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Abstract

Secure Function Evaluation (SFE) protocols are very hard to design, and reducibility has been recog-
nized as a highly desirable property of SFE protocols. Informally speaking, reducibility (a.k.a. modular
composition) is the automatic ability to break up the design of a complex SFE protocols into several
simpler, individually secure components. Despite much effort, only the most basic type of reducibili-
ty, sequential reducibility (where only a single sub-protocol can be run at a time), has been considered
and proven to hold for a specific class of SFE protocols. Unfortunately, sequential reducibility does not
allow one to save on the number of rounds (often the most expensive resource in a distributed setting),
and achieving more general notions is not easy (indeed, certain SFE notions provably enjoy sequential
reducibility, but fail to enjoy more general ones).

In this paper, for information-theoretic SFE protocols, we
Formalize the notion of parallel reducibility, where sub-protocols can be run at the same time;
Clarify that there are two distinct forms of parallel reducibility:

Concurrent reducibility, which applies when the order of the sub-protocol calls is not impor-
tant (and reduces the round complexity dramatically as compared to sequential reducibility);
and
Synchronous reducibility, which applies when the sub-protocols must be executed simulta-
neously (and allows modular design in settings where sequential reducibility does not even
apply).

Show that a large class of SFE protocols (i.e., those satisfying the definitions of [22]) provably
enjoy (both forms of) parallel reducibility.
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1 Introduction

The objective of this paper is to understand, define, and prove the implementability of the notion of parallel
reducibility for information-theoretically secure multi-party computation. Let us start by discussing the
relevant concepts.

SFE Protocols. A secure function evaluation (SFE) is a communication protocol enabling a network of
players (say, having a specified threshold of honest players) to compute a (probabilistic) function in a way
that is as correct and as private as if an uncorruptable third party had carried out the computation on the
players’ behalf. SFE protocols were introduced by Goldreich, Micali and Wigderson [20] in a computational
setting (where the parties are computationally bounded, but can observe all communication), and by Ben-Or,
Goldwasser and Wigderson [5] and Chaum, Crèpeau and Damgård [13] in an information-theoretic setting
(where the security is unconditional, and is achieved by means of private channels1). We focus on the latter
setting.

SFE Definitions. Together with better SFE protocols, increasingly precise definitions for information-
theoretic SFE have been proposed; in particular, those of Beaver [2], Goldwasser and Levin [16], Canetti [7],
and Micali and Rogaway [22]. At a high-level, these definitions express that whatever an adversary can do
in the real model (i.e., in the running of the actual protocol, where no trusted party exists) equals what an
adversary can do in the ideal model (i.e., when players give their inputs to the trusted third party, who then
computes the function for them). This more or less means that the most harm the adversary can do in the
real model is to change the inputs of the faulty players (but not based on the inputs of the honest players!),
and then run the protocol honestly.

All these prior definitions are adequate, in the sense that they (1) reasonably capture the desired intuition
of SFE, and (2) provide for the existence of SFE protocols (in particular, the protocol of [5] satisfies all of
them). Were properties (1) and (2) all one cared about, then the most “liberal” definition of SFE might be
preferable, because it would allow a greater number of reasonable protocols to be called secure. However,
if one cared about satisfying additional properties, such as reducibility (i.e., as discussed below, the ability
of designing SFE protocols in a modular fashion), then more stringent notions of SFE would be needed.

Reducibility and Sequential Reducibility. Assume that we have designed a SFE protocol, , for a func-
tion in a so called semi-ideal model, where one can use a trusted party to evaluate some other functions

. Assume also that we have designed a SFE protocol, , for each function . Then, the re-
ducibility property says that, by substituting the ideal calls to the ’s in with the corresponding SFE
protocols ’s, we are guaranteed to obtain a SFE protocol for in the real model.

Clearly, reducibility is quite a fundamental and desirable property to have, because it allows one to break
the task of designing a secure protocol for a complex function into the task of designing secure protocols for
simpler functions. Reducibility, however, is not trivial to satisfy. After considerable effort, only the the most
basic notion of reducibility, sequential reducibility, has been proved to hold for some SFE notions: those of
[7] and [22]. Informally, sequential reducibility guarantees that substituting the ideal calls to the ’s in
with the corresponding ’s yields a SFE protocol for in the real model only if a single is executed (in
its entirety!) at a time.2 Therefore, sequential reducibility is not general enough to handle protocols like the
expected -round Byzantine agreement protocol of [15] (which relies on the concurrent execution of
specific SFE protocols) whose security, up to now, must be proven “from scratch”.

1This means that every pair of players has a dedicated channel for communication, which the adversary can listen to only by
corrupting one of the players.

2This is true even if, within , one could “ideally evaluate” all or many of the ’s “in parallel.”
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1.1 Our Results

In this paper, we put forward the notion of parallel reducibility and prove which SFE protocols satisfy it.
We actually distinguish two forms of parallel reducibility:

Concurrent reducibility.
This type of reducibility applies when, in the semi-ideal model, the can be executed in any
order. The goal of concurrent reducibility is improving the round-complexity of modularly designed
SFE protocols.

Synchronous reducibility.
This type of reducibility applies when, in the semi-ideal model, the must be executed
“simultaneously.” The goal of synchronous reducibility is enlarging the class of modularly designable
SFE protocols (while being round-efficient as well).

1.1.1 Concurrent Reducibility

There are many ways to execute several programs at a time. Each such way is called an inter-
leaving. The sequential executions of are examples of interleavings. But they are very special
and “very few,” because interleavings may occur at a round-level. For instance, we could execute the ’s
one round at a time in a round-robin manner, or we could execute in single round the -th round (if any) of
all the ’s. Saying that programs are concurrently executable means that some specified goal
is achieved for all of their interleavings.

Assume now that a function is securely evaluated by a semi-ideal protocol which, in a set of
contiguous instructions, only makes ideal calls to functions , and let be a SFE protocol for
(in the real model). Then, a fundamental question arise:

Will substituting each with yield a (real-model) SFE
protocol for in which the ’s are concurrently executable?

