Cryptography
Lecture 3

Pseudorandom generators
LFSRs

Remember

* One Time Pad is ideal

* With OTP you need the same
transmission capacity via an already
secure channel for the key as you can
then secure via this key. Thus it is an
extremely unpractical cipher.

* |t can be used when a secure channel is
available for a short time, and data to
transmit exist later.

Emulating OTP

* If you cannot use a true random sequence

of sufficient length, try to use a
pseudorandom sequence created from a

shorter key
* The generator is deterministic and finite,
so the sequence is periodic

* Every single character should be as
“unpredictable” as possible

Pseudorandom sequences

A well-known generator is x;=ax,_, mod p

With a=3 for example, x,=1 and p = 7 we get
1,3,2,6,4,5,1,3,2,6,4.....

and with a=2 we get

1,2,4,1,2,4

If p is prime we can get the maximum period p-1

Values for a that give this period are called
generators

Two known values will reveal all the rest....

Seqguence properties

* Part of the sequence is sure to be known
to the cryptanalyst

* Every single bit in the unknown part
should be as hard to guess as possible for
all that do not know the key

* Since the sequence is periodic, the period
must then be as long as possible, since
the known part repeats after the period
length

Binary sequences

Since this is all about IT systems, we
normally have and want binary values

Studying binary sequences does not limit
achievable results

If nothing else is said in what follows,
values are binary and addition is taken as
addition modulo 2

1+1 mod 2= 0 Thus -1 mod 2 = +1

Linear Feedback Shift Registers

 LFSRs are known to produce (binary)
sequences with good pseudorandom
properties

 LFSRs can be thoroughly analysed and
predicted with the algebra of extended
Galois fields, GF(p")

 So let us look at LFSRs!

Terminology

* In many subjects, there is a strict accepted
standard of what letters to use for what
concepts, like v for velocity, x for
unknowns, i for indices etc.

* In the subject of LFSR analysis, there is
no such standard usage.

* So get used to from the start that we can
use G here for what is called C there etc.

Extended Galois fields

We use tuples of n elements. (s, S4,...S,)
These are not vectors

How then can we do calculations?
Regard s; as the coefficient for a in a
polynomial s, o' +s, a"?+,...+s,_, o’
Define a as the root of another polynomial
[I(o))= a"+c, a™'+...+c =0

Do everything modulo IT(o)!

How to create a sequence

Start with a tuple of length n, x,, and a
good II(a) (“good” is defined later)

Look at the tuple as coefficients in a
polynomial in o

Let x.= ax._, modulo IT(a)

|. e. regard a. as the root of Il(a), so that

II(a) =0 and you can express a" in lower
powers of o

Example, p=2, n=4, II(a.)=o*+a.+1

4-tuple |Polynomial |4-tuple |Polynomial
0001 1 0101 |o?+1

0010 QL 1010 |3+«

0100 |a? 0111 |o2+a+1
1000 o’ 1110 | od+a’+a
0011 o+1 1 o3+o2+o+1
0110 |+ 1101 | o3+02+1
1100 o3+a2 1007 o3+1

1011 o3+o+1 000" 1

LFSRs

 For those familiar with LFSRs, the
operations on the bit level on the previous
slide are well known: Clocking an LFSR!

o2

c,=0

i

o3

c,=0

B

o2

B

o

lc3=1

o0

jc4=1

Linear Feedback Shift register, Galois model

Fibonacci versus Galois models

* There is an alternative way of creating
LFSRSs, the Fibonacci model

* As will be shown later they are equivalent

¥ ¥ ¥

C3 G2 "¢ jCc):'l
S.
i“ s, S, S., S S

i- j- j- j-

Linear Feedback Shift register, Fibonacci model

The shift register equation

From the figure we see that the output, s;is

* = (-CySin)* (-CrSjnsq)t- ..+ (-C4S;4) for any
jZn

» Use the z transform!(If the signal value of

the sequence S attime iis s, the z
transform is sy+s,z '+s,z%+......)

« Write the feedback as a polynomial in z”
« Call that polynomial C(z)=1+c,z™*...+¢cz"

Theorem to remember

« All sequences generated by LFSRs can
be written as S(z')=P(z)/C(z)

(Since it is of no importance what we call the
unknown, we usually use x instead of z)

* All sequences that can be written as
S(z1)=P(z1)/C(z'1) can be generated by a
LFSR

* Degree of P < degree of C

Proof of the theorem

* The proof is given in the Course Notes

Fibonacci versus Galois

* From the shift register equation and the proof of
the theorem, it is easy to see that if you reverse
the order of the feedback coefficients in one
model, you get the feedback coefficients in the
other

* The coefficients in the polynomial P are simply
the values stored in the LFSR when you start
generating a sequence in the Galois model

Period lengths

If you pass every possible state of the shift register
before you get back to a previous state, you obviously
have the longest possible period

Since we cannot use the all O state, the number of states,
and thus output symbols in a period, is p"-1 (2"-1 for
binary sequences)

For all lengths there are feedback polynomials giving this
period length (field generators)

They are called primitive or maximum length
polynomials

Primitive, prime and non-prime

* The period for a sequence generated
by
— A primitive polynomial is p"-1
— A prime but not primitive polynomial is a
factor of p"-1
— A polynomial, which is the product of
several polynomials of lower degree (a

non-prime polynomial), varies with the
starting state

More on period lengths

* A prime, but not primitive, polynomial is a power of a
primitive polynomial, and that power divides the period.
Thus its period picks out evenly spaced states in the
longer period

« A composite polynomial G(z)=A(z)B(z) can get a starting
state P(z)=A(z)C(z). Then, since
S(z)=P(z)/G(z)=C(z)/B(z), the period is of course at most
that of B(z), and B has lower degree than G

« A composite polynomial can thus have periods that are
the least common multiplier of the periods for all
combinations of its prime factors

Finding the period length

The period of a polynomial is defined as the lowest N for
which the polynomial G(z) divides 1-zN

This is also the period of the sequence generated by the
polynom ial (see Course Notes for proof)

Thus there is a Q(z) with degree less than N such that
G(z)Q(z)=1-zN and 1/G(z)=Q(z)+zN/G(z)

So if you simply divide 1 by G(z), the first time the
remainder contains just one term, zX, that value of x is
the period!

Choosing a good polynomial

* Find a primitive polynomial of suitable
length from table!

* |[f you cannot choose, test for factors
and also for any short basic period
through division!

But do not use simple LFSRSs!

* The key should be at least the starting
state, thus n bits for a length of n in the
LFSR

* From the shift register equation, we can
see that with knowledge of 2n consecutive
bits, we get n equations and can solve for
unknown previous states and polynomial
coefficients!

* To prevent this we must send at least n
new key bits for every 2n encrypted bits!

