139 · · · is a solution of the equation
ln(2) + x ln(x) = x.

For k = 1, 2, . . . , n and n ≥ 2, let Xk denote the kth applicant’s salary demand. Since
we assume the common distrubution is known and continuous, we can and do assume that
the common distribution is the uniform distribution over the interval (0, 1). Since P (X2 ≥
X1, X3 ≥ X1, . . . , Xk ≥ X1|X1 = x) =

∏k
i=2P (Xi ≥ x) = (1 − x)k−1, P (Xi < X1 for some

i = 2, . . . , k|X1 = x) = 1 − (1 − x)k−1. Suppose that both managers did not hire any
applicants from the previous interviews, suppose that the current applicant’s salary demand
is x, and suppose that there are k − 1 more applicants to come. Then manager I should
hire the current applicant if (1 − x)k−1 ≥ 1

2
since his (conditional) winning probability is

(1 − x)k−1 ≥ 1
2
. Otherwise, he should postpone his decision to the next interview. On the

other hand, if manager II did hire an applicant already, manager I will hire the current
applicant if his salary demand is less than the salary demand of the one hired by manager
II. Otherwise, manager I should interview the next applicant, or he will be forced to hire
the last applicant. Now we briefliy show that this strategy is optimal for manager I: (1)
Suppose that manager I ignores manager II’s action completely and applies the optimal best
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choice strategy described in section 3 of [3] with which he gets the very best applicant with
asymptotic probability 0.58 and manager II cannot prevent this because manager I always
has the priority. Hence manager I’s winning probability P > 1

2
if he plays optimally. (2)

Suppose that the strategy described above were not optimal for manager I, then manager II
would be able to hire the current applicant and win at least as likely as manager I playing
optimally later on. This contradicts to the fact that P > 1

2
. Therefore, the optimal strategy

for manager I can be described as follow.
(i) Suppose that both managers did not hire an applicant from the previous interviews,

suppose that the current applicant’s salary demand is x, and suppose that there are k − 1
more applicants to come. Then manager I should hire the current applicant if (1−x)k−1 ≥ 1

2
.

Otherwise, he should postpone his decision to the next interview.
(ii) Suppose manager II has hired an applicant from the previous interviews, and suppose

that manager I has not hired one yet. Then manager I will hire the current applicant if the
current applicant’s salary demand is less than the salary demand of the one hired by manager
II. Otherwise, he should continue to search and to hire an applicant whose salary demand is
less than the salary demand of the one hired by manager II or he will be forced to hire the
last applicant.

The optimal strategy for manager II is more complicated. He needs to compute the
expected (conditional) winning probability if he does not hire the current applicant and
postpones his decision to the next interview. Suppose that neither manager hired an ap-
plicant from the previous interviews, suppose that there are k applicants (including the
current one) available, and suppose that the current applicant’s salary demand is x and
(1− x)k−1 < 1

2
, then manager II should hire the current applicant if (1− x)k−1 ≥ q(k − 1),

where q(k − 1) is defined below. Otherwise, he should postpone his decision to the next
interview. Therefore, the optimal strategy for manager II can be described as follow.

(i) If manager I has hired an applicant already, then manager II will continue to search an
applicant whose salary demand is less than the salary demand of the one hired by manager
I, or he will be forced to hire the last applicant.

(ii) Suppose that manager I did not hire an applicant, the current applicant’s salary
demand is x, and there are k − 1 more applicants available in the future. Then manager II
should hire the current one if q(k − 1) ≤ (1− x)k−1 < 1

2
. Otherwise, he should postpone his

decision to the next interview.
From now on we will assume that both managers play optimally. For each x in (0, 1),

let q(k|x) denote the conditional probability that manager II will win given that there are
k applicants still available for both managers (including the current one), both managers
have not yet hired any applicant from the previous interviews, and the current applicant’s
salary demand is x. Then by definition of total probability, q(k) =

∫ 1
0 q(k|x)dx is manager

II’s winning probability when there are k applicants available for both managers. First we
will derive a recursive formula to compute q(n) for n = 2, 3, . . . . Then we will prove the
main theorem of this note.