Of course, if calls on inputs that include an output of , we cannot hope that the ’s are concurrently
executable. Thus, to make sense of the question, all the inputs to ’s should be determined before any of
them is ideally evaluated. Moreover, even if all ’s are evaluated on completely unrelated and “independent”
inputs, may be secure only for some orders of the ’s, but not for others, which is illustrated by the
following example.

Example 1: Let be the coin-flipping function (takes no inputs and outputs a joint random bit), be a
coin-flipping function as well, and be the majority function on bits. Let be the following semi-ideal
protocol. Each player locally flips a random bit . Then the players “concurrently” use ideal calls to
and , getting answers and respectively. The common output of is . We claim that
is secure if we first call (the majority) and then (the coin-flip), but insecure if we do it the other way

around. Indeed, irrespective of which we get in the first ordering, since is random (and independent of
), then so is . On the other hand, assume we first learn the random bit and assume faulty players want
the bias the resulting coin-flip to . Then faulty players pretend that their (supposedly random) inputs for
the majority are all equal to . This is very likely to bias the outcome of majority to as well (provided
there are enough faulty players), making the coin-flip equal to with high probability.

Clearly, in the case of the above example, we cannot hope to execute the ’s concurrently: one of the
possible interleavings is the one that sequentially executes the ’s in the order that is insecure even in the
semi-ideal model. Thus, the example illustrates that the following condition is necessary for the concurrent
execution of the ’s.
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Condition 1: is secure in the semi-ideal model for any order of the ’s.

Is the above necessary condition also sufficient? Of course, the answer also depends on the type of SFE
notion we are using. But, if the answer were YES, then we would get the “strongest possible form of
concurrent reducibility.” Let us then be optimistic and put forward the following informal definition.

Definition 1: We say that a SFE notion satisfies concurrent reducibility if, whenever the protocols
satisfy this SFE notion, Condition 1 is (both necessary and) sufficient.

Our optimism is justified in view of the following

Theorem 1: The SFE notion of Micali and Rogaway [22] satisfies concurrent reducibility.

We note that we have been unable to prove an analogous theorem for all other more liberal notions of SFE,
and we conjecture that no such theorem exist. In support of our conjecture, we shall point out in Section 4.3
which stricter properties of the definition of [22] seem to be essential in establishing Theorem 1.

The importance of establishing (as in Theorem 1) the existence of SFE notions satisfying concurrent
reducibility arises from the efficiency gains of concurrent reducibility, as expressed by the following imme-
diate Corollary of Definition 1.

Corollary 1: Assume satisfy Condition 1, is a protocol for taking rounds, and
are SFE protocols according to a SFE notion satisfying concurrent reducibility. Then,

there is a (real model) SFE implementation of executing all the ’s in rounds.

This number of rounds is the smallest one can hope for, and should be contrasted with , the
number of rounds required by sequential reducibility.

1.1.2 Synchronous Reducibility

The need to execute several protocols in parallel does not necessarily arise from efficiency considerations or
from the fact that it is nice not to worry about the order of the execution. A special type of parallel execution,
synchronous execution, is needed for correctness itself.

Example 2: Let be the coin-flipping function that returns a random bit to the first two players, and
, of a possibly larger network. That is, , where is a random bit (and
is the empty string). Consider now the following coin-flipping protocol . randomly and secretly

selects a bit , randomly and secretly selects a bit , and then and “exchange” their selected bits
and both output .

Clearly, is a secure function evaluation of only if the exchange of and is “simultaneous”, that
is, learns only after it declares and vice versa. This requirement can be modeled as the parallel
composition of two sending protocols: and

. That is, we can envisage a semi-ideal protocol in which players and locally flip
coins and , then simultaneously evaluate and , and finally exclusive OR their outputs of
and . However, no sequential order of the ideal calls to and would result in a secure coin-flipping
protocol, so the need for a special type of parallel composition is motivated by security rather than efficiency
considerations.

The ability to evaluate several functions synchronously is very natural to define in the ideal model: the
players simultaneously give all their inputs to the trusted party, who then gives them all the outputs (i.e.,
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no output is given before all inputs are presented). We can also naturally define the corresponding semi-
ideal model, where the players can ideally and simultaneously (i.e., within a single round) evaluate several
functions. Assume now that we have a semi-ideal protocol for some function which simultaneously
evaluates functions , and let be a secure protocol for . Given an interleaving of the ’s,
we let denote the (real-model) protocol where we substitute the single ideal call to with real
executions of the protocols interleaved according to . As apparent from Example 2, we cannot hope
that every interleaving will be “good,” that is, will yield a SFE protocol for . (For instance, in the
semi-ideal coin-flipping protocol of Example 2, no matter how we design SFE protocols and for
and , any sequential interleaving of and yields an insecure protocol.) Actually, the guaranteed

existence of even a single good interleaving cannot be taken for granted, therefore:

Can we be guaranteed that there is always an interleaving
of such that is a SFE protocol for ?

Of course, the answer to the above question should depend on the notion of SFE we are using. This leads us
to the following informal definition.

Definition 2: We say that a SFE notion satisfies synchronous reducibility if, whenever the protocols
satisfy this SFE notion, there exists an interleaving such that is a SFE protocol

under this notion.

Example 2 not only shows that there are bad interleavings, but also that a “liberal” enough definition of SFE
will not satisfy synchronous reducibility. Indeed, according to the SFE notions of [7, 2, 16], the protocol

consisting of player sending to player is a secure protocol for . Similarly, the protocol
consisting of player sending to player is a secure protocol for . However, there is no interleaving
of and that will result in a secure coin-flip. This is because the last player to send its bit (which
includes the case when the players exchange their bits in one round, due to the “rushing” ability of the
adversary; see Section 2) is completely controlling the outcome. Thus, this example shows that the SFE
notions of [7, 2, 16] do not support synchronous reducibility. However, we show3

Theorem 2: The SFE notion of Micali and Rogaway [22] satisfies synchronous reducibility.

Theorem 2 actually has a quite constructive nature. Namely, the nature of the definition in [22] not only
guarantees that “good” interleavings always exist, but also that there are many of them, that they are easy
to find, and that some of them produce efficient protocols. We summarize the last property in the following
corollary.

