CryptoNote Coin

Michael Davis

University of Miami

April 2019
Proof of Work

“scrypt” (used by Litecoin) has a uniform distribution of dependent lookups. Given a fast enough processor, it can be faster to only keep a small scratch-pad in memory and compute other dependencies on the fly.

CryptoNight ensures that new blocks depend on all previous blocks, so CPU speed trades off with memory exponentially.
Terminology

- $l = 2^{252} + 27742317777372353535851937790883648493$
- A base point $G = (x, -\frac{4}{5})$
- H_s a cryptographic hash function
- H_p a deterministic hash function
- Private keys are numbers $a \in [1, l - 1]$
- Public keys are points $A = aG$.
- Private user keys are pairs (a, b) of private ec-keys
- A standard address is a pair (A, B) derived from the private user key (a, b)
Table of Contents

Unlinkability

Untraceability
Alice → Bob: Step 1

Alice reads Bob’s public address \((A, B)\).
Alice → Bob: Step 2

Alice generates $r \in [1, l - 1]$ and then computes

$P = \mathcal{H}_s(rA)G + B$.
Alice → Bob: Step 3

Alice generates the transaction. The transaction contains:

- The transaction public key $R = rG$
- The amount being transferred
- The destination key $P = H_s(rA)G + B$
Alice → Bob: Step 4

Alice sends the transaction.
Bob is listening on the stream of transactions. For each transaction, using R, the public key of the transaction, and a, one of Bob’s private ec-keys, Bob computes $P' = H_s(aR)G + B$. If $P' = P$ (the destination key), then $aR = arG = rA$. The transaction is for Bob, and only Bob (and Alice) know.
Bob computes $x = H_s(aR) + b$. Now he can use x to sign an input. No one else knows b, so only Bob can claim the input. Bob can give away the pair (a, B) (the “tracing pair”) to an auditor so the auditor can know which transactions belong to Bob. The auditor does not have enough information to compute x.
Table of Contents

Unlinkability

Untraceability
One Time Ring Signatures

One time ring signatures have 4 operations

- GEN generate
- SIG sign
- VER verify
- LNK link
One Time Ring Signatures: GEN

GEN takes randomness and produces \((x, P)\), a point and number \((P = xG)\) and a point \(l = x\mathcal{H}_p(P)\).
One Time Ring Signatures: SIG

SIG takes

- m a message
- S' a set of public keys
- (x, P) (generated by SIG)
- I (generated by SIG)

and outputs

- σ the signature
- S the set $S' \cup \{P\}$

It’s producing a signature given a set of keys.
One Time Ring Signatures: VER

VER is a predicate that takes

- m a message
- S a set of public keys
- σ a signature

It's verifies that the signature is an encoding of the message signed by one key in the set S.
One Time Ring Signatures: LNK

LNK is a predicate that takes

- \mathcal{I} all previously seen key images \{I\}
- σ a signature

It verifies that the I encoded in the signature has not previously been seen. If it has been seen before, the signer is attempting to double spend and the transaction is invalid.