Assume that n ≥ 2, and there are n applicants (including the current one) available,
and assume that both managers have not hired any applicant from the previous interviews.
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Suppose that the current applicant’s salary demand is x (0 < x < 1, since we can and
do assume the common distribution is the uniform distribution over the interval (0, 1)).
Then q(n|x) = 1 − (1 − x)n−1 if (1 − x)(n−1) ≥ 1

2
(since manager I will hire the current

one), q(n|x) = (1 − x)n−1 if q(n − 1) ≤ (1 − x)n−1 < 1
2

(since manager I does not want
to hire the current one and manager II will hire the current one), and q(n|x) = q(n − 1)
if (1 − x)n−1 < q(n − 1) (since both managers will postpone their decisions to the next
interview). Therefore,

q(n) =
∫ 1

0
q(n|x)dx =

n− 1

n
{1− (

1

2
)1/(n−1) + [q(n− 1)]n/(n−1)}

for all n = 3, 4, . . .. Here,

q(2) =
∫ 1/2

0
xdx +

∫ 1

1/2
(1− x)dx =

1

4
.

Main theorem. Manager II’s winning probability q(n) is always less than c for all n ≥
2, q(n) is strictly increasing in n, and q(n) → c as n → ∞, where c

.
= 0.32756 · · · is a

solution of the equation ln 2 + x ln x = x.

Proof. First, we will show that 1
4
≤ q(n) < q(n + 1) < 1

3
for all n ≥ 2. To see this,

for 0 ≤ x ≤ 1
2

and 0 ≤ y ≤ 1
3
, let φ(x, y) = 1 − 2−x + y1+x − (1 + x)y. For each x in

(0, 1
2
], φ(x, 1

4
) > 0 and φ(x, 1

3
) < 0. Since for each x in (0, 1

2
], φ(x, y) is a strictly decreasing

function of y for 0 ≤ y ≤ 1, φ(x, 1
4
) > 0, and φ(x, 1

3
) < 0, there exists a unique y(x) in (1

4
, 1

3
)

such that φ(x, y(x)) = 0 for each x in (0, 1
2
]. Hence for each n = 2, 3, ..., there exists a unique

yn in (1
4
, 1

3
) such that φ(1/n, yn) = 0. Furthermore, φ(1/n, u) > 0 > φ(1/n, ν) for all 0 ≤

u < yn < ν ≤ 1
3

and for all n = 2, 3, .... Since q(2) = 1
4

and y2
.
= 0.31074 · · · , q(2) < y2 < 1

3
.

Now suppose that q(k − 1) < q(k)(q(1) = 0) and q(k) < yk < 1
3

for all k = 2, 3, ..., n. Then

q(n + 1)− q(n) =
n

n + 1
{1− 2−1/n + [q(n)]1+1/n − (1 + 1/n)q(n)}

=
n

n + 1
[φ(

1

n
, q(n))

> 0

since q(n) < yn, i.e., q(n) < q(n + 1). On the other hand

q(n + 1) =
n

n + 1
{1− 2−1/n + [q(n)]1+1/n}

<
n

n + 1
{1− 2−1/n + (yn)1+1/n} = yn

since 1
4
≤ q(n) < yn. If we can show that yn < yn+1, then by mathematical induction, we

have q(n) < yn < 1
3

and q(n) < q(n + 1) for all n = 2, 3, ....
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Table 1 below reveals that y2 < y3 < · · · < y25. We need only to show that yn < yn+1 for
all n ≥ 25. To see this, we will show that y(x) is strictly decreasing in x for all x in (0, 0.04].
Since y2 > 0.3, we will restrict our study of φ(x, y) for 0 < x ≤ 0.04 and 0.3 ≤ y ≤ 1

3
. Notice

that φ(x, y) = 0 if and only if h(x, y) = φ(x, y)/x = 0 since x > 0. Now

h(x, y) = {1− 2−x + y1+x − (1 + x)y}/x

= ln 2 + y ln y − y +
∞∑

k=2

{[y(ln y)k − (− ln 2)k]xk−1/k!}.

