Burt Rosenberg
Simulation of Infinite Memory

In KMA the following program rewriting function short is desired. Given a program P_e of arity j using k variables, $k \geq j$, derive a program $P_{short(e)}$ such that $P_{short(e)} = P_e$ and $P_{short(e)}$ uses only $j + r$ variables, where r is a “constant” depending on j but not k.

The approach in KMA used pairing functions to fold a finite amount of memory into a fixed amount of memory. It is just as easy to devise a scheme which folds an infinite amount of memory into a fixed amount provided that only a finite number of variables are ever simultaneously non-zero. For a small conceptual effort to clarify what an infinite memory could mean, the while-program mechanisms are simplified.

A pairing function is a computable bijection $\tau : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Its inverse is a pair of projection functions π_1 and π_2 such that,

$$i = \tau(\pi_1(i), \pi_2(i))$$

for all $i \in \mathbb{N}$. For our construction to succeed, we require $\tau(0, 0) = 0$. The pairing function of KMA is an example of such a pairing function:

$$\tau(i, j) = \frac{(i + j)(i + j + 1)}{2} + i. \quad (1)$$

We will define the symbol \mathbb{N}^ω as the direct sum of an infinite number of copies of the naturals. An element of \mathbb{N}^ω is an infinite-dimensional vector of naturals, all but finitely many entries being zero. The vector e_i which is zero in all but the i-th coordinate where it is one is an example of an element from \mathbb{N}^ω. So is the vector which is 1 for all odd numbers less than a billion and zero elsewhere.

Theorem 1 There exists a computable bijection $\tau^* : \mathbb{N}^\omega \to \mathbb{N}$ with a family of projection functions $\pi_i^* : \mathbb{N} \to \mathbb{N}$, $i = 1, 2, \ldots$.

Proof: Let τ be a pairing function 1. Then τ^* is,

$$\tau^*(x_1, x_2, \ldots) = \tau(x_1, \tau(x_2, \ldots \tau(x_i, \ldots \ldots))).$$
Written this way, the function involves infinite recursion and is not computable, in fact, the definition itself is suspect. However, since $\tau(0, 0) = 0$, at a certain point it is inconsequential to continue the recursion. Define, therefore,

$$\tau^*(x) = \tau^i(x) = \tau(x_1, \tau(x_2, \ldots, \tau(x_i, 0)) \ldots)$$

where i is any integer such that x_j is zero for all $j > i$. If i and i' are two integers such that $x_j = 0$ for all $j > \min(i, i')$, then $\tau^i(x) = \tau^{i'}(x)$.

The inverse is defined as,

$$\pi^*_i(x) = \pi_1(\pi_2^{(i-1)}(x)).$$

That is, apply the projection π_2 iteratively $i - 1$ times to the argument, and then project by π_1. Since τ^* is τ^i for some i, the proof that this π^* is the inverse reduces to what has already been proved by KMA for the case of pairing functions $\mathbb{N}^k \rightarrow \mathbb{N}$.

The function τ^* is injective. Suppose $\tau^*(x) = \tau^*(y)$. Then for some i and j, $\tau^*(x) = \tau^i(x)$ and $\tau^*(y) = \tau^j(y)$. Letting $k = \max(i, j)$ then,

$$\tau^k(x) = \tau^i(x) = \tau^*(x) = \tau^*(y) = \tau^j(y) = \tau^k(y).$$

In KMA it is shown that τ^k is a bijection, so $x = y$.

The surjectivity a consequence of π^* being total.

To encode the variable X_1, \ldots, X_k of a certain k-variable while-program into a single variable, say M, we consider the finite set of variables which the program actually uses as a subset of the infinite set of variables:

$$\ldots, X_{-3}, X_{-2}, X_{-1}, X_0, X_1, X_2, X_3, \ldots$$

The variables of index zero or less are always zero, as are the variables of indices larger than k.

For a j-ary program P_e begin by encoding the vector,

$$(X_1, X_2, \ldots, X_j, 0, 0, \ldots)$$

into a single number M. Since j is known, it is possible to select the proper finite version of τ^*. The variables,

$$(X_0, X_{-1}, \ldots),$$
being all zero are encoded into the number $M' = 0$. We have the following macro, which takes the “top” number off of M and places it on M'.

$$\text{nextX}(M, M') =$$

$$\text{begin}$$

$$M' := \tau(\pi_1(M), M');$$

$$M := \pi_2(M)$$

$$\text{end}$$

Extraction of the value of a certain X_i from M is then possible by shifting an appropriate number of times and then projecting,

$$X_i := \text{get}(M, i) =$$

$$\text{begin}$$

$$M'' := M;$$

$$M' := 0;$$

$$i := \text{prev}(i);$$

$$\text{while } i < 0 \text{ do nextX}(M'', M');$$

$$X_i := \pi_1(M'')$$

$$\text{end}$$

Changing the value of a certain X_i in memory M proceeds as follows.

$$\text{set}(M, i, X_i) =$$

$$\text{begin}$$

$$M' := 0;$$

$$k := \text{prev}(i);$$

$$\text{while } k < 0 \text{ do nextX}(M, M');$$

$$M := \pi_2(M);$$

$$M := \tau(X_i, M);$$

$$k := \text{pred}(i);$$

$$\text{while } k < 0 \text{ do nextX}(M', M)$$

$$\text{end}$$

At the close of the program, we need to correctly place a value in X_1,

$$X_1 := \pi_1(M)$$