
CONTENTS

I. The TESLA Broadcast

Authentication Protocol

II. Forward-Secure Signatures
with Optimal Signing and
Verifying

III. Attacks on RC4 and WEP

RSA Laboratories
Volume 5, No. 2, Summer / Fall 2002

I. The TESLA Broadcast Authentication Protocol
Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song

A B S T R A C T

One of the main challenges of securing broadcast communication is source authentication, or
enabling receivers of broadcast data to verify that the received data really originates from the
claimed source and was not modified en route. This problem is complicated by mutually
untrusted receivers and unreliable communication environments where the sender does not
retransmit lost packets. The authors present TESLA (Timed Efficient Stream Loss-tolerant
Authentication), an efficient broadcast authentication protocol with low communication and
computation overhead. TESLA scales to large numbers of receivers and tolerates packet loss.
It is based on loose time synchronization between the sender and the receivers, and uses only
symmetric cryptographic functions. Still, and as is demonstrated herein, TESLA has possible
PKI applications.

II. Forward-Secure Signatures with Optimal Signing and Verifying
Gene Itkis and Leonid Reyzin

A B S T R A C T

Ordinary digital signatures have an inherent weakness: if the secret key is leaked, then all _sig-
natures, even the ones generated before the leak, are no longer trustworthy. Forward-secure
digital signatures were proposed by Anderson and formalized by Bellare and Miner to address
this weakness. The authors describe the concept of forward security, and introduce the first
forward-secure signature scheme for which both signing and verifying are as efficient the
Guillou-Quisquater signature scheme, one of the most efficient ordinary signature schemes.
Signing and verifying signatures in their scheme requires just two modular exponentiations
with a short exponent.

III. Attacks on RC4 and WEP
Scott Fluhrer, Itsik Mantin, and Adi Shamir

A B S T R A C T

RC4 is the most widely used stream cipher in software applications. In this paper, the authors
summarize the known attacks on RC4, and show that it is completely insecure in the natural
mode of operation, which is used in the widely deployed Wired Equivalent Privacy protocol
(WEP, which is part of the 802.11b Wi-Fi standard). They describe a new, passive ciphertext-
only attack that can find an arbitrarily long key in a negligible amount of time that grows _lin-
early (rather than exponentially) with the key size. The attack becomes even faster if WEP is
replaced by its proposed successor WEP2.*

CryptoBytes

RSA Laboratories continues to collaborate on improved protocols for wireless security. Fast Packet Keying is the current WEP successor in the short
term, and AES-CCM is the proposed successor in the long term. For more details, visit
http://www.rsasecurity.com/rsalabs/technotes/wep-fix.html and
http://csrc.nist.gov/encryption/modes/proposedmodes/.

*Editor's Note

The TESLA Broadcast Authentication Protocol∗

Adrian Perrig Ran Canetti J. D. Tygar Dawn Song

Abstract

One of the main challenges of securing broad-
cast communication is source authentication, or
enabling receivers of broadcast data to verify
that the received data really originates from the
claimed source and was not modified en route.
This problem is complicated by mutually un-
trusted receivers and unreliable communication
environments where the sender does not retrans-
mit lost packets.

This article presents the TESLA (Timed
Efficient Stream Loss-tolerant Authentication)
broadcast authentication protocol, an efficient
protocol with low communication and computa-
tion overhead, which scales to large numbers of
receivers, and tolerates packet loss. TESLA is
based on loose time synchronization between the
sender and the receivers.

Despite using purely symmetric cryptographic
functions (MAC functions), TESLA achieves
asymmetric properties. We discuss a PKI appli-
cation based purely on TESLA, assuming that all
network nodes are loosely time synchronized.

∗Most of this work was done at UC Berkeley and IBM
Research. The authors can be reached at
adrian+@cs.cmu.edu, canetti@watson.ibm.com,
tygar@cs.berkeley.edu, skyxd@cs.cmu.edu.

1 Introduction

Broadcast communication is gaining popularity
for efficient and large-scale data dissemination.
Examples of broadcast distribution networks are
satellite broadcasts, wireless radio broadcast, or
IP multicast. While many broadcast networks can
efficiently distribute data to multiple receivers,
they often also allow a malicious user to imper-
sonate the sender and inject broadcast packets —
we call this a packet injection attack. (Source-
Specific Multicast (SSM, EXPRESS) is a no-
table exception, and attempts to prevent this at-
tack [17, 40].)

Because malicious packet injection is easy in
many broadcast networks, the receivers want to
ensure that the broadcast packets they receive re-
ally originate from the claimed source. A broad-
cast authentication protocol enables the receivers
to verify that a received packet was really sent by
the claimed sender.

Simply deploying the standard point-to-point
authentication mechanism (i.e., appending a mes-
sage authentication code (MAC) to each packet,
computed using a shared secret key) does not pro-
vide secure broadcast authentication. The prob-
lem is that any receiver with the secret key can
forge data and impersonate the sender. Conse-
quently, it is natural to look for solutions based
on asymmetric cryptography to prevent this at-
tack; a digital signature scheme is an example of
an asymmetric cryptographic protocol. Indeed,
signing each data packet provides secure broad-

2

cast authentication; however, it has high over-
head, both in terms of the time required to sign
and verify, and in terms of the bandwidth. Several
schemes were proposed that mitigate this over-
head by amortizing a single signature over sev-
eral packets, e.g., [14, 25, 28, 33, 38, 39]. How-
ever, none of these schemes is fully satisfactory
in terms of bandwidth overhead, processing time,
scalability, robustness to denial-of-service attacks,
and robustness to packet loss. Even though some
schemes amortize a digital signature over multiple
data packets, a serious denial-of-service attack is
usually possible where an attacker floods the re-
ceiver with bogus packets supposedly containing
a signature. Since signature verification is often
computationally expensive, the receiver is over-
whelmed verifying bogus signatures.