Corollary 2: With respect to the Micali-Rogaway definition of SFE, let be an ideal protocol for
that simultaneously calls the functions , and let be an -round SFE protocol for .

Then there exists (an easy to find) interleaving of the ’s, consisting of
rounds, such that is secure.

In other words, independent on the number of sub-protocols, we can synchronously interleave them using at
most twice as many rounds as the longest of them takes.4 Let us remark that, unlike Corollary 1 (that simply
follows from the definition of concurrent reducibility), Corollary 2 crucially depends on the very notion of
[22], as is discussed more in Section 4.3.

3As is illustrated in Section 4.3, the above “natural” protocols and are indeed insecure according to the definition of [22].
4We note that the factor of is typically too pessimistic. As it will be clear from the precise statement of synchronous reducibility

in Section 3, natural protocols (like the ones designed using a general paradigm of [5]) can be synchronously interleaved in
rounds.
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1.1.3 In Sum

We have clarified the notion of parallel reducibility, distilled two important flavors of it, and showed that
there exist SFE notions (e.g., the one of [22]) as well as general SFE protocols (e.g., the one of [5]) that
satisfy (both forms of) parallel reducibility.

Theorems 1 and 2 (and their corollaries) do not necessarily imply that the definition of [22] is “prefer-
able” to other others. If the protocol one is designing is simple enough or is unlikely to be composed in
parallel with other protocols, other definitions are equally adequate (and may actually be simpler to use). It
is, however, crucial to understand which SFE notions yield parallel reducibility if we want to simplify the
complex task of designing secure computation protocols.

2 The Micali-Rogaway Definition of SFE

Consider a probabilistic function (where ). We wish to
define a protocol for computing that is secure against any adversary that is allowed to corrupt in a
dynamic fashion up to (out of ) players.5

2.1 Protocols and Adversaries

Protocol: An -party protocol is a tuple where
is a collection of interactive probabilistic Turing machines that interact in synchronous rounds.
— the last round of (a fixed integer, for simplicity).
— the committal round (a fixed integer, for simplicity).

— the effective-input function, a computable function from strings to strings.
— the effective-output function, a computable function from strings to strings.
— a (probabilistic) function being allegedly computed.

Adversary: An adversary is a probabilistic algorithm.

Executing and : Adversary interacts with protocol as a traditional adaptive adversary in the
rushing model. Roughly, this is explained below.

The execution of with an adversary proceeds as follows. Initially, each player has an input
(for ) and an auxiliary input , while has an auxiliary input . (Auxiliary inputs represent any a-priori
information known to the corresponding party like the history of previous protocol executions. An honest
player should ignore , but might be useful later to the adversary.) At any point during the execution
of , is allowed to corrupt some player (as long as corrupts no more than players overall). By doing
so, learns the entire view of (i.e., , , ’s random tape, and all the messages sent and received by ) up
to this point input. From now on, can completely control the behavior of and thus make deviate from
in any malicious way. At the beginning of each round, first learns all the messages sent from currently

good players to the corrupted ones.6 Then can adaptively corrupt several players, and only then does he
send the messages from bad players to good ones. Without loss of generality, never sends a message from
a bad player to another bad player.

5More generally, one can have an adversary that can corrupt only certain “allowable” subsets of players. The collection of
these allowable subsets is usually called the adversary structure. For simplicity purposes only, we consider threshold adversary
structures, i.e. the ones containing all subsets of cardinality or less. We call any such adversary -restricted.

6We can even let the adversary schedule the delivery of good-to-bad messages and let him adaptively corrupt a new player in
the middle of this process. For simplicity, we stick to our version.

5



At the end of , the view of , denoted consists of , ’s random coins and the views of
all the corrupted players. The traffic of a player up to round consists of all the messages received and
sent by up to round . Such traffic is denoted traffic (or by traffic whenever we wish to
stress the protocol and the adversary executing with it).

Effective Inputs and Outputs of a Real Execution: In an execution of with , the effective input of
player (whether good or bad), denoted , is determined at the committal round by evaluating the
effective-input function on ’s traffic at round : traffic . The effective output of
player , denoted , is determined from ’s traffic at the last round via the effective output function :

traffic . Note that, for now, the effective inputs and outputs are unrelated to
computing .

History of a Real Execution: We let the history of a real execution, denoted , to be
. Intuitively, the history contains all the relevant information of what happened

when attacked the protocol : the view of , i.e. what he “learned”, and the effective inputs and outputs
of all the players.

2.2 Simulators and Adversaries

Simulator: A simulator is a probabilistic, oracle-calling, algorithm .

Executing with : Let be an adversary for a protocol for function . In an execution of with
, there are no real players and there is no real network. Instead, interacts with in a round-by-round

fashion, playing the role of all currently good players in an execution of with the real network, i.e.: (1)
(makes up and) sends to a view of a player immediately after corrupts , (2) sends to the messages
of currently good players to currently bad players7 and (3) receives the messages sent by (on behalf of
the corrupted players) to currently good players. In performing these tasks, makes use of the following
oracle 8:

Before . When a player is corrupted by before the committal round, immediately sends
the input values and . In particular, uses these values in making up the view of .
At . At the end of the committal round , sends the value traffic for each
corrupted player .9 In response, randomly selects a string , sets for all currently good
players , computes , and for each corrupted player sends back to .
After . When a player is corrupted by after the committal round, immediately sends the
input values and , as well as the computed value . In particular, uses these values in making
up the view of .

We denote by the view of when interacting with (using ).

Effective Inputs and Outputs of a Simulated Execution: Consider an execution of (using oracle
) with adversary . Then, the effective inputs of this execution consist of the above defined val-

ues . Namely, if a player is corrupted before the committal round , then its effective input is
traffic ; otherwise ( is never corrupted, or is corrupted after the committal round) its

effective input is . The effective outputs are the values defined above. Namely, .
7Notice that does not (and cannot) produce the messages from good players to good players.
8Such oracle is meant to represent the trusted party in an ideal evaluation of . Given this oracle, ’s goal is making believe

that it is executing in a real network in which the players have inputs and auxiliary inputs .
9Here traffic traffic of a corrupted player denotes what “thinks” the traffic of after round is.
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History of a Simulated Execution: We let the history of a simulated execution, denoted ,
to be . Intuitively, the history contains all the relevant information of what happened
when was communicating with (and ): the view of , i.e. what he “learned”, and the effective inputs
and outputs of all the players.

