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Abstract

The Kelly criterion is a money management principle that beats any

other approach in many respects. In particular, it maximizes the expected

growth rate and the median of the terminal wealth. However, until re-

cently application of the Kelly criterion to multivariate portfolios has seen

little analysis. We briefly introduce the Kelly criterion and then present

its multivariate version based only on the first and the second moments

of the asset excess returns. Additionally, we provide a simple numerical

algorithm to manage virtually arbitrarily large portfolios according to so-

called fractional Kelly strategies.

Keywords: Kelly criterion, money management, multivariate portfolios, frac-
tional Kelly strategies, analytic and numerical approximation, portfolio opti-
mization on GPUs, CUDA.

The Kelly criterion is well known among the gamblers as a formula to
calculate the optimal bet size in games with a positive expected return. Assume
a gambler tosses a biased coin so that the probability p to get a tail is known
and larger than 0.5. After each bet a gambler loses or doubles the money at
stake. In order to maximize his/her expected wealth s/he should put at stake
all his/her capital on each bet. However this is too risky because each bet looms
the danger to lose everything and as the number n of bets goes to ∞ a gambler
will eventually go bankrupt. This “paradox” is due to the fact that by placing
maximal bets there is only one “lucky” path: n wins on n bets. Since p > 0.5
the expected wealth E[Xn] = X0(2p)

n still grows with each bet though the
probability of the “lucky” path decreases to zero as n grows.

This, however, would be little comfort for a bankrupt gambler. Thus even in
a favorable game one should put at stake only a fraction of the available capital.
Kelly [1956] suggested to bet a fraction, which maximizes the expected growth

∗University of Duisburg-Essen, Dept. of Economics, Chair of Energy Trading and Financial
Services, finanzmaster@gmx.net

†The author gratefully acknowledges hardware donation from NVIDIA Academic Partner-
ship Program.

1



 Electronic copy available at: http://ssrn.com/abstract=2259133 

rate. Most likely he wrote his seminal paper together with Claude Shannon
but signed it alone because AT&T did not want to announce that bookies
represented a large part of its customers (see Case [2006]).

Kelly pointed out two crucial assumptions: reinvested winnings and a large
number of bets. This is not always the case in gambling but in portfolio
management it usually is. Kelly also mentioned that his strategy is equiva-
lent to the maximization of the logarithmic utility but he explicitely avoided
any argumentation based on utility functions. His main rationale is that his
approach eventually overtakes any other approach, which bets a different but
still a constant wealth fraction. However, the equivalence with logarithmic
utility turned out to be very practical: Bellman and Kalaba [1957] and Mossin
[1968] proved that for a series of bets the optimal fraction remains constant if
and only if one maximizes the expected power or logarithmic utility. Since the
optimal fraction remains constant, it does not depend on the number of trades.
Respectively, such utility functions are called myopic because one optimizes
each trade as if it were the last trade.

Breiman [1961] proved that Kelly’s approach X∗ beats any other money
management approach X in the sense1 that E[X/X∗] ≤ 1. Moreover, Ethier
[2004] showed that under fairly general conditions the Kelly criterion maximizes
the median of terminal wealth. It is a very important property because (esp. in
case of highly skewed distributions) the median as a measure of central tendency
is often preferred to the mean. Indeed, maximizing the median we maximize
what we get by a typical game or market scenario. Note that in this context
“typical” does not mean “the most probable” (otherwise it would be a mode,
not a median). But it is typical in the sense that a median represents neither
bad luck nor good luck but, so to say, a “middle luck”.