Researchers proposed information-theoretically
secure broadcast authentication mechanisms [10,
11, 12, 13, 20, 34, 35, 36]. These protocols have a
high overhead in large groups with many receivers.

Canetti et al. construct a broadcast authentica-
tion protocol based on k different keys to authen-
ticate every message with k different MAC’s [7].
Every receiver knows m keys and can hence ver-
ify m MAC’s. The keys are distributed in such
a way that no coalition of w receivers can forge a
packet for a specific receiver. The security of their
scheme depends on the assumption that at most
a bounded number (which is on the order of k) of
receivers collude.

Boneh, Durfee, and Franklin show that one can-
not build a compact collusion resistant broad-
cast authentication protocol without relying on
digital signatures or on time synchronization [4].
They show that any secure broadcast authenti-
cation protocol with per-packet overhead slightly
less than the number of receivers can be converted
into a signature scheme.

Another approach to providing broadcast au-
thentication uses only symmetric cryptography,
more specifically on message authentication codes
(MACs), and is based on delayed disclosure of
keys by the sender. This technique was indepen-
dently discovered by Cheung [8] in the context of
authenticating link state routing updates. A re-
lated approach was used in the Guy Fawkes proto-
col for interactive unicast communication [1]. In
the context of multicast streamed data it was pro-
posed by several authors [2, 3, 5, 27, 28].

The main idea of TESLA is that the sender at-
taches to each packet a MAC computed with a key
k known only to itself. The receiver buffers the
received packet without being able to authenti-
cate it. A short while later, the sender discloses k
and the receiver is able to authenticate the packet.
Consequently, a single MAC per packet suffices to
provide broadcast authentication, provided that
the receiver has synchronized its clock with the
sender ahead of time.

This article is an overview of the TESLA broad-
cast authentication protocol. A more detailed de-
scription is in a forthcoming book [30] and in our
earlier publications [27, 28]. A standardization ef-
fort for TESLA is under way in the Multicast Se-
curity (MSEC) working group of the IETF [26].
TESLA is used in a wide variety of applications,
ranging from broadcast authentication in sensor
networks [29], to authentication of messages in
ad hoc network routing protocols [18].

2 Background and Assumptions

TESLA requires that the receivers are loosely time
synchronized with the sender. In this section,
we review a simple protocol to achieve this time
synchronization. TESLA also needs an efficient
mechanism to authenticate keys at the receiver —
we first review one-way chains for this purpose.

3

2.1 One-Way Chains

Many protocols need to commit to a sequence of
random values. For this purpose, we repeatedly
use a one-way hash function to generate a one-way
chain. One-way chains are a widely-used crypto-
graphic primitive. One of the first uses of one-
way chains was for one-time passwords by Lam-
port [21]. Haller later used the same approach for
the S/KEY one-time password system [16]. One-
way chains are also used in many other applica-
tions.

Figure 1 shows the one-way chain construction.
To generate a chain of length � we randomly pick
the last element of the chain s�. We generate the
chain by repeatedly applying a one-way function
F . Finally, s0 is a commitment to the entire one-
way chain, and we can verify any element of the
chain through s0, e.g. to verify that element si

is indeed the element with index i of the hash
chain, we check that F i(si) = s0. More gener-
ally, si commits to sj if i < j (to verify that sj is
part of the chain if we know that si is the ith el-
ement of the chain, we check that F j−i(sj) = si).
We reveal the elements of the chain in this or-
der s0, s1, . . . , s�−1, s�. How can we store this
chain? We can either create it all at once and store
each element of the chain, or we can just store s�

and compute any other element on demand. In
practice, a hybrid approach helps to reduce stor-
age with a small recomputation penalty. Jakobs-
son [19], and Coppersmith and Jakobsson [9] pro-
pose a storage efficient mechanism for one-way
chains: a one-way chain with N elements only
requires log(N) storage and log(N) computation
to access an element.

In TESLA, the elements of the one-way chain
are keys, so we call the chain a one-way key chain.
Furthermore, any key of the one-way key chain
commits to all following keys, so we call such a
key a one-way key chain commitment, or simply
key chain commitment.

s�s�−1s�−2s1s0

F (s�)F (s�−1)F (s2)F (s1)
. . .

Generate

Use / Reveal

Figure 1: One-way chain example. The sender
generates this chain by randomly selecting s� and
repeatedly applying the one-way function F . The
sender then reveals the values in the opposite or-
der.

2.2 Time Synchronization

TESLA does not need the strong time synchro-
nization properties that sophisticated time syn-
chronization protocols provide [22, 24, 37], but
only requires loose time synchronization, and that
the receiver knows an upper bound on the sender’s
local time. We now outline a simple and secure
time synchronization protocol that achieves this
requirement. For simplicity, we assume the clock
drift of both sender and receiver is negligible (oth-
erwise the receiver can periodically resynchronize
the time with the sender). We denote the real
difference between the sender and the receiver’s
time with δ. In loose time synchronization, the
receiver does not need to know the exact δ but
only an upper bound on it, ∆, which we also refer
to as the maximum time synchronization error.

We now describe a simple protocol for time
synchronization, where each receiver performs ex-
plicit time synchronization with the sender. This
approach does not require any extra infrastruc-
ture to perform time synchronization. We present
a simple two-round time synchronization protocol
that satisfies the requirement for TESLA, which
is that the receiver knows an upper bound on the
sender’s clock. Reiter previously describes this
protocol [31, 32].

4

t1

t2

t3 tS

tR

∆

δ

Receiver time Sender time

Figure 2: Direct time synchronization between
the sender and the receiver. The receiver is-
sues a time synchronization request at time tR,
at which time the sender’s clock is at time t1.
The sender responds to the request at its local
time tS . In TESLA, the receiver is only interested
in an upper bound on the sender’s time. When
the receiver has its current time tr, it computes
the upper bound on the current sender’s time as
ts ≤ tr − tR + tS . The real synchronization er-
ror after this protocol is δ. The receiver, however,
does not know the propagation delay of the time
synchronization request packet, so it must assume
that the time synchronization error is ∆ (or the
full round-trip time (RTT)).