2.3 Secure Computation

Definition 3: An -party protocol is a SFE protocol resilient against -restricted adversaries that computes
a probabilistic -input/ -output function , if there exists a simulator such that for any input

, auxiliary input , and any -restricted adversary with some auxiliary input
, the histories of the real and the simulated executions are identically distributed:

(1)

Equivalently, .

Simulators and Oracles vs. Ideal Adversaries. A standard benchmark in determining if a SFE notion is
“reasonable” is the fact that for every real adversary there exists an “ideal adversary” that can produce
(in the ideal model with the trusted party) the same view as got from the real network.10 We argue that
the existence of a simulator in the Micali-Rogaway definition indeed implies the existence of such an
adversary . simply runs against the simulator . If corrupts a player before the committal
round, corrupts in the ideal model, and gives the values and (that it just learned) to on behalf of
the oracle . Right after the committal round of has been simulated by , computes from the traffic
of the effective inputs of currently corrupted players , hands them to the trusted party, and returns the
outputs of the corrupted players to on behalf of . Finally, if corrupts a player after the committal
round, corrupts in the ideal model, and gives the values , and the output of (that it just learned)
to on behalf of the oracle . At the end, simply outputs the resulting view of in the simulation.11

We notice, however, that the “equivalent” ideal adversary implied by the definition of [22] is much
more special than the possible ideal adversary envisaged by other definitions (e.g., [7]).12

3 The Notion of Parallel Reducibility

First, let us define the semi-ideal model which generalizes the real model with the ability to ideally evaluate
some functions. More precisely, in addition to regular rounds (where each player sends messages to other
players), the semi-ideal model allows players to have ideal rounds. In such a round, the players can simulta-
neously evaluate several functions using a trusted third party. More specifically, at the beginning
of this round each player gives the -tuple of his inputs to a trusted party. At the end of the round, each
player gets back from the trusted party the corresponding -tuple of outputs. (Note, these -tuples are parts
of players’ traffic.)

The Micali-Rogaway definition of security of a protocol in the semi-ideal model is the same as that
of a real model protocol with the following addition:

The simulator has to simulate all the ideal rounds as well, since they are part of what the adversary
expects. has to do this using no special “ -oracle”. In other words, given the -inputs of corrupted

10In fact, this requirement is more or less the SFE definition of [7].
11The construction of intuitively explains the definition of effective inputs and effective outputs of the simulated

execution, as they are exactly the inputs/outputs in the run of in the ideal model.
12For instance, such is constrained to run only once and in a black-box manner.
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players in an ideal round, has to generate the corresponding outputs of corrupted players and give
them back to . Also, when corrupts a player , has to produce on its own the -inputs/outputs of
player during all the ideal rounds that happened so far (as these are parts of ’s traffic, and therefore
’s view).

Let be a SFE protocol for in the semi-ideal model, and let us fix our attention on any particular ideal
round that evaluates some functions . We say that the ideal round is order-independent if for
any sequential ordering of , semi-ideal protocol remains secure if we replace the ideal round
with ideal rounds evaluating a single at a time in the order given by (we denote this semi-ideal

protocol by ).
Let be SFE protocols for . We would like to substitute the ideal calls to ’s with

the corresponding protocols ’s and still get a secure protocol for . As we informally argued before, there
are many ways to substitute (or to interleave) the ’s, which is made precise by the following definition.

Definition 4:
An interleaving of protocols is any schedule of their execution. Namely, a single round
of an interleaving may execute in parallel one round of one or more ’s with the only restriction that
the rounds of each are executed in the same order as they are in .
A synchronous interleaving of protocols with committal rounds is any
interleaving such that for any , round of strictly precedes round of .
We call the place after all the “pre-committal” rounds but before all the “post-committal” rounds the
synchronization point of .
Given an interleaving of , we let be a protocol obtained by substituting the ideal
round with the execution of the protocols in the order specified by . The committal
round of , its effective input and output functions are defined in a straightforward manner from
those of and . More specifically, given the traffic of in , we replace all ’s traffic
inside (if any) with the effective inputs and outputs of in , and apply the corresponding effective
input/output function of to the resulting traffic. We also remark that when we run , we let the
auxiliary input of player to be its view of the computation so far.

The fundamental question addressed by parallel reducibility is

Assuming are SFE protocols, under which conditions is a SFE protocol as well?

We highlight two kinds of sufficient conditions: (1) special properties of the protocol making secure
irrespective of (which will lead us to concurrent reducibility), and (2) restrictions on the interleaving
such that mere security of and is enough (which will lead us to synchronous reducibility).
The following Main Theorem restates Theorem 1 and 2 of the introduction.

Parallel-Reducibility Theorem: Consider the SFE notion of Micali-Rogaway. Let be a semi-ideal SFE
protocol for evaluating in an ideal round ; let be a SFE protocol for ; and let be an
interleaving of . Then is a SFE protocol for if either of the following conditions holds:
1. (Concurrent-Reducibility Theorem) is an order-independent round of .
2. (Synchronous-Reducibility Theorem) is a synchronous interleaving.

As we argued in the introduction, if we want to be secure for all , round must be order-independent.
Thus, Micali-Rogaway definition achieves the strongest form of concurrent reducibility. On the other, hand,
we also argued that if we do not put any extra conditions on and (aside from being SFE
protocols), not all interleavings necessarily result in a SFE protocol. In fact, we showed that under a “too
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liberal” definition of SFE (which includes all SFE definitions other than Micali-Rogaway), it could be that no
interleaving will result in a secure protocol . The stringent definition of Micali-Rogaway (in particular,
the existence of a committal round) not only shows that such an interleaving must exist, but also allows us
to define a rich class of interleavings which guarantee the security of : the only thing we require is that
all the “pre-committal” rounds precede all the “post-committal” rounds. In other words, players should first
“declare” all their inputs to ’s, and only then proceed with the “actual computation” of any of the ’s. The
intuition behind this restriction is clear: this is exactly what happens in the semi-ideal model when players
simultaneously evaluate in .