In spite of all its nice properties the Kelly criterion is suprisingly little known
among portfolio managers. Probably this is due to the fact that portfolio man-
agement is essentially multivariate but (with a few exceptions) the literature on
Kelly criterion considers only the univariate case. Breiman [1961] did consider
a multivariate game but his appoach is purely theoretical since one needs to
know the joint distribution of the outcomes. Maslov and Zhang [1998] started
with a general approach, which is similar to ours but ended up with a formula
for uncorrelated assets only. Their idea was enhanced in Laureti et al. [2010]
where a solution for the case of correlated assets is, in principle, provided.
However, for this case they just briefly sketch their approach in the appendix and
neither reduce it to a well-known approach like e.g. quadratic programming, nor
run any numerical trials, nor solve the optimization problem for the fractional
Kelly strategies. Rising and Wyner [2012] is very close to our study but they
had to assume that the variance of a portfolio return is approximately equal

1To prevent a confusion we emphasize that in general E[X/X∗] 6= E[X]/E[X∗]. Breiman’s
result does not mean that the Kelly criterion overtakes any other strategy in expectation but
it loosely means the following: if X performs well then X∗ will likely also do (maybe a little
bit worse). But if X performs (extremely) badly then X∗ will probably be also bad but not
as disastrous as X.
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to its second (non-centered) moment, which is not the case if the expected
asset returns are large. Moreover, they interpret fractional Kelly strategies as
proportional reduction of risky asset fractions. As we demonstrate in Exhibit
4, such straightforward interpetation may be suboptimal if the asset returns
are not jointly Gaussian. Additionally, neither Maslov and Zhang [1998], nor
Laureti et al. [2010], nor Rising and Wyner [2012] analyze the quality of the
approximation by Taylor series (see Appendix 1). Cover [1984] suggested a
simple and very fast algorithm to maximize the log investment return but it is
unsuitable for the fractional Kelly strategies. Browne [2000b] assumes normal
asset returns and analyzes Kelly strategies in context of the outperformance of
the return of a target benchmark portfolio. The recent paper by Davis and Lleo
[2012] is very interesting but also very technical and not so easily applicable in
practice since they deal with possibly unobservable factors.

Another reason for the obscurity may be the absence of the Kelly criterion
in university curricula2. This is, in turn, due to the criticism by prominent
economists like Samuelson [1971]3. In this sense it is even more remarkable that
some of Samuelson’s counter-arguments actually speak in favour of the Kelly
criterion. Samuelson [1971] wrote:

Let the gambler-investor face a choice between investing completely
in safe cash or completely in a “security” that yields for each dollar
invested, $2.70 with probability 1/2 or only $0.30 with probability
1/2. To maximize the geometric mean, one must stick only to cash,

since [(2.7)(.3)]
1

2 = .9 < 1. But, Pascal will always put all his wealth
into the risky gamble.

This is certainly true but who can force market players to invest only either
in cash or in a security?! We write “security” without quotation marks, since
suchlike securities do exist, consider e.g. Nokia or solar stocks. In Samuelson’s
case a Kelly investor will put 42% of his/her capital in a security and yield

[(1+1.7 ·0.42)(1−0.7 ·0.42)]
1

2 = 1.100, i.e. 10% growth rate in a typical market
scenario. Moreover, a risk-averse person will likely bet even less than the Kelly
fraction (one half of it is a common practice). Exhibit 1 shows two outcomes of
“Kelly and half-Kelly vs. Pascal investment”4.

Application to multivariate portfolios

Consider a market with n correlated risky assets Sk, k = 1, .., n and a riskless
bond. Denote a random return on asset Sk with rk and the return on bond

2E.g. in Germany, to our knowledge, the Kelly criterion is systematically taught only at
the University of Greifswald and Frankfurt School of Finance and Management.

3Samuelson strongly criticized the Kelly criterion but actually got rich due to his investment
in Warren Buffets Berkshire Hathaway Inc. Interestingly, Buffet seems to act as full Kelly
investor. See Wenzel [2011] and Ziemba [2003].