Figure 2 shows a sample time synchronization
between the receiver and the sender. In the pro-
tocol, the receiver first records its local time tR
and sends a time synchronization request contain-
ing a nonce to the sender.1 Upon receiving the
time synchronization request, the sender records
its local time tS and replies with a signed response
packet containing tS and the nonce.2

1
The security of this time synchronization protocol re-

lies on the unpredictability of the nonce — if an attacker
could predict the receiver’s nonce, it could send a time
synchronization request to the sender with that nonce, and
replay the response later to the receiver.

2Interestingly, the processing and propagation delay of
the response message does not change δ (assuming that

1. Setup. The sender S has a digital signature
key pair, with the private key K−1

S and the
public key KS . We assume a mechanism that
allows a receiver R to learn the authenticated
public key KS . The receiver chooses a ran-
dom and unpredictable nonce.

2. Protocol steps. Before sending the first mes-
sage, the receiver records its local time tR.

R → S : Nonce

S → R : {Sender time tS,Nonce}K−1
S

To verify the return message, the receiver ver-
ifies the digital signature and checks that the
nonce in the packet equals the nonce it ran-
domly generated. If the message is authentic,
the receiver stores tR and tS . To compute the
upper bound on the sender’s clock at local
time t, the receiver computes t − tR + tS .

Upon receiving the signed response, the receiver
checks the validity of the signature and verifies
that the nonce in the response packet equals the
nonce in the request packet. If all verifications
are successful, the receiver uses tR and tS to com-
pute the upper bound of the sender’s time: when
the receiver has the current time tr, it computes
the upper bound on the current sender’s time as
ts ≤ tr − tR + tS . The real synchronization error
after this protocol is δ, as Figure 2 shows. The
receiver, however, does not know the propagation
delay of the time synchronization request packet,
so it must assume that the time synchronization
error is ∆ (or the full round-trip time (RTT)).

the sender immediately records and replies with the arrival
time of the request packet), since the receiver is only in-
terested in an upper bound on the sender’s clock. If the
receiver were interested in the lower bound on the sender’s
clock, the processing delay and delay of the response mes-
sage would matter. For more details on this refer to the
more detailed time synchronization description [30].

5

A digital signature operation is computation-
ally expensive, and we need to be careful about
denial-of-service attacks in which an attacker
floods the sender with time synchronization re-
quests. Another problem is request implosion: the
sender is overwhelmed with time synchronization
requests from receivers. We address these issues
in our earlier paper [27].

3 The TESLA Broadcast Authentica-
tion Protocol

A viable broadcast authentication protocol has
the following requirements:

• Low computation overhead for generation
and verification of authentication informa-
tion.

• Low communication overhead.

• Limited buffering required for the sender and
the receiver, hence timely authentication for
each individual packet.

• Robustness to packet loss.

• Scales to a large number of receivers.

The TESLA protocol meets all these require-
ments with low cost — and it has the following
special requirements:

• The sender and the receivers must be at least
loosely time-synchronized as outlined in Sec-
tion .

• Either the receiver or the sender must buffer
some messages.

Despite the buffering, TESLA has a low authen-
tication delay. In typical configurations, the au-
thentication delay is on the order of one round-
trip delay between the sender and receiver.

3.1 Sketch of TESLA protocol

We first outline the main ideas behind TESLA.
Broadcast authentication requires a source of
asymmetry, such that the receivers can only ver-
ify the authentication information, but not gener-
ate valid authentication information. TESLA uses
time for asymmetry. We assume that receivers are
all loosely time synchronized with the sender —
up to some time synchronization error ∆, all par-
ties agree on the current time. Here is a sketch of
the basic approach:

• The sender splits up the time into time in-
tervals of uniform duration. Next, the sender
forms a one-way chain of self-authenticating
values, and assigns the values sequentially to
the time intervals (one key per time inter-
val). The one-way chain is used in the re-
verse order of generation, so any value of a
time interval can be used to derive values of
previous time intervals. The sender defines a
disclosure time for one-way chain values, usu-
ally on the order of a few time intervals. The
sender publishes the value after the disclosure
time.

• The sender attaches a MAC to each packet.
The MAC is computed over the contents of
the packet. For each packet, the sender de-
termines the time interval and uses the cor-
responding value from the one-way chain as
a cryptographic key to compute the MAC.
Along with the packet, the sender also sends
the most recent one-way chain value that it
can disclose.

6

• Each receiver that receives the packet per-
forms the following operation. It knows the
schedule for disclosing keys and, since the
clocks are loosely synchronized, can check
that the key used to compute the MAC is still
secret by determining that the sender could
not have yet reached the time interval for dis-
closing it. If the MAC key is still secret, then
the receiver buffers the packet.

• Each receiver also checks that the disclosed
key is correct (using self-authentication and
previously released keys) and then checks the
correctness of the MAC of buffered packets
that were sent in the time interval of the dis-
closed key. If the MAC is correct, the receiver
accepts the packet.

One-way chains have the property that if inter-
mediate values of the one-way chain are lost, they
can be recomputed using later values. So, even
if some disclosed keys are lost, a receiver can re-
cover the key chain and check the correctness of
packets.

The sender distributes a stream of messages
{Mi}, and the sender sends each message Mi in
a network packet Pi along with authentication in-
formation. The broadcast channel may be lossy,
but the sender does not retransmit lost packets.
Despite packet loss, each receiver needs to authen-
ticate all the messages it receives.

We now describe the stages of the basic TESLA
protocol in this order: sender setup, receiver
bootstrap, sender transmission of authenticated
broadcast messages, and receiver authentication
of broadcast messages.

3.2 Sender Setup

TESLA uses self-authenticating one-way chains.
The sender divides the time into uniform intervals
of duration Tint. Time interval 0 will start at time
T0, time interval 1 at time T1 = T0+Tint, etc. The
sender assigns one key from the one-way chain
to each time interval in sequence. The one-way
chain is used in the reverse order of generation, so
any value of a time interval can be used to derive
values of previous time intervals.