Notice that for 0.3 ≤ y ≤ 1
3
, 1

2
[y(ln y)2 − (ln 2)2] ≤ 1

2
[0.3(ln 0.3)2 − (ln 2)2] < −0.02 and∑∞

k=3[y| ln y|k + (ln 2)k]/k! < 0.2. Now if 0 < x < x1 ≤ 0.04, 0.3 ≤ y ≤ 1
3
, and h(x1, y) = 0,

then

h(x, y) = h(x, y)− h(x1, y)

= (x− x1)
{

1

2
[y(ln y)2 − (ln 2)2]

+
∞∑

k=3

{[y(ln y)k − (− ln 2)k][xk−2 + xk−3x1 + . . . + xxk−3
1 + xk−2

1 ]}/k!

}

> (x− x1)

[
−0.02 + 0.2

∞∑
k=3

(k − 1)(0.04)k−2

]
> 0.

Since h(x, y) is strictly decreasing in y (for a fixed x) and h(x, y) > 0, y(x) > y. Hence y(x)
is strictly decreasing in x for x in (0, 0.04] and 0 < y(x) < 1

3
(since h(x, 1

3
) < 0). Therefore,

yn < yn+1, q(n + 1) < yn < yn+1, and q(n) < q(n + 1) < 1
3

for all n ≥ 2.
Next we are going to show that q(n) < c

.
= 0.32756 · · ·, where c is a solution of the

equation ln 2 + x ln x − x = 0. Notice that if c < d < 1
2
, then ln 2 + d ln d − d < 0. Since

q(2) = 1
4

< d, it is sufficient to show that q(n + 1) < d if q(n) < d. Now suppose that
q(n) < d, then

q(n + 1) =
n

n + 1
{1− 2−1/n + [q(n)]1+1/n}

<
n

n + 1
{1− 2−1/n + d1+1/n}.

It is sufficient to show that 1 − 2−1/n + d1+1/n − d(1 + 1/n) < 0. For each x in [0, 1
2
], let

k(x) = 1 − 2−x + d1+x − d(1 + x). Notice that k(0) = 0, k′(x) = 2−x ln 2 + d1+x ln d − d,
and k′′(x) = −2−x(ln 2)2 + d1+x(ln d)2. Since d(ln d)2 is strictly decreasing for e−2 ≤ d ≤
1, k′′(x) ≤ (−2−x + dx)(ln 2)2 < 0 for 1

4
≤ d < 1

2
and 0 < x ≤ 1

2
. Hence k′(x) is strictly

decreasing for 0 ≤ x ≤ 1
2
. Notice that k′(0) = ln 2 + d ln d − d < 0 since the function

ln 2 + z ln z − z is strictly decreasing for 0 < z < 1 and d > c, where 0.3 < c < 1
3

and
ln 2 + c ln c − c = 0. Therefore, k′(x) < k′(0) < 0, i.e., k(x) is strictly decreasing in x and
k(x) < k(0) = 0 for all 0 < x ≤ 1

2
. Hence

1− 2−1/n + d1+1/n − d(1 + 1/n) < 0,
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i.e., q(n + 1) < d. Therefore, q(n) ≤ c for all n ≥ 2. Since q(n) < q(n + 1) for all n ≥ 2. If
q(n) = c, then q(n + 1) > c. Therefore, q(n) < c for all n ≥ 2.