Remark 1: In the parallel-reducibility theorem we do not allow the adversary choose the interleaving
adaptively in the process of the computation. This is only done for simplicity. For example, synchronous
reducibility will hold provided the adversary is restricted to select a synchronous interleaving . And con-
current reducibility holds if the semi-ideal protocol remains secure if we allow the semi-ideal adversary
adaptively order the ideal calls to .

4 Proof of the Parallel-Reducibility Theorem

For economy and clarity of presentation, we shall prove both concurrent and synchronous reducibility “as
together as possible”. Let be the simulator for , let be the order of committal rounds of the ’s in the
interleaving (if several committal rounds of ’s happen in one round, order them arbitrarily), and let
be the simulator for . We need to construct the simulator for . The proofs for the concurrent and
synchronous reducibility are going to be very similar, the main differences being the following:

Concurrent Reducibility. Since is an order-independent round of , the protocol is also secure,
i.e. has a simulator . We will use instead of (together with ) in constructing . In
particular, will simulate the ideal call to right after the committal round of , which is exactly
the order given by .
Synchronous Reducibility. Here we must use itself. In particular, at some point will have to
simulate the simultaneous ideal call to , and expects to see the inputs of the corrupted
players. Since the interleaving is a synchronous interleaving, it has a synchronization point where
all the effective inputs of the corrupted players are defined before any of the ’s went on “with the
rest of the computation.” It is at this point where we let simulate the ideal call, because we will be
able to provide with all the (effective) inputs.

To simplify matters, we can assume without loss of generality that each round of executes one round of a
single . Indeed, if we can construct a simulator for any such interleaving, we can do it for any interleaving
executing in one round a round of several ’s: arbitrarily split this round into several rounds executing a
single and use the simulator for this new interleaving to simulate the original interleaving.13

4.1 The Simulator

As we will see in Section 4.2, the actual proof will construct in stages, that is, will construct simu-
lators , where will be . However, we present the final right away because it provides a
good intuition of why the proof “goes through” (but can be skipped otherwise).

For concreteness, we concentrate on the concurrent reducibility case. As one can expect, simply runs
and uses to simulate the interleaving of .

13Here we use the fact that non-corrupted players execute ’s independently from each other, so the adversary can only benefit
by executing a round of single at a time.
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Run up to round (can do it since and are the same up to round ).
Tell each to corrupt all the players already corrupted by the adversary (it is irrelevant what we give
to as their inputs).
Assume we execute some round of protocol in the interleaving . then uses to produce the
needed messages from good-to-bad players and gives back to the response of the adversary.
Right after the committal round of has been simulated, use the effective input function of
and the traffic of the adversary in the simulation of to determine the effective input of each
corrupted player to .
We notice that at this stage is exactly waiting to simulate the ideal call to for the adversary. So
gives the effective inputs as the adversary’s inputs to , and learns from the output

of each corrupted player .
We notice that after round has been simulated, the simulator expects to see the outputs of all
the corrupted players from the -oracle that does not exist in our simulation. Instead, we give the
values that we just learned from .
We keep running the above simulation up to the end of the interleaving . We note that at this stage

has just finished simulating the ideal calls to all the ’s, and waits to keep the simulation of
starting from round . And we just let do it intil the end of (we can do it since and
are the same again from this stage).
It remains to describe how handles the corruption requests of the adversary. This will depend on
where in the corruption request happens. But in any case tells that the adversary asked to
corrupt player and learns from the view of in (the simulation of) .

If the corruption request happens before round , simply return to the adversary.
Otherwise, the adversary expects to see (possibly partial) transcript of inside every , which
does not contain. However, still contains the supposed inputs of player to each .

For each we now ask the simulator to corrupt player in order to learn its view inside .
To answer this request, needs help from the -oracle (that does not exist in our simulation),
which provides as follows.
- If the corruption happened before the committal round , only expects to see the
input and the auxiliary input of player to . We give him as the actual input and
extract from the view of prior to round as ’s auxiliary input.

- If the corruption happened after round ,14 also expects to see the output of player
in . However, in this case such an output is also contained in , since right after the

(already elapsed) round , we have simulated the ideal call to in . Thus, is part
of ’s view in , and as such should be included by in .

We see that in any of the above two cases we can provide with the information it expects.
Therefore, we get back the view of in so far.
now simply combines with to get the final simulated view of , and gives it

back to the adversary (we will argue later that the security of the ’s implies that these views
“match”).

We remark that the simulator for synchronous reducibility is very similar. We essentially need to replace
by and let simulate the single ideal call to at the synchronization point of , when the traffic

14This includes the case when the corruption happened “after the end” of . We treat this corruption as having the adversary
corrupt player at the very end of the computation of . This kind of “post-executuion” corruption has caused a lot of problems
preventing some other SFE notions to satisfy reducibility. In our situation, this case presents no special problems due to the
universality of the simulator and the information-theoretic security.
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of the adversary will simultaneously give the (effective) inputs of the corrupted players to all the ’s.

4.2 Proof Outline

While we have already constructed the simulator , in the proof we will need to use the security of some
particular . Therefore, we will need “to move slowly” from the assumed secure protocol or (eval-
uating all ideally) to the protocol (whose security we need to establish and which runs real
protocols ). Roughly, we need to “eliminate” one ideal call (to some ) at a time, by “replacing”
it with the protocol . Using the security of , we will then argue that this “substitution” still leaves the
resulting protocol a SFE protocol for . To make the above idea more precise, we need some notation.15

First, from the interleaving of , we define the “projection interleaving” (for each ).
This is the interleaving of the protocols intermixed with the ideal calls to . More
precisely, we remove from the rounds of all for . For concurrent reducibility, we add the ideal
calls to (for every ) right after the place where we previously had the committal round of . We
notice that this order of the ideal calls is consistent with the permutation . In particular, we will identify the
“base” interleaving of with the permutation . For synchronous reducibility, we add a single
ideal call to right at the synchronization point of , and still call the resulting interleaving of

a synchronous interleaving. Notice that is also a “projection” of .
Slightly abusing the notation, we now define (in a straighforward way) “intermediate” semi-ideal pro-

tocols , which essentially replace the ideal calls to with (but leave the ideal
calls to ). We note that and is either (the concurrent case) or (the syn-
chronous case). We know by the assumption of the Theorem that is secure, and need to show that
is secure. Naturally, we show it by induction by showing that the security of implies that of . Not
surprisingly, this will follow from the security of .