The sender determines the length N of the
one-way chain K0,K1, . . . ,KN , and this length
limits the maximum transmission duration be-
fore a new one-way chain must be created.3 The
sender picks a random value for KN . Using a
pseudo-random function f , the sender constructs
the one-way function F : F (k) = fk(0). The
remainder of the chain is computed recursively
using Ki = F (Ki+1). Note that this gives us
Ki = FN−i(KN), so we can compute any value
in the key chain from KN even if we do not have
intermediate values. Each key Ki will be active
in time interval i.

3.3 Bootstrapping Receivers

Before a receiver can authenticate messages with
TESLA, it needs to be loosely time synchronized
with the sender, know the disclosure schedule of
keys, and receive an authenticated key of the one-
way key chain.

Various approaches exist for time synchroniza-
tion [24, 37, 22]. TESLA, however, only requires
loose time synchronization between the sender

3For details on how to handle broadcast streams of
unbounded duration by switching one-way key chains,
see [27]. For this article we assume that chains are suf-
ficiently long for the duration of communication.

7

and the receivers, so a simple algorithm is suf-
ficient. The time synchronization property that
TESLA requires is that each receiver can place
an upper bound of the sender’s local time, as we
discuss in Section .

The sender sends the key disclosure schedule by
transmitting the following information to the re-
ceivers over an authenticated channel (either via
a digitally signed broadcast message, or over uni-
cast with each receiver):

• Time interval schedule: interval duration
Tint, start time Ti and index of interval i,
length of one-way key chain.

• Key disclosure delay d (number of intervals).

• A key commitment to the key chain Ki (i <
j − d where j is the current interval index).

3.4 Broadcasting Authenticated Messages

Each key in the one-way key chain corresponds to
a time interval. Every time a sender broadcasts a
message, it appends a MAC to the message, using
the key corresponding to the current time interval.
The key remains secret for the next d−1 intervals,
so messages sent in interval j effectively disclose
key Kj−d. We call d the key disclosure delay.

As a general rule, using the same key multi-
ple times in different cryptographic operations is
ill-advised — it may lead to cryptographic weak-
nesses. So we do not want to use key Kj both
to derive key Kj−1 and to compute MACs. Us-
ing a pseudo-random function family f ′, we con-
struct the one-way function F ′: F ′(k) = f ′

k(1).
We use F ′ to derive the key to compute the
MAC of messages: K ′

i = F ′(Ki). Figure 3

depicts the one-way key chain construction and
MAC key derivation. To broadcast message Mj

in interval i the sender constructs packet Pj =
{Mj || MAC(K ′

i,Mj) || Ki−d}.

Figure 3 depicts the one-way key chain deriva-
tion, the MAC key derivation, the time intervals,
and some sample packets that the sender broad-
casts.

3.5 Authentication at Receiver

When a sender discloses a key, all parties poten-
tially have access to that key. An adversary can
create a bogus message and forge a MAC using
the disclosed key. So as packets arrive, the re-
ceiver must verify that their MACs are based on
safe keys: a safe key is one that is only known by
the sender, and safe packets or safe messages have
MACs computed with safe keys.

Receivers must discard any packet that is not
safe, because it may have been forged.

We now explain TESLA authentication in de-
tail: A sender sends packet Pj in interval i. When
the receiver receives packet Pj , the receiver can
use the self-authenticating key Ki−d disclosed in
Pj to determine i. It then checks the latest possi-
ble time interval x the sender could currently be
in (based on the loosely synchronized clock). If
x < i+d (recall that d is the key disclosure delay,
or number of intervals that the key disclosure is
delayed), then the packet is safe. The sender has
thus not yet reached the interval where it discloses
key Ki, the key that will verify packet Pj .

The receiver cannot yet verify the authenticity
of packet Pj sent in interval i. Instead, it adds
the triplet (i,Mj ,MAC(K ′

i,Mj)) to a buffer, and
verifies the authenticity after it learns K ′

i.

8

Pj Pj+1 Pj+2 Pj+3 Pj+4 Pj+5 Pj+6

Ki−1 Ki Ki+1 Ki+2

K′
i−1 K′

i K′
i+1 K′

i+2

F (Ki) F (Ki+1) F (Ki+2) F (Ki+3)

F ′(Ki−1) F ′(Ki) F ′(Ki+1) F ′(Ki+2)

Interval i − 1 Interval i Interval i + 1 Interval i + 2 time

Figure 3: At the top of the figure is the one-way key chain (using the one-way function F), and the
derived MAC keys (using the one-way function F ′). Time advances left-to-right, and the time is split
into time intervals of uniform duration. At the bottom of the figure, we can see the packets that the
sender sends in each time interval. For each packet, the sender uses the key that corresponds to the
time interval to compute the MAC of the packet. For example for packet Pj+3, the sender computes a
MAC of the data using key K ′

i+1. Assuming a key disclosure delay of two time intervals (d = 2), packet
Pj+3 would also carry key Ki−1.

What does a receiver do when it receives the
disclosed key Ki? First, it checks whether it al-
ready knows Ki or a later key Kj (j > i). If
Ki is the latest key received to date, the receiver
checks the legitimacy of Ki by verifying, for some
earlier key Kv (v < i) that Kv = F i−v(Ki). The
receiver then computes K ′

i = F ′(Ki) and verifies
the authenticity of packets of interval i, and of
previous intervals if the receiver did not yet re-
ceive the keys for these intervals (the receiver can
derive them from Ki).

Note that the security of TESLA does not rely
on any assumptions on network propagation de-
lay, since each receiver locally determines the
packet safety, i.e. whether the sender disclosed
the corresponding key. However, if the key dis-
closure delay is not much longer than the network
propagation delay, the receivers will find that the
packets are not safe.

