Burton Rosenberg
Final

December 10, 1992. 5:30–8:00 PM

There are five problems for a total of 100 points. Good luck.

Name: ________________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 Points.)

Consider a program which plays tick-tack-toe. One can encode a game board B as follows. There are nine boxes in tick-tack-toe which we will number $i = 0, \ldots, 8$. Define function τ which takes board B and integer i and equals,

$$
\tau(B, i) = \begin{cases}
1 & \text{if box } i \text{ is empty in board } B, \\
2 & \text{if box } i \text{ has an } X \text{ in board } B, \\
3 & \text{if box } i \text{ has an } O \text{ in board } B.
\end{cases}
$$

The game board is then represented as,

$$
\sigma(B) = \prod_{i=0}^{8} pr(i)^{\tau(B, i)}.
$$

Consider the function $f : \mathbb{N} \rightarrow \mathbb{N},$

$$
f(b) = \begin{cases}
1 & b = \sigma(B) \text{ and it is possible for } X \text{ to win given board } B, \\
0 & \text{else}
\end{cases}
$$

Show that f is primitive recursive. (HINT: Loop-programs.)
2. (20 Points.)

Mark in each of the following boxes “Y” if the computation system is equivalent in power to while-programs, or “N” if it is less powerful.

☐ Repeat-programs: These are while-programs except the basic control construction is \textit{repeat} \ldots \textit{until} rather than \textit{while} \ldots.

☐ A PS/2 computer whose FORTRAN, for reason of programming style, has forbidden the use of GOTO’s. For our purposes, define FORTRAN as:
 - Having all the usual arithmetic capabilities on an infinite supply of integer variables.
 - Having an if-then construction of the form,
 \begin{verbatim}
 IF (condition) THEN
 statements
 END IF
 \end{verbatim}
 - Having a do-loop construction of the form,
 \begin{verbatim}
 DO variable=initial,final,step
 statements
 END DO
 \end{verbatim}
 The limits to the do-loop are fixed upon entry to the loop.
 - Having subroutine and functions calls only when they cannot result in recursion. (E.g. “A” calls “B” which calls “A” is not allowed.)

☐ A while-program whose arithmetic rules (set to zero, successor and predecessor) have been replaced by the following string manipulation rules. A variable can be initialized to the empty string, \(X:=''\). An “a” can be appended to the string contained in a variable, \(X:=X||'a'\). Two strings can be checked for unequal length. (The length of the empty string is zero.) While and compound statements are as before.

☐ A Turing Machine whose tape is infinitely long \textit{only in one direction}.
3. (20 Points.) Show that the *Integer Programming Decision Problem* is in NP. (Do not attempt to show it NP-complete!)

An instance of an Integer Programming Decision Problem is given by a set of variables \(\{ X_1, \ldots, X_n \} \), a set of linear equations using these variables, called the *constraints*,

\[
\begin{align*}
b_1 & \geq a_{1,1}X_1 + a_{1,2}X_2 + \ldots + a_{1,n}X_n \\
b_2 & \geq a_{2,1}X_1 + a_{2,2}X_2 + \ldots + a_{2,n}X_n \\
& \vdots \\
b_m & \geq a_{m,1}X_1 + a_{m,2}X_2 + \ldots + a_{m,n}X_n,
\end{align*}
\]

where all the \(b_i \) and \(a_{i,j} \) are integers, a cost function,

\[
c(X_1, \ldots, X_n) = c_1X_1 + c_2X_2 + \ldots + c_nX_n,
\]

where all the \(c_i \) are integers, and an integer \(B \).

The decision problem is to answer Yes if there exists an assignment of *integers* to the \(X_i \) such that all of the constraints are true and the cost \(c \) is greater or equal to \(B \).
4. (20 Points.)

Give a bijection from pairs of integers to the naturals,

$$\mu(i, j) = k, \ i, j \in \mathbb{Z}, \ k \in \mathbb{N}. $$

(HINT: Use Kfoury, Moll and Arbib’s pairing function \(\tau : \mathbb{N}^2 \rightarrow \mathbb{N}\) and build from there.)
5. (20 Points.)

If \(f, g : \mathbb{N} \to \mathbb{N} \) are two functions, recall that \(f \geq g \) by extension ordering if,

(a) The domain of definition of \(f \) includes that of \(g \), and,

(b) for any \(i \) in the domain of definition of \(g \), \(g(i) = f(i) \).

The greatest-lower-bound of a family of partial functions

\[
\mathcal{G} = \{ g_i : \mathbb{N} \to \mathbb{N} \mid i = 0, 1, \ldots \}
\]

is a partial function \(G \) such that,

(a) \(g_i \geq G \) for all \(i \). (That is, \(G \) is a lower bound of the \(g_i \).)

(b) For any other \(G' \) such that \(g_i \geq G' \) for all \(i \), \(G \geq G' \). (That is, among all lower bounds for the \(g_i \), \(G \) is the greatest.)

Show that, under the assumption that the \(g_i \) form a descending chain,

\[
g_0 \geq g_1 \geq g_2 \geq \ldots,
\]

the greatest-lower-bound of family \(\mathcal{G} \) exists.

Show that the greatest-lower-bound need not be computable even if all the \(g_i \) are.