To summarize, the only thing we need to establish is the following. Assume is a SFE protocol for
with the simulator . We need to construct a simulator for such that for all inputs of the players

and for any adversary in , we get . We construct from
and the simulator for . Essentially, will run in and use (together with ’s simulation
of the ideal call to ) to answer the adversary inside . In the “other direction”, given adversary in ,
we define the adversary in . This adversary will run in , and will also use (together
with the ideal call to in ) to interact with inside . Informally, we will say that “ ”
and “ ”.

The assumed security of implies that . Since
essentially runs , the history of in will naturally “contain” (we define it precisely later) the
history of run against and the simulator . We denote this history by . Then
the above equality of histories, combined with the definition of , will immediately imply
that . What will remain to show is that

. We remark that the “environments” and are identical except the
former runs the actual protocol , while the latter evaluates ideally and uses the simulator to deal
with inside . Not surprisingly, the last equality (whose verification is the main technical aspect of the
proof) will follow from the security of . Namely, assuming that the last equality is false, we will construct
an adversary for such that , a contradiction. Roughly, will
simulate the whole network of players in (both the adversary and the honest players!), except when
executing .

This completes a brief outline of the proof. The full proof can be found in the Appendix.
15Below, we will try to use superscripts when talking about notions related to computing , like , , . And we will use

subscripts for notions related to computing some , like , , .
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4.3 The Definitional Support of Parallel Reducibility

Since at least synchronous reducibility provably does not hold for other SFE definitions, one may wonder
what specific features of the definition of [22] are “responsible” for parallel reducibility. While such key
features can be properly appreciated only from the full proof of the parallel-reducibility theorem, we can
already informally highlight two such features on the basis of the above proof outline.

On-line Simulatability: The simulator not only is universal (i.e., independent of the adversary ) and
not only interacts with in a black-box manner, but must also interact with “on-line”. In other words,
runs with only once: each time that sends a piece of information to , this piece becomes part of
’s final view. This is in contrast with traditional simulators, which would be allowed to interact with

arbitrarily many times, to “rewind” in the middle of an execution, and to produce any string they want as
’s entire view.
The ability to generate ’s final view on-line is probably the most crucial for achieveing any kind of

parallel reducibility. For example, an adversary of the composed protocol might base it actions in sub-
protocol depending on what it sees in sub-protocol and vice versa. Therefore, the resulting views of
inside and are very inter-dependent. It thus appears crucial that, in order to simulate these inter-

dependent views, the simulator for should be capable of extending ’s view inside incrementally
“in small pieces” (as it happens with ’s view in the real execution) that should never “be taken back”. If,
instead, one were only guaranteed that he could simulate the entire (as opposed to “piece-by-piece”) view
of in each separately, there is no reason to expect that these two separate views would be as inter-
dependent as can make them in the real model. As demonstrated in Section 4.1, on the other hand, having
on-line “one-pass” simulation makes it very easy to define the needed on-line simulator for .

Committal Rounds: Intuitively, the committal round corresponds to the “synchronization point” in the
ideal function evaluation: when all the players have sent their inputs to the trusted party, but have not
received their corresponding outputs yet. Not surprisingly, the notion of the committal round plays such
a crucial role in synchronous reducibility. In particular, the very existence of “good” interleavings (i.e.,
synchronous interleaving, as stated in Theorem 2) is based on the committal rounds. Committal rounds also
play a crucial role in Corollary 2. Indeed, the greedy concurrent execution of all the “pre-committal” rounds
of any number of sub-protocols (which takes at most rounds), followed by
the greedy concurrent execution of all the “post-committal” rounds of (which also takes at most

rounds), yields a synchronous interleaving of with the claimed number of
rounds.

The Price of Parallel Reducibility. The definitional support of parallel reducibility “comes at a price”: it
rules out some reasonable protocols from being called secure. For example, having simply send to
is not a secure protocol (in the sense of [22]) for the function of

Example 2. Indeed, assume adversary corrupts player before the protocol starts and does not corrupt
anyone else later on. Then will learn in the real execution. Therefore, for the simulator to match the
view of , it must also send to in round . For doing so, must learn from its oracle before round
. Since does not corrut player , this can only happen when learns the output of corrupted player
(which is indeed ) after the committal round. Unfortunately, the committal round is round itself,

because only then does manifest its input via its own message traffic. Thus, will learn only after
round , which is too late.

In sum, a reasonable protocol for function is excluded by the definition of [22] from being secure, but
this “price” has a reason: Example 2 proves that such (individually) reasonable protocol is not synchronously
reducible.
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[14] R. Cramer, U. Maurer, and I. Damgård, General secure multiparty computation from any linear secret-
sharing scheme, Proc. EUROCRYPT’00, to appear, 2000.

[15] P. Feldman and S. Micali, Optimal algorithms for Byzantine agreement, SIAM J. on Computing,
26(4):873-933, 1997.

[16] S. Goldwasser and L. Levin, Fair computation of general functions in presence of immoral majority,
Proc. CRYPTO ’90, pp. 75–84, 1990.

[17] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof systems,
SIAM Journal on Computing, 18(2), pp. 186–208, 1989.

[18] O. Goldreich, Foundations of Cryptography (Fragments of a book), Available at
http://theory.lcs.mit.edu/˜oded/foc.html.

13



[19] O. Goldreich, Secure Multi-Party Computation, Fisrt draft available at http://theory.lcs.mit.edu/˜oded.