4 Discussion

4.1 TESLA Security Considerations

The security of TESLA relies on the following as-
sumptions:

• The receiver’s clock is time synchronized up
to a maximum error of ∆. (We suggest
that because of clock drift, the receiver pe-
riodically re-synchronizes its clock with the
sender.)

• The functions F,F ′ are secure PRFs, and the
function F furthermore provides weak colli-
sion resistance.4

As long as these assumptions are satisfied, it
is computationally intractable for an attacker to
forge a TESLA packet that the receivers will au-
thenticate successfully.

4See our earlier paper for a formal security proof [28].

9

4.2 Achieving Asymmetric Security Proper-
ties with TESLA

Broadcast authentication requires an asymmetric
primitive, which TESLA provides through loosely
synchronized clocks and delayed key disclosure.
TESLA shares many common properties with
asymmetric cryptographic mechanisms. In fact,
assuming that all nodes in a network are time syn-
chronized, any key of the key chain serves as a key
chain commitment and is similar to a public key of
a digital signature: any loosely time synchronized
receiver with an authentic key chain commitment
can authenticate messages, but not forge a mes-
sage with a MAC that receivers would accept.

We can construct an efficient PKI based solely
on TESLA. Consider an environment with n com-
municating nodes. We assume that all nodes are
loosely time synchronized, such that the maxi-
mum clock offset between any two nodes is ∆; and
that all nodes know the authentic key chain com-
mitment and key disclosure schedule of the certi-
fication authority (CA). We further assume that
the CA knows the authentic key chain commit-
ment and key disclosure schedule of every node.
If a node A wants to start authenticating packets
originating from another node B, A can contact
the CA for B’s key chain commitment and key
disclosure schedule, which the CA sends authen-
ticated with its TESLA instance. After the CA
discloses the corresponding key, A can authenti-
cate B’s TESLA parameters and subsequently au-
thenticate B’s packets.

Note that TESLA is not a signature mecha-
nism and does not provide non-repudiation, as
anybody could forge “authentic” TESLA packets
after the key is disclosed. However, in conjunction
with a trusted time stamping mechanism, TESLA
could achieve properties similar to a digital signa-
ture. Consider this setup: all nodes in the network

are loosely time synchronized (as above with an
upper bound on the synchronization error); and
all nodes in the network trust the time stamp-
ing server [6, 15, 23]. The time stamping server
timestamps all TESLA packets it receives. The
time stamping server can broadcast the hooks to
the trust chain authenticated with its TESLA in-
stance. A judge who wants to verify that a sender
sent packet P performs the following operations:

1. Receive the current value of the time stamp-
ing server’s trust chain, ensure that it is safe,
and wait for the TESLA key to authenticate
it.

2. Based on the trust chain value, verify that
packet P is part of the trust chain.

3. Verify that packet P was safe when the time
stamping server received it (not necessary if
the time stamping server only timestamps
safe packets).

4. Retrieve key from the sender and verify it
using the key chain commitment and disclo-
sure schedule recorded by the time stamping
server.

5. Verify that the authenticity of the packet,
which implies that the correct sender must
have generated the packet.

TESLA and a time stamping server can thus
achieve non-repudiation. This example also shows
that the TESLA authentication can also be per-
formed after the key is already disclosed, as long
as the verifier can check that the packet arrived
safely.

10

5 Acknowledgments

We gratefully acknowledge funding support for
this research. This research was sponsored in part
the United States Postal Service (contract USPS
102592-01-Z-0236), by the United States Defense
Advanced Research Projects Agency (contract
N66001-99-2-8913), and by the United States Na-
tional Science Foundation (grants 99-79852 and
01-22599). DARPA Contract N66001-99-2-8913
is under the supervision of the Space and Naval
Warfare Systems Center, San Diego.

The views and conclusions contained in this
document are those of the author and should not
be interpreted as representing official policies, ei-
ther expressed or implied, of the United States
government, of DARPA, NSF, USPS, any of its
agencies.

References

[1] R. Anderson, F. Bergadano, B. Crispo,
J. Lee, C. Manifavas, and R. Needham. A
new family of authentication protocols. ACM
Operating Systems Review, 32(4):9–20, Oc-
tober 1998.

[2] F. Bergadano, D. Cavagnino, and B. Crispo.
Chained stream authentication. In Selected
Areas in Cryptography, 7th Annual Interna-
tional Workshop, SAC 2000, volume 2012 of
Lecture Notes in Computer Science, pages
144–157, August 2000.

[3] F. Bergadano, D. Cavalino, and B. Crispo.
Individual single source authentication on
the mbone. In ICME 2000, Aug 2000.

[4] D. Boneh, G. Durfee, and M. Franklin. Lower
bounds for multicast message authentication.
In Advances in Cryptology — EUROCRYPT

’2001, volume 2045 of Lecture Notes in Com-
puter Science, pages 434–450, 2001.

[5] B. Briscoe. FLAMeS: Fast, Loss-Tolerant
Authentication of Multicast Streams.
Technical report, BT Research, 2000.
http://www.labs.bt.com/people/briscorj/
papers.html.

[6] A. Buldas, P. Laud, H. Lipmaa, and
J. Villemson. Time-stamping with binary
linking schemes. In Advances in Cryptol-
ogy — CRYPTO ’98, volume 1462 of Lecture
Notes in Computer Science, pages 486–501,
1998.

[7] R. Canetti, J. Garay, G. Itkis, D. Miccian-
cio, M. Naor, and B. Pinkas. Multicast se-
curity: A taxonomy and some efficient con-
structions. In INFOCOMM’99, pages 708–
716, March 1999.

[8] S. Cheung. An efficient message authen-
tication scheme for link state routing. In
13th Annual Computer Security Applications
Conference, pages 90–98, 1997.

[9] D. Coppersmith and M. Jakobsson. Almost
optimal hash sequence traversal. In Pro-
ceedings of the Fourth Conference on Finan-
cial Cryptography (FC ’02), Lecture Notes in
Computer Science, 2002.