Finally we are in a position to show that q(n) → c as n → ∞. Since q(n) is strictly
increasing and bounded above by c, q(n) → t ≤ c as n →∞ where t is a constant. If t < c,
then ε = c− t for some constant ε > 0. Since q(n) > q(6) > 0.3 for all n ≥ 7, we assume that
0.3 < t < c. Since 0.3 < t < c, ln 2 + t ln t > t. Now let φ(x, y) = 1− 2−x + y1+x − (1 + x)y
for all 0 ≤ x ≤ 1

2
and 1

4
≤ y ≤ t. Then φx = 2−x ln 2 + y1+x ln y − y. Since y1+x ln y − y is

strictly decreasing in y if 0 < y < 1 and x > 0, φx ≥ 2−x ln 2 + t1+x ln t − t if 1
4
≤ y ≤ t.

Since ln 2 + t ln t − t > 0, 2−x ln 2 + t1+x ln t − t ≥ ∆ > 0 if 0 ≤ x ≤ δ, where 0 < δ ≤ 1
2
.

Therefore, φx ≥ ∆ for all 0 < x ≤ δ and 1
4
≤ y ≤ t. Notice that

h(
1

n
, q(n)) = 1− 2−1/n + [q(n)]1+1/n −

(
1 +

1

n

)
q(n) ≥ h(0, q(n)) +

1

n
∆

if 1/n ≤ δ. Hence q(n+1)−q(n) ≥ (1/(n+1))∆ and q(n+k)−q(n) ≥ ∑k
j=1(1/(n+j))∆ for

all k = 1, 2, ... if 1/n ≤ δ, which implies q(n+k) →∞ as k →∞ and we get a contradiction.
Therefore, q(n) → c as n →∞. The proof of the main theorem now is complete.

Table 1 gives Manager II’s winning probability q(n) for various n
Remark. It is interesting to observe that q(n) will converge to c as n → ∞ for any

initial value q(2) = d if d is in the interval [0, 1]. From the proof of the main theorem,
q(n) ≤ q(n + 1) if q(n) ≤ yn < yn+1 and q(n) > q(n + 1) if yn < q(n). Since y2 < y3 < · · ·
and lim

n→∞
yn = c, q(n) → c if q(n) ≤ yn for some n. Now if q(n) > yn for all n ≥ 2, then, by a

similar argument as the one used in the proof of the main theorem, we can again show that
q(n) → c as n →∞. We omit the details.
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Note added in proof
Immediately prior to publication, the authors were informed by the referee of a paper

by Enns and Ferenstein, ‘The Horse Game’, (J. Operat. Res. Soc. Japan,, 28, 1985, pp.
51–62) which also contains this problem. We apologize to those authors for our oversight in
not finding and referencing their paper, which gives a treatment of the problem with horses
rather than secretaries. However, in their paper the sequence un is claimed monotonic
and bounded, but this claim is not proved. We call this sequence q(n) and prove with great
difficulty these properties with the introduction of the auxiliary function h(x, y). We consider
the justification of the sequence’s properties a major step in both papers’ conclusions.
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Table 1
Manager II’s winning probability q(n)

n q(n) n q(n)
2 0.250000 30 0.322067
3 0.278595 40 0.323340
4 0.291191 50 0.324121
5 0.298408 60 0.324651
6 0.303124 70 0.325036
7 0.306465 80 0.325328
8 0.308964 90 0.325558
9 0.310908 100 0.325744
10 0.312467 200 0.326606
11 0.313746 300 0.326907
12 0.314815 400 0.327061
13 0.315724 500 0.327156
14 0.316506 600 0.327220
15 0.317186 700 0.327266
16 0.317784 800 0.327301
17 0.318314 900 0.327329
18 0.318788 1, 000 0.327351
19 0.319212 2, 000 0.327453
20 0.319595 3, 000 0.327488
21 0.319944 4, 000 0.327506
22 0.320262 5, 000 0.327517
23 0.320553 10, 000 0.327539
24 0.320821 20, 000 0.327550
25 0.321068 50, 000 0.327557
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