4The readers can reproduce Exhibit 1 and Exhibit 2 with author’s program in R language:
http://www.yetanotherquant.de/kelly/kellyR.zip
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Exhibit 1: Samuelson’s example: Kelly and half-Kelly vs. Pascal in a typical
market scenario (left) and in an unfortunate case (right).
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with r. Without loss of generality let investor start with initial capital equal to
$1.0 and invest a wealth fraction uk in Sk. The residual capital (1 −

∑n

k=1
uk)

is invested in risk-free bond. After the first trade one yields

n∑

k=1

uk (1 + rk) + (1 + r) (1−

n∑

k=1

uk) = (1 + r) +

n∑

k=1

uk(rk − r) (1)

According to the Kelly criterion we need to find a vector of fractions u =
(u1, . . . , un)

T that maximizes

E

[
ln

(
(1 + r) +

n∑

k=1

uk(rk − r)

)]
(2)

The optimization of the logarithmic utility is myopic. Thus in order to maximize
the expected terminal logarithmic wealth we just maximize (2) on each trade5.
Since we make no assumption on the probability distribution of returns, we can
hardly find a closed form solution for (2). But expanding it as the Taylor series
about u0 = (0, . . . , 0) we obtain

E


ln(1 + r) +

n∑

k=1

uk(rk − r)

1 + r
−

1

2

n∑

k=1

n∑

j=1

ukuj

(rk − r)(rj − r)

(1 + r)2


 (3)

or equivalently in matrix notation

E

[
ln(1 + r) +

1

1 + r
(r− 1r)

T
u−

1

2

1

(1 + r)2
u
T
Σu

]
(4)

5In case of a numerical solution it may be better to simulate many trades per path in order
to make the terminal results more distinguishable.
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This is a quadratic optimization problem and the [unconstrained] solution (with

estimated parameters r̂ and Σ̂ ) is

u
? = (1 + r)(Σ̂)−1(r̂− 1r) (5)

In practice a fund manager must usually adhere to the no leverage and no short
selling constraints. In this case the solution does exist as well but must be found
numerically, e.g. with ’quadprog’ R library6 or Maple.

In Appendix 1 we analytically evaluate the error of the approximation of
(2) by (3) under some constraints that are, however, common in practice.
Additionally, we ran various numerical trials that have verified the quality of
the approximation. Exhibit 2 shows such a case: the returns are drawn from a
rather irregular distribution (asymmetric, multimodal, heavy-tailed), which can
hardly be exhaustively characterized by its first and second moments. Still the
approximative solution of the portfolio optimization problem is very good.

Exhibit 2: Probability density of returns and the approximation according to
(5) (black pillar) vs. exact solution (grey pillar)

Note that we made no assumption on the distribution of returns. All we need
to know is just the expectation of the excess returns and the matrix of their
second (noncentral) mixed moments. These parameters can be readily estimated
from historical asset prices. However, the parameter estimation errors can
drastically distort the solution. Thus a portfolio manager should not rely merely
on the point estimates. Instead s/he should ponder the confidence intervals of
the parameters and proceed from the lower bound for the expected returns
and the upper bound of covariance. This will lead to underbetting so that the
expected gain and the risk both decrease, whereas in case of overbetting the
risk grows but the expected gain still decreases (see Thorp [2006]).

6http://cran.r-project.org/web/packages/quadprog/index.html
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Algorithm for the fractional Kelly strategies

The strategies that bet less than the Kelly fraction are called fractional Kelly
strategies. As we just pointed out, they are less profitable but also less risky. In
the case of a univariate portfolio we just decrease the capital fraction invested
in the risky asset and shift the released capital to the riskless bond. But for
a multivariate portfolio such an approach is ambiguous. Indeed, an investor
usually cares about the total fraction of risky assets in his/her portfolio. And
s/he can at first proportionally descrease the fractions of all risky assets in
u
? but then additionally redistribute the capital among the risky assets. If

the returns are jointly Gaussian then we shall just proportionally reduce the
fractions of the risky assets. Moreover, in this case the strategy with Kelly
fraction x := 1/(1 − α) is equivalent to the maximization of the (negative)
power utility xα/α, α < 0. But in general this nice property does not hold true
(see MacLean et al. [2010] and Davis and Lleo [2012]). For instance7, even if the
marginal returns are Gaussian but the marginals are paired by Clayton copula,
then the proportional fraction reduction is suboptimal. Imposing additional
constraints 0 ≤ ui ≤ x ∀i and

∑n

i=1
ui ≤ x we can still use (3) to find the

optimal portfolio for a given x. However, (3) may be a bad approximation for
the leveraged portfolios or the portfolios that contain assets with possibly very
high returns8 (see Appendix 1). Additionally, practitioners usually like having
two independent optimization methods: if both of them get similar results then
they are plausible.