[10] Y. Desmedt and Y. Frankel. Shared genera-
tion of authenticators and signatures. In Ad-
vances in Cryptology — CRYPTO ’91, vol-
ume 576 of Lecture Notes in Computer Sci-
ence, pages 457–469, 1992.

[11] Y. Desmedt, Y. Frankel, and M. Yung. Multi-
receiver / multi-sender network security: Ef-
ficient authenticated multicast / feedback. In
Proceedings IEEE Infocom ’92, pages 2045–
2054, 1992.

11

[12] Y. Desmedt and M. Yung. Arbitrated un-
conditionally secure authentication can be
unconditionally protected against arbiter’s
attacks. In Advances in Cryptology —
CRYPTO ’90, volume 537 of Lecture Notes
in Computer Science, pages 177–188, 1991.

[13] F. Fujii, W. Kachen, and K. Kurosawa. Com-
binatorial bounds and design of broadcast
authentication. IEICE Transactions, E79-
A(4):502–506, 1996.

[14] R. Gennaro and P. Rohatgi. How to sign dig-
ital streams. In Advances in Cryptology —
CRYPTO ’97, volume 1294 of Lecture Notes
in Computer Science, pages 180–197, 1997.

[15] S. Haber and W. Stornetta. How to time-
stamp a digital document. In Advances in
Cryptology — CRYPTO ’90, volume 537 of
Lecture Notes in Computer Science, pages
437–455, 1991.

[16] N. Haller. The S/Key one-time password
system. In Proceedings of the Symposium
on Network and Distributed Systems Secu-
rity, pages 151–157. Internet Society, Febru-
ary 1994.

[17] H. Holbrook and D. Cheriton. IP multicast
channels: EXPRESS support for large-scale
single-source applications. In Proceedings of
ACM SIGCOMM ’99, September 1999.

[18] Y.-C. Hu, A. Perrig, and D. B. Johnson.
Ariadne: A secure on-demand routing pro-
tocol for ad hoc networks. In Proceedings
of the Eighth ACM International Conference
on Mobile Computing and Networking (Mo-
bicom 2002), September 2002. To appear.

[19] M. Jakobsson. Fractal hash sequence repre-
sentation and traversal. In Proceedings of the
2002 IEEE International Symposium on In-
formation Theory (ISIT ’02), pages 437–444,
July 2002.

[20] K. Kurosawa and S. Obana. Characteriza-
tion of (k,n) multi-receiver authentication.
In Proceedings of the 2nd Australasian Con-
ference on Information Security and Privacy
(ACISP ’97), volume 1270 of Lecture Notes
in Computer Science, pages 205–215, 1997.

[21] L. Lamport. Password authentication with
insecure communication. Communications of
the ACM, 24(11):770–772, November 1981.

[22] L. Lamport and P. Melliar-Smith. Synchro-
nizing clocks in the presence of faults. Jour-
nal of the ACM, 32(1):52–78, 1985.

[23] H. Lipmaa. Secure and Efficient Time-
Stamping Systems. PhD thesis, Department
of Mathematics, University of Tartu, Esto-
nia, April 1999.

[24] D. Mills. Network Time Protocol (version 3)
specification, implementation and analysis.
Internet Request for Comment RFC 1305, In-
ternet Engineering Task Force, March 1992.

[25] S. Miner and J. Staddon. Graph-based au-
thentication of digital streams. In Proceed-
ings of the IEEE Symposium on Research
in Security and Privacy, pages 232–246, May
2001.

[26] Multicast security ietf working group
(msec). http://www.ietf.org/html.charters/
msec-charter.html, 2002.

[27] A. Perrig, R. Canetti, D. Song, and J. D.
Tygar. Efficient and secure source authen-
tication for multicast. In Proceedings of the
Symposium on Network and Distributed Sys-
tems Security (NDSS 2001), pages 35–46. In-
ternet Society, February 2001.

[28] A. Perrig, R. Canetti, J. D. Tygar, and
D. Song. Efficient authentication and signa-
ture of multicast streams over lossy channels.

12

In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 56–
73, May 2000.

[29] A. Perrig, R. Szewczyk, V. Wen, D. Culler,
and J. D. Tygar. SPINS: Security proto-
cols for sensor networks. In Proceedings of
Seventh Annual International Conference on
Mobile Computing and Networks (Mobicom
2001), pages 189–199, 2001.

[30] A. Perrig and J. D. Tygar. Security Protocols
for Broadcast Networks. Kluwer Academic
Publishers, 2002. To appear.

[31] M. Reiter. A security architecture for fault-
tolerant systems. PhD thesis, Department
of Computer Science, Cornell University, Au-
gust 1993.

[32] M. Reiter, K. Birman, and R. van Renesse.
A security architecture for fault-tolerant sys-
tems. ACM Transactions on Computer Sys-
tems, 12(4):340–371, November 1994.

[33] P. Rohatgi. A compact and fast hybrid sig-
nature scheme for multicast packet. In Pro-
ceedings of the 6th ACM Conference on Com-
puter and Communications Security, pages
93–100, November 1999.

[34] R. Safavi-Naini and H. Wang. New results
on multireceiver authentication codes. In Ad-
vances in Cryptology — EUROCRYPT ’98,
volume 1403 of Lecture Notes in Computer
Science, pages 527–541, 1998.

[35] R. Safavi-Naini and H. Wang. Multireceiver
authentication codes: Models, bounds, con-
structions and extensions. Information and
Computation, 151(1/2):148–172, 1999.

[36] G. Simmons. A cartesian product construc-
tion for unconditionally secure authentica-
tion codes that permit arbitration. Journal
of Cryptology, 2(2):77–104, 1990.

[37] B. Simons, J. Lundelius-Welch, and
N. Lynch. An overview of clock syn-
chronization. In B. Simons and A. Spector,
editors, Fault-Tolerant Distributed Com-
puting, number 448 in LNCS, pages 84–96,
1990.