[20] O. Goldreich, S. Micali and A. Wigderson, How to play any mental game, Proc. of the 19th STOC,
pp. 218–229, 1987.

[21] K. Kilian, E. Kushilevitz, S. Micali and R. Ostrovsky, Reducibility and Completeness in Private
Computatuions, To appear in SIAM J. on Computing, preliminary versions in Proc. of the 23rd STOC,
1991 by Kilian and in Proc. of the 35th FOCS, 1994 by Kushilevits, Micali and Ostrovsky.

[22] S. Micali and P. Rogaway, Secure computation, Proc. CRYPTO ’91, pp. 392–404, 1991. Also in
Workshop On Multi-Party Secure Computation, Weizman Institute, Israel, 1998.

[23] T. Rabin and M. Ben-Or, Verifyable Secret Sharing and Multi-party Protocols with Honest Majority,
Proc. of 21st STOC, pp. 75–83, 1989.

[24] A. Yao, Protocols for secure computation, Proc. of the 23rd FOCS, pp. 160–164, 1982.

[25] A. Yao, How to generate and exchange secrets, Proc. of the 27th FOCS, pp. 162–186, 1986.

Full Proof of the Parallel-Reducibility Theorem

Here we give a full proof of the Paralle-Reducibility Theorem following the outline given in Section 4.2.
Recall that the only thing we had to prove was the following. Assume is a SFE protocol for with
the simulator . We need to show that is a SFE protocol for as well. That is, we need to con-
struct a simulator for such that for all inputs of the players and for any adversary in , we get

. For concreteness, we concentrate on the concurrent reducibility case.
With all the previous discussion, the proof for synchronous reducibility can be easily traced as well.

Simulator : We construct from and the simulator for . Essentially, will run in
and use (together with ’s simulation of the ideal call to ) to answer the adversary inside .

Informally, “ ”.
Run up to round (can do it since and are the same up to round ).
Tell to corrupt all the players already corrupted by the adversary (it is irrelevant what we give to
as their inputs).
Unless in the interleaving we execute a round of (which we do not have in ), still use
to answer the adversary (this includes a round of for , or the ideal call to for ).
If we execute a round of in , use to answer.
Right after the committal round of has been simulated, use the effective input function of
and the traffic of the adversary in the simulation of to determine the effective input of each
corrupted player to .
We notice from the definition of the interleaving as a “projection” of the interleaving , that at
this stage is exactly waiting to simulate the ideal call to for the adversary. So gives
the effective inputs as the adversary’s inputs to , and learns from the output of each
corrupted player .
We notice that after round has been simulated, the simulator expects to see the outputs of all
the corrupted players from the -oracle that does not exist in our simulation. Instead, gives the
values that it just learned from .

14



We keep running the above simulation up to the end of the interleaving . At this stage, we simply
run (who just finished the simulation of ) until the end of (we can do it since and
are the same again from this stage).
It remains to describe how handles the corruption requests of the adversary. This will depend on
where in the corruption request happens. But in any case tells that the adversary asked to
corrupt player and learns from the view of in (the simulation of) .

If the corruption request happens before round , simply return to the adversary.
Otherwise, the adversary expects to see (possibly partial) transcript of inside , which
does not contain. However, still contains the supposed inputs of player to .
asks the simulator to corrupt player in order to learn its view inside . To answer

this request, needs help from the -oracle (that does not exist in our simulation), which
provides as follows.
- If the corruption happened before the committal round of , only expects to see
the input and the auxiliary input of player to . We give him as the actual input and
extract from the view of prior to round as ’s auxiliary input.

- If the corruption happened after round (including the case when it happened after
“the end” of ), also expects to see the output of player in . However, in this
case such an output is also contained in the , since right after the (already elapsed) round

, we have simulated the ideal call to in . Thus, is part of ’s view in ,
and as such should be included by in .

We see that in any of the above two cases we can provide with the information it expects.
Therefore, gets back the view of in so far.
now simply combines with to get the final simulated view of , and gives it back to

the adversary (we will argue later that the security of implies that these views “match”).

Now assume we are given any adversary for . In order to argue that ,
we need to define a corresponding adversary in .

Adversary : This adversary will run in , and will also use (together with the ideal call to
in ) to interact with inside . Informally, we will say that “ ”. Not surprisingly,

the description of is almost word-for-word the description of the simulator , but “turned the other
way around”.

Run up to round in (can do it since and are the same up to round ).
Tell to corrupt all the players already corrupted by the (it is irrelevant what we give to as their
inputs).
Unless in the interleaving we execute a round of (which we do not have in ), still run in

(this includes a round of for , or the ideal call to for ).
If we execute a round of in , use to answer to , but do nothing in .
Right after the committal round of has been simulated, use the effective input function of
and the traffic of in the simulation of to determine the effective input of each corrupted
player to .
We notice from the definition of the interleaving as a “projection” of the interleaving , that at
this stage the protocol is just about to execute the ideal call to and waits for to provide
the inputs of the corrupted players. So provides the effective inputs it just extracted from the
trafic of , and learns the output of each corrupted player .
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We notice that after round has been simulated, the simulator expects to see the outputs of all
the corrupted players from the -oracle. Instead, gives the values that it just learned from
the ideal call to .
We keep running the above simulation up to the end of the interleaving . At this stage, we simply
run in until the end of the protocol (we can do it since and are the same again from
this stage).
It remains to describe how handles the corruption requests of . This will depend on where in
(the simulation of) the corruption request happens. But in any case corrupts the corresponding
player in and learns the view of .

If the corruption request happens before round , simply return to .
Otherwise, expects to see (possibly partial) transcript of inside , which does not
contain. However, still contains the supposed inputs of player to each .

asks the simulator to corrupt player in order to learn its view inside . To answer
this request, needs help from the -oracle, which provides as follows.
- If the corruption happened before the committal round , only expects to see the
input and the auxiliary input of player to . We give him as the actual input and
extract from the view of prior to round as ’s auxiliary input.

- If the corruption happened after round , also expects to see the output of player
in . However, in this case such an output is also contained in the , since right after

the (already elapsed) round , we have made the ideal call to in . Thus, is
part of ’s view in , and can be provided to as well.