We consider the portfolio optimization under the no leverage and no short
selling constraints. A Monte Carlo grope algorithm we employ is as follows:

1. Assume we want to invest x of our capital in risky assets9, x ∈ [0%, 100%].
Choose an initial portfolio so that all fractions of the risky assets are between
0.0 and x and their sum is equal to x. Distributing the capital over all assets
equally may be a good start.
2. (Groping step): modify the fractions at random so that the no short selling
and no leverage conditions still hold. If the new portfolio yields higher expected
growth rate, set it as initial portfolio, otherwise leave initial portfolio unchanged.
3. Repeat Step 2 until portfolio performance stops increasing.

We can readily simulate a uniform distribution on the set of admissible port-
folios, i.e. those conforming to the no leverage and no short selling constraints.
In case of n risky assets let us simulate zi = U[0, 1] for i ∈ [0, .., n], define
r :=

∑n

i=1
zi and set ui := xzi/r. Then 0 ≤ ui ≤ x, ∀i and

∑n

i=1
ui = x.

This algorithm should also be used to validate the approximation (5). If the
solution from (5) is similar to that by simulation then it is plausible. Since

7See http://www.yetanotherquant.de/kelly/kellyR.zip, script 3a and 3b
8These may be e.g. the call options.
9A risk-averse investor will choose x less than in a full Kelly strategy. But the algorithm is

also correct for risk-seeking strategies that bet more than the Kelly fraction. These strategies
may be relevant for short-term speculators, see Browne [2000a].
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Exhibit 3: Monte Carlo grope algorithm in case of two risky assets.
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we optimize the logarithmic or, in case of a fractional Kelly strategy, a power
utility10, there is a unique extremum and the algorithm will (sooner or later)
converge.

Exhibit 4: Expected growth rate by full Kelly strategy (grey dashed pillar),
proportionally reduced fractions(black pillar) & reduced and restructured
fractions(grey pillar). Marginal Gaussian returns are paired by the Clayton
copula.

The algorithm is very flexible since all we need is just to be able to simulate

10As we do not know the number of future trades, we have to optimize myopically. This
implies, that we optimize a power utility function. However, in case of non-Gaussian returns
we cannot, in general, relate its risk-aversion parameter to the Kelly fraction, see MacLean
et al. [2010].
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the returns. Moreover, we can even stay model-free and sample with replace-
ment from the historical returns. Although the algorithm is really primitive, it
works well. In contrast to Cover [1984] we can also optimize fractional Kelly
strategies.

The only problem we encountered is an enormous computational intensity.
As a matter of fact we need to simulate very many paths to assure convergence.
Moreover, a path should be long enough to let the Kelly strategy prevail for
sure. This problem can, however, be efficiently mitigated by means of GPUs
(graphics processing units) 11. We have tested the algorithm with a portfolio
of seven stocks from DAX12: Adidas, Bayer, BMW, Lufthansa, Fresenius, RWE
and Siemens. We assume daily portfolio rebalance. This is certainly not very
common in practice but our primary goal is to test the numerical convergence.
For this purpose the daily returns are particularly good: the difference is much
less pronounced than e.g. by annual returns thus the tested algorithm is really
challenged. For every stock we simulate 26214400 paths for each iteration, a
path consists of 10000 trades and the number of iterations is set to 300. So the
total computational complexity is about 1014, i.e. 100 trillions operations.
We chose seven stocks because on the one hand, it is sufficient to make opti-
mization by a brute-force enumeration of the portfolio fractions impossible, on
the other hand the correlation matrix is still managable. It is given by:

Adidas Bayer BMW Lufth. Fresen. RWE Siem.
Adidas 1.00000 0.16548 0.16272 0.38367 0.86897 0.13664 0.22027
Bayer 0.16548 1.00000 0.43397 0.42181 0.11369 0.47749 0.49384
BMW 0.16272 0.43397 1.00000 0.53210 0.05055 0.45504 0.61104
Lufth. 0.38367 0.42181 0.53210 1.00000 0.29718 0.43157 0.55309
Fresen. 0.86897 0.11369 0.05055 0.29718 1.00000 0.08171 0.10376
RWE 0.13664 0.47749 0.45504 0.43157 0.08171 1.00000 0.50391
Siem. 0.22027 0.49384 0.61104 0.55309 0.10376 0.50391 1.00000

We set the interest accrued overnight to 0.04/365 = 0.00011 and estimate
the daily mean returns, they are:

Adidas Bayer BMW Lufth. Fresen. RWE Siem.
0.000380 0.000361 0.000263 0.000093 0.000428 0.000209 0.000254

However, solving the optimization problem with these data according to (5)
yields negative fractions for Adidas and Lufthansa. Since we want to test under
no short selling and no leverage conditions, we first test under these constraints
with original data and additionally run a test with the estimation of the mean
returns “adjusted” as follows:

Adidas Bayer BMW Lufth. Fresen. RWE Siem.
0.000456 0.000253 0.000263 0.000279 0.000385 0.000209 0.000254

11Additionally, we are developing an accelerated proprietary version of the algorithm,
enhanced both technically and mathematically.

12German equivalent of the Dow Jones Industrial Average. We have chosen the least
correlated stocks.
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This let us consistently compare the results from (5) and from our numerical
algorithm. Futher we assume that the returns are normally distributed. Of
course we may assume any distribution as long as the 1st and the 2nd statistical
moments of the simulated data are equal to those of historical data. Hence we
can even stay distribution-free and sample with replacement from the historical
data. But for the normally distributed returns there is an exact closed form
solution by Merton [1969], so it would be useful to compare this solution with the
approximation according to (5) and with the solution via numerical simulation.
The results for the case of the “adjusted” mean returns are as follows:

Adidas Bayer BMW Lufth. Fresen. RWE Siem.
Merton 0.01207 0.15903 0.24826 0.13879 0.2469 0.02839 0.06981
Approx. 0.01212 0.15892 0.24820 0.13896 0.2468 0.02839 0.06977
Numeric 0.01898 0.15455 0.23513 0.15101 0.2410 0.03150 0.06482

As we can readily see, Merton’s exact solution and the approximation (5)
are nearly equivalent and the numerical simulation yields very similar results as
well.

It takes about ten hours to solve the problem with a single NVIDIA Tesla
K20 card13 but one can install up to four cards in a modern PC with a suitable
mainboard14. Since our method is not affected by the curse of dimensionality,
it may be applied to virtually arbitrarily large portfolios15. From Exhibit 5 we
conclude that about 200 iterations are sufficient to achieve convergence in this
case.

As to the test with original data, we obtain (under no leverage and no short
selling constraints) the following optimal portfolio:

Adidas Bayer BMW Lufth. Fresen. RWE Siem.
Approx. 0.0 0.56517 0.14144 0.0 0.29339 0.0 0.0
Numeric 0.0 0.57785 0.12905 0.0 0.29311 0.0 0.0

In this case the optimal portfolio consists only of three stocks with a clear
dominance of Bayer. In general, a straightforward application of the Kelly
criterion tends to produce undiversified portfolios. Moreover, the results are
very sensitive to the parameter estimation errors. Nekrasov [2014] provides
some tricks to mitigate these problems in practice.
The simulated results were again very close to the analytical approximation,
yet in this case we needed about 600 iterations. Namely, at first we have
simulated with a relatively large groping step and took the best portfolio from
300 iterations as the starting point for the second simulation with a smaller
groping step.