[38] D. Song, D. Zuckerman, and J. D. Tygar.
Expander graphs for digital stream authen-
tication and robust overlay networks. In
Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, pages 258–
270, May 2002.

[39] C. Wong and S. Lam. Digital signatures for
flows and multicasts. In IEEE ICNP ‘98,
1998.

[40] Source-Specific Multicast IETF work-
ing group (SSM). http://www.ietf.org/html.
charters/ssm-charter.html, 2002.

13

Forward-Secure Signatures with Optimal Signing and Verifying

Gene Itkis Leonid Reyzin
Boston University Computer Science Dept.

111 Cummington St.
Boston, MA 02215, USA
{itkis,reyzin}@bu.edu

Abstract

Ordinary digital signatures have an inherent weakness:
if the secret key is leaked, then all signatures, even the
ones generated before the leak, are no longer trustwor-
thy. Forward-secure digital signatures were proposed
by Anderson [4] and formalized by Bellare and Miner
[8] to address this weakness.

We describe the concept of forward security, as well
as the first forward-secure signature scheme for which
both signing and verifying are as efficient as for one of
the most efficient ordinary signature schemes (Guillou-
Quisquater [14]), each requiring just two modular ex-
ponentiations with a short exponent.

1 Introduction

Limitations of Digital Signatures. Ordinary dig-
ital signatures have a fundamental limitation: if
the secret key of a signer is compromised, all the
signatures (past and future) of that signer be-
come suspect. Even though the signer might know
which signatures were issued by her and which by
the imposter (who used the stolen key), there is
no way for the verifier to distinguish them.

Thus upon such a secret key compromise, the
signer should revoke her public key, and ob-

tain a new one (with the corresponding non-
compromised secret). But what to do with the
already issued (before the compromise — in good
faith) signatures. Re-issuing them with the new
key is expensive or even impossible (imagine hav-
ing to do this for a certification authority, or in
the absence of reliable and exhaustive records of
the past signatures).

What is even worse, a dishonest signer may see
a key compromise as a golden opportunity to re-
pudiate (some) previously signed documents. In
fact, she might even fake a compromise herself (for
example, by anonymously posting her secret key
on the internet and claiming to be the victim of a
computer break-in).

Frequent Rekeying. One approach to preventing
the theft of the secret key is to simply erase it—
a securely erased key cannot be stolen. All the
signatures produced with it cannot later become
invalid. In other words, by erasing her secret key,
the signer guarantees that the issued signatures
remain trustworthy for the future (assuming that
she is certain the key was not compromised prior
to erasure).

The problem with erasing the secret key, of
course, is that the signer can no longer produce
signatures with it. With ordinary signatures, this
means that the corresponding public key is now

14

useful only for past signatures, and a new public
key needs to be issued (and appropriately certified
and disseminated) for the future ones. This makes
such an approach expensive and inconvenient.

Forward-Secure Signatures. The goal of forward-
secure signature schemes is to provide the benefits
of frequent rekeying withouth incurring the costs
of changing public keys (and associated overhead).
First proposed by Anderson in [4] and formalized
by Bellare and Miner in [8], they enable the signer
to frequently erase the secret key while maintain-
ing the same public key. The notion of a forward-
secure signature scheme is akin to the notion of
“perfect forward secrecy” for key agreement [15],
which protects past traffic even after long-term
keys are compromised.1

To be more precise, in a forward-secure signa-
ture scheme the total time that the public key
is valid (for example, one year) is divided into
T time periods (for example, 365 days). At the
end of each time period, the signer computes the
next secret key from the current one via a key up-
date algorithm, and erases the current secret key.
Each signature includes an essential component:
the time period during which the signature is is-
sued. If the time period is modified within a sig-
nature, it will no longer verify. Forward-security
property means that even if the adversary obtains
the current secret key, he cannot forge signatures
for past time periods.

Applications. Consider, again, the example of a
signer who issues digital credentials. Suppose she
generated her keys on January 1, and her secret
key was compormised on July 1. If she uses an

1The “forward” in “forward security” and “forward se-
crecy” is a constant source of debate. Some prefer “back-
ward” since such schemes protect communications that
happened before a key compromise. In our opinion, “for-
ward” is justified, because if a communicaiton occurs when
the key is secure, then it will be protected in the future no
matter what happens with the key.

ordinary signature scheme, then she has to revoke
her old public key (effective retroactively, from
January 1), and reissue (with a new key) all the
credentials issued between January 1 and July 1.
If, on the other hand, she uses a forward-secure
scheme, then she merely has to revoke her public
key from July 1 forward. The only credentials she
needs to reissue with a new key are the ones issued
on July 1 before the key compormise was discov-
ered. Essentially, the potential liability she could
incur from key compromise is greatly reduced by
forward-secure signatures, from one year’s worth
of signatures to only one day’s.

Now consider the example of a dishonest signer
who wants to repudiate her signatures. Repudia-
tion on the basis of key compromise must be al-
lowed to protect the innocent signers whose keys
get stolen, because no full-proof protection exists
for secret keys (even tamper-resistant devices can
be compromised or stolen) When ordinary signa-
ture schemes are used, this presents a potential
liability for signature recipients for the duration
of the key activity or longer—as long as the se-
cret key is around.

It is, however, quite reasonable to require sign-
ers to securely erase their old keys. Thus, using
a forward-secure signature scheme, potential li-
ability for the signature recipients is reduced to
only the current time period. In other words, if
a signature is received on July 1, by July 2 the
signer must have erased the secret key and can no
longer claim that that key is stolen. It is reason-
able, then, to shift the liability to the signer and
to disallow repudiation on July 2: failing to se-
curely erase the key is deemed the signer’s fault.
This, of course, assumes that the signer is ex-
pected to promptly detect key compromise: if she
can reasonably demonstrate on July 2 that the key
was stolen on July 1 without her knowledge, she
should be able to repudiate the signature. This
brings us to our next topic.