We see that in any of the above two cases we can provide with the information it expects.
Therefore, gets back the view of in so far.

now simply combines with to get the final simulated view of , and gives it back to
(we will argue later that the security of the ’s implies that these views “match”).

Equality of Distributions: From the security of , we know that

(2)

which is the same as

(3)

We notice that the view of (both against and ) actually contains the view of the adver-
sary that was running in the background. We denote these views by and

, and let
def (4)
def (5)

Thus, Equation (2) (i.e., assumed security of ) implies that

(6)

However, from the definition of and the definitions of the effective inputs/outputs of based on those
of , we observe that the latter distribution is syntactically the same as ! That is,

(7)

Therefore, Equation (6) and Equation (7) imply that what remains to prove is that

(8)
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The Last Piece: We finally show Equation (8). We remark that the “environments” and
are identical except the former runs the actual protocol , while the latter evaluates ideally and uses
the simulator to deal with inside . We call the first experiment the “real” experiment and the
second – the “simulated” experiment. Assume that Equation (8) it is false for some input configuration

. Let and on the configuration
. Thus, .
We notice that the overall randomness generating the histories of the real and the simulated experiments

is identical except the real experiment uses the coins of the honest players inside (which do not
depend on anything else as players are supposed to use brand new randomness inside a sub-routine), while
the simulated experiment uses the randomness of the simulator and the -oracle executing the ideal
call in (which again do not depend on anything else; call them ). Since , there
exists a particular setting of all the other randomness except for and (this includes the randomness
of , of all the honest players everywhere but in , all the trusted parties for where ) such that

.
We let be the auxiliary string of the adversary for that we will construct. We notice that
determines the entire (identical) state of the real and simulated experiments up to round ; in particular,

set of players currently corrupted by , and fixed inputs and auxiliary inputs of all currently honest
players to . Since will immediately corrupt players in and ignore their inputs, their inputs to will
not be relevant to get the contradiction, so the initial configuration for where will successfully run can
be thought as .

Here is the description of for . As we said, it starts from corrupting players in and ignoring their
inputs. Then it simply keeps running against the entire network of honest players in (i.e, simulating
both, which can do because it has and ) except for the run of inside , where actually uses
the network available to him. When the running of inside is completed, knows the view of
inside , and it also simulated completely in its mind the run of in the interleaving . Now wants to
continue running in its mind the interaction of with the honest players for the rest of . For that, it needs
to know the outputs of honest players in . To “get them”, samples uniformly a consistent randomness
of honest players inside that would have produced the view that the adversary got inside (note,

this step is not polynomial time, but we do not care). Here we use the fact that are supposed to be brand
new random coins independent of everything else, and never used by honest players upon the termination
of . Having sampled , can simply deterministically finish the run of (as it knows , and ).
Having done so, stops.

We see that embedded in the view of is the view of that ran in the background. We notice
that when interacts with the real network , this view of , and in fact the entire “history” of this
run of (its view we got from and the effective inputs and outputs of of all the players, assuming
honest players used randomness inside ), is identically the same as .
Indeed, it does not matter if honest players sampled from the beginning at random and used it, or that we
let honest players sample random , got the history of , sampled random consistent with this history,
and pretend the honest players actually used .

Now assume that we run against . Up to the completion of the interleaving, the entire “history” of
the run of we got from is syntactically the same that when we run it against . However,
when we finish the interleaving, a tricky thing happens. In the first case, we interpret the run of against
as if honest players executed , and sample random consistent randomness of honest players. In

the second case, we just give players their effective outputs from the trusted party, and generate the actual
randomness of player using , but only if corrupts later. If we argue that the latter two processes
are indeed identical (i.e. it is OK to sample random consistent when is run against ), we would
be done obtaining a contradiction. We need to use a somewhat elaborate argument for that, which we
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semi-informally sketch.

We emphasize again the experiments that we need to compare:
1. Run of against .
2. Run of against , where we let simulate , then pick a random consistent and run the
“resulting” until completion.

3. Run of against , where we let simulate , as well as generate the randomness of
player corrupted by after the end of the interleaving.

We know from the security of that the Experiments 1. and 2. are identical “all the way” (if not, we are
done getting a contradiction, as they correspond to the runs of against and ). We also know that
Experiments 2. and 3. are syntactically the same up to the end of the interleaving . We assumed that
Experiment 1. and 3. are “different” (in their entirety). To still get a contradiction we show by extending the
argument “one-round-at-a-time” that Experiments 2. and 3. must be identical “all the way” as well. For that
we will use the universality of the simulator , i.e. that it “does not know” which adversary it is talking to.

Assume we established up to round that Experiments 2. and 3. are the same. The starting is the
end of the interleaving, where we know this is the case. We also know from this, that the effective outputs
of honest players in are distributed the same in Experiments 2. and 3.

If in round the adversary does not corrupt any player, we are done, since honest players do not
use their randomness they used inside , only their inputs and outputs, which we know are distributed
the same. The only problem is when corrupts a player. In Experiment 2. we return the (consistent) value
that we sampled at the end of the interleaving. In Experiment 3. we let the simulator generate this

randomness. However, we still argue that these two answers are distributed in the same way (conditioned
on what happened before). In particular, assume so far has corrupted players after the end
of the interleaving (so that ). could base its decisions to corrupt these players on some powerful
information it extracted since the end of the interleaving.

However, the simulator is universal and has to answer in the same way no matter why asked to
corrupt these players. In particular, there exists an adversary that does the same thing as up to the
end of the run of inside the interleaving, and then for “no specific reason” asks to corrupt the same
players . Since cannot distinguish between these two cases (it only sees the requests of whom
to corrupt), its responses must be the same as well. But when the adversary asks to corrupt these players “for
no reason” right at the end of the interleaving, the security of (against this ) implies that the answers

that gives are distributed exactly the same as the true randomness of the actual players
conditioned on the view got inside , which are exactly the answers we sampled in Experiment 2.!

This shows that Experiments 2. and 3. are indeed the same, Experiments 1. and 2. are the same, and yet we
assumed that Experiments 1. and 3. are different, a contradiction.
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