Obviously, we may need more iterations for other cases, especially when the
number of assets is large. But for the optimization with respect to fractional

13Source code in CUDA: http://www.yetanotherquant.de/kelly/exampleInCUDATeslaK20.zip
14For instance, ASUS Z9PE-D8 WS has 7 PCI-Ex16 slots and costs less than $600. Tesla

K20 is more expensive but still affordable even for a private investor.
15Computational overhead will still grow with the number of assets just because we need

to simulate paths for each asset. But this is merely a linear growth.
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Exhibit 5: Convergence of the solution for a portfolio of seven DAX stocks, the
case of “adjusted” estimated returns.
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Kelly strategies there is an efficient rule of thumb:
1. Find the “optimal” portfolio for the fractional Kelly strategy analytically
under the assumption of jointly Gaussian returns (i.e. proportional reduction
of the risky asset fractions).
2. Tune the simulation parameters (number of paths, groping step, number of
iterations) so that the numerical solution converges to the analytical approxi-
mation.
3. Apply the simulation algorithm with these parameters to find the optimal
portfolio for the fractional Kelly strategy. (In this step we do not assume jointly
Gaussian returns anymore and draw the returns from a realistic distribution or
from historical data with replacement).
4. If there is no clear sign of convergence like that at Exhibit 4 after the 200th
iteration, halve the groping step and continue simulation with as many iterations
as were done so far.
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Appendix 1. Evaluation of the approximation

error by Taylor expansion

It turns out that setting the risk-free rate r to zero we can reduce our problem
to the univariate case, simplifying both reasoning and notation. Assign

t(u) := r +

n∑

k=1

uk(rk − r) =

n∑

k=1

ukrk (6)

Then we can rewrite (2) as

E [ln(1 + t(u))] (7)

and we want to maximize this expression. According to our approach we replace
the objective function with its Taylor approximation about u0 = (0, . . . , 0). But
for r = 0 it follows that t(u0) = 0 thus we expand ln(1 + t(u)) about t = 0 and
maximize

E

[
t(u)−

1

2
t2(u)

]
(8)

Note that current risk-free rates are extremely low, occasionally they are even
negative16 thus the assumption r = 0 is rather a stylized fact than a mathemat-
ical trick.

We could have tried to estimate
∥∥∥∥max

u

E [ln (1 + t(u))]−max
u

E

[
t(u)−

1

2
t2(u)

]∥∥∥∥ (9)

where ‖.‖ may be any feasible norm, e.g. the supremum norm, which represents
the approximation error in the worst case. However, in the context of the
portfolio optimization it is not our goal, since we search for u? that maximizes
(8) and then put it into (7) in hopes to maximize the expected portfolio growth
rate. Let u?? be the point in which (7) achieves its true maximum. Our problem
is that in general u? 6= u

?? hence we need to analyse

∣∣E [ln (1 + t(u??))]− E [ln (1 + t(u?))]
∣∣ (10)

16For instance, some German bonds were issued with negative yield, see
http://www.ft.com/cms/s/0/b414c77a-abcf-11e1-a8a0-00144feabdc0.html
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First of all we assume that E[ln(1 + t(u))] exists and is finite for each u s.t.
uk ∈ [0, 1] ∀k. Further we note that ln(1 + t(u)) can be expanded in a Taylor
series only on the interval (−1, 1]. Additionally, Exhibit 6 shows that the Taylor
approximation up to O(t3) is more or less accurate only for relatively small |t|.

Let us assume that |rk| ≤ R ∀k, where R is fixed. Under no leverage and no
short selling conditions it follows that |t| ≤ R. Indeed, for arbitrary but fixed
uk ∈ (0, 1] ∀k, t is increasing in rk. The worst case (both in the sense of the
porfolio yield and the approximation error) takes place if r1 = r2 = . . . = rn =
−R and we are fully invested in risky assets, i.e.

