Burton Rosenberg
Midterm Answers

1. Show that these two program fragments are identical. The variables A and B are declared as boolean, and S_1 and S_2 represent two statements.

Program Fragment 1:

```plaintext
if A OR B then
    if A then S1
    else S2;
```

Program Fragment 2:

```plaintext
if A then S1
else if B then S2;
```

Solution: Transform the first fragment to:

```plaintext
if (A OR B) AND A then S1;
if (A OR B) AND (NOT A) then S2;
```

The absorption identity gives:

$$(A \lor B) \land A = A,$$

which we can apply to the first if. Note: \lor is the symbol for OR, \land is the symbol for AND, and \neg is the symbol for NOT. The law of distribution gives:

$$(A \lor B) \land (\neg A) = (A \land \neg A) \lor (B \land \neg A).$$

The first term of the OR on the right hand side is always false, so it reduces to only the second term. Therefore, we can transform our program again:

```plaintext
if A then S1;
if (B AND NOT A) then S2;
```
which is the same as:

\[
\text{if } A \text{ then } S1 \\
\quad \text{else if } B \text{ then } S2;
\]

which is Program Fragment Two.

2. Change the following \texttt{repeat} loop into an exactly equivalent \texttt{while} loop.

\{Precondition: \(N \) is any integer.\}
\[
i := 0 ; \\
\text{repeat} \\
i := i + 1 \\
\text{until } (i*i) > N ;
\]

\textbf{Solution:} The formula is:

\[\text{repeat } S \text{ until } C \leftrightarrow S; \text{ while } \neg C \text{ do } S.\]

Applying the formula:

\[
i := 0 ; \\
i := i + 1 ; \\
\text{while not}(i*i)>N) \text{ do} \\
i := i + 1 ;
\]

We can neaten this up using simple identities:

\[
i := 1 ; \\
\text{while } (i*i)\leq N \text{ do} \\
i := i + 1 ;
\]

3. Give code for the procedure

\[
\text{Procedure Concat}(A, B : \text{List}) ;
\]
which given two lists \(A \) and \(B \), changes \(A \) into their concatenation and changes \(B \) into the empty list. Do this with as efficiently as possible.

Procedure Concat(\(a, b: \text{list} \));
begin
 if \(b^.first = \text{nil} \) then begin
 {there is nothing to do in this case}
 end else if \(a^.first = \text{nil} \) then begin
 {\(b \) is not empty, \(a \) is empty.}
 {copy \(b \) to \(a \)}
 \(a^.first := b^.first \);
 \(a^.last := b^.last \);
 \{and make \(b \) empty\}
 \(b^.first := \text{nil} \);
 \(b^.last := \text{nil} \)
 end else begin
 {both \(a \) and \(b \) are not empty}
 {connect the list together}
 \(a^.last^.next := b^.first \);
 {update list \(a \)}
 \(a^.last := b^.last \);
 \{and make \(b \) empty\}
 \(b^.first := \text{nil} \);
 \(b^.last := \text{nil} \)
 end
end;

But then we notice that the last three lines of the last two cases are identical, so we can pull them out and put them together:

Procedure Concat(\(a, b : \text{List} \));
begin
 if \(b^.first \neq \text{nil} \) then begin
 if \(a^.first = \text{nil} \) then \{\(a \) becomes \(b \}\}
 \(a^.first := b^.first \)
 else \{tack on non-empty \(b \) to non-empty \(a \}\}
 \(a^.first^.next := b^.first \);
{update a and make b nil}
a^.last := b^.last ;
b^.first := nil ;
b^.last := nil
end
end ;

4. Improve the speed in the inner loop of the following code fragment.

(a) As written, how many multiplications are performed as a function of N.

(b) Give an identically functioning code fragment where only $O(N)$ multiplications are performed.

```plaintext
var a : array[1..N,1..N] of integer ;
i, j : integer ;
begin
  for i := 1 to N do
    for j := i to N do
      a[i,j] := i*i ;
end.
```

Solution: There are,

$$N + (N - 1) + \ldots + 1 = (N + 1)N/2,$$

multiplications performed.

It would be best to pull the multiplication out of the inner loop, doing it one time for all just before the do loop:

```plaintext
for i := 1 to N do begin
  k := i*i ;
  for j := i to N do
    a[i,j] := k
end ;
```