∑n

k=1
uk = 1. But in this

worst case it immediately follows from (6) that

t = r +

n∑

k=1

ukrk − r

n∑

k=1

uk =

n∑

k=1

ukrk = −R (11)

For instance, take R = 20%, which is not implausible for the case of the
medium-term trading in blue chips. From Exhibit 6 we see that in this case
the approximation error l < 0.0035. Analogously we can conclude that t = 0.2
in the best case17, i.e. when r1 = r2 = . . . = rn = 0.2 and

∑n

k=1
uk = 1

Exhibit 6: (ln(1 + t)− t+ 0.5t2) on [−0.9, 0.9] and [−0.2, 0.2]

So far we have considered only a single realization of the random returns
but it was the worst case. Hence by any other realization it still holds that the
approximation error l ≤ 0.0035.

We maximize the expected portfolio growth rate but the expectation (in case
of discrete probability distribution) is just the sum of outcomes weighted by
their probabilities. If the returns have a continuous distribution, we can always
turn it to the discrete one approximating (arbitrarily precisely) the probability
density by a step function. Both the logarithm and its Taylor approximation
up to the 3rd term are convex functions. Thus their expectations will also be

17This case will really be the best in the sense of portfolio yield as long as the risk-free rate
r ≤ 0.2. In the sense of approximation error it is still a bad case but not as bad as when
r1 = r2 = . . . = rn = −0.2.
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convex (as the sums of convex functions). Exhibit 7 demonstrates the simplest
case: zero risk-free rate and only one risky asset whose return can take only
two values (in this case 0.5 and −0.35) with equal probability 0.5. Denote the
objective function with f(t(u)) := E [ln (1 + t(u))] and its Taylor approximation
with g(t(u)) := E

[
t(u)− 1

2
t2(u)

]
.

Let l be the maximal approximation error on the interval [a, b], in our case
[a, b] = [−0.2, 0.2]. In the trivial case when u

?? = u
? it is obvious that

|f(t(u??))− g(t(u??))| ≤ l.

In the general case the following combinations are possible:

f(t(u??)) ≥ g(t(u??)) f(t(u?)) ≥ g(t(u?)) (12)

f(t(u??)) ≥ g(t(u??)) f(t(u?)) ≤ g(t(u?)) (13)

f(t(u??)) ≤ g(t(u??)) f(t(u?)) ≤ g(t(u?)) (14)

f(t(u??)) ≤ g(t(u??)) f(t(u?)) ≥ g(t(u?)) (15)

(16)

For the first combination we have

f(t(u??))− g(t(u??)) ≤ f(t(u?))− g(t(u?)) ≤ l (17)

(since by definition u
?? maximizes f and u

? maximizes g).

For the second combination it holds that f(t(u??)) − g(t(u??)) ≤ l and
g(t(u?))− f(t(u?)) ≤ l thus

f(t(u??))− f(t(u?)) ≤ [f(t(u??))− f(t(u?))]+ [g(t(u?))− g(t(u??))] ≤ 2l (18)

The third and the fourth combinations are analogous to, resp., the first and
the second. So we proved that even in the worst case the approximation error
does not exceed 2l. The assessment whether this is large or not depends on the
maximum of the expected growth rate. E.g. in our case of rk ∈ [−20%, 20%]
∀k we have that 2l ≤ 0.007 = 0.7%. But in general we can say nothing about
the expected growth rate of the optimal portfolio. For such returns it may
readily be 7% or more and then the approximation error may be disregarded.
But if the expected returns of all assets are very close to zero then so will be
the maximum expected growth rate and the approximation error gets relatively
large. However, in this case it is probably not worth trading at all.
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Exhibit 7: Left: ln(1+ 0.5u) and ln(1− 0.35u). Right: 0.5[ln(1+ 0.5u)+ ln(1−
0.35u)] and its Taylor approximation. (We write simply u instead of t(u)).
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