15

Implicit Assumptions. As seen above, secure era-
sure of the old secret keys (and all the intermedi-
ate results of any computations involving them) is
crucial for all forward-secure schemes. As is well-
known, this assumption may present serious chal-
lenges in the implementation: one has to make
sure that no copies of anything sensitive are acci-
dentally left unerased or are recoverable from hard
disks and other storage devices ([10] addresses this
problem).

Similarly, we relied on signer’s ability to de-
tect compromises. Just like in regular signature
schemes, the sooner the determination is made
and key revoked, the less damage the adversary
can do. In particular, if forward-secure signa-
tures are used to deter repudiation, the signer
has to be provided with the means to detect key-
compromise (otherwise, the signer can repudiate
a signature by claiming she did not know that key
compromise had occurred). This can be accom-
plished with the use of tamper-evident devices,
which are much easier to build than tamper-proof
ones (evidence of tampering may often be ob-
tained from external indicators, such as broken-in
office, a lost laptop, etc.)

Finally, we relied on the verifier’s ability to
check that the signature has the correct time pe-
riod, and that the public key is valid during that
time period. This assumes some synchronization
between the signer and the verifier (and possibly
the outside arbiter, if one exists). This assump-
tion may present a problem for small devices with-
out autonomous clocks, especially when the time
period is short. If a signature is “post dated,”
(e.g., issued on July 1 but dated July 10), then
the signer has more time to repudiate it based on
a claim of key compromise (in the example above,
10 days).

We note that a time period need not actually
correspond to physical time. For example, it can

correspond to a particular number of signatures.
A bank may require the signer to update the key
after signing each check, to make sure that each
individual check cannot be repudiated. Because
the bank (presumably) knows how many checks
have been issued, both parties can agree on what
the correct “time” (in this case, check number) is.

Forward-Secure Schemes. Known forward-secure
signature schemes can be divided into two cate-
gories: those that use arbitrary ordinary signa-
ture schemes in a black-box manner, and those
that modify some specific signature scheme.

In the first category, the forward-secure schemes
use some method in which a master public key
is used to certify (perhaps via a chain of certifi-
cates or a Merkle tree) the current public key for
a particular time period. Usually, these schemes
require increases in storage space by noticeable
factors in order to maintain the current (public)
certificates and the (secret) keys for issuing future
certificates. They also require longer verification
times than ordinary signatures do, because the
verifier needs to verify the entire certificate chain
in addition to verifying the actual signature on the
message. The first such scheme was proposed by
Bellare and Miner [8]. Significant improvements
were proposed by Krawczyk [21] and by Malkin,
Micciancio and Miner [22]. The resulting schemes
are quite competitive; exact comparison is made
difficult by the multitude of implementation op-
tions available—most importantly, by the choice
of the underlying ordinary signature scheme.

In the second category, there are four known
schemes, each based on a different ordinary sig-
nature scheme: the scheme of Bellare and Miner
[8] based on the Fiat-Shamir [11], the scheme
of Abdalla and Reyzin [2] based the 2t-th root
[24, 25, 23], the scheme of Itkis and Reyzin [16]
based on Guillou-Quisquater [14], and the scheme
of Kozlov and Reyzin [20] based on the ideas of

16

[12, 6, 27]. Of these, the scheme of [16] has most
efficient signing and verifying algorithms: each re-
quire just two exponentiations with a short expo-
nent, just like the underlying ordinary signature
scheme.2 Moreover, it has short secret and pub-
lic keys, and requires no additional storage. We
therefore present it in detail below. More intu-
ition and formal proofs can be found in [16].

Further Reading. The seminal paper on forward-
secure signatures by Bellare and Miner [8] con-
tains an excellent discussion as well as formal
definitions of the concept. Other forward-secure
signature schemes [21, 22, 20] may offer advan-
tages depending on the relative importance of
the speeds and sizes of various components. The
work [3] contains a good exposition of techniques
used to prove security of many forward-secure sig-
natures. Some extensions of the forward-secure
model are considered in [1, 27, 18]. Forward-
secure encryption is addressed in [19].

2 Construction

2.1 Guillou-Quisquater Signatures

In [14], Guillou and Quisquater proposed the fol-
lowing three-round identification scheme. Let k
and l be two security parameters (reasonable val-
ues ranges are 1024–2048 and 128–160, respec-
tively). The prover’s secret key consists of a k-
bit modulus n (a product of two random primes
p1, p2), an (l + 1)-bit exponent e that is relatively
prime to φ(n) = (p1 − 1)(p2 − 1), and a random
s ∈ Z∗

n. The public key consists of n, e and v
where v = 1/se mod n.

In the first round, the prover generates a ran-
dom r ∈ Z∗

n, computes the commitment y = re

2This scheme was further extended to an intrusion-
resilient scheme [17], which provides much stronger guar-
antees of protecting not only the past but also the future.

(mod n) and sends y to the the verifier. In the
second round, the verifier sends a random l-bit
challenge σ to the prover. In the third round, the
prover computes and sends to the verifier z = rsσ.
To check, the verifier computes y′ = zevσ and
checks if y = y′ (and y �≡ 0 (mod n)).

The standard transformation of Fiat and
Shamir [11] can be applied to this identification
scheme to come up with the GQ signature scheme,
presented in Figure 1. Essentially, the interactive
verifier’s l-bit challenge σ is now computed using a
cryptographic hash function H : {0, 1}∗ → {0, 1}l
(such as SHA-1) applied to the message M and
the commitment y.

The scheme’s security is based on the assump-
tions that computing roots modulo composite n
is infeasible without knowledge of its factors, and
that H acts like a “random oracle.”

2.2 Making it Forward-Secure

Main Idea. We combine the GQ scheme with
Shamir’s [26] observation that roots of different
degrees are essentially independent, as long as the
degrees are relatively prime. In other words, in-
stead of just using s (which is a root of 1/v of
degree e), the signer will simply use roots of 1/v
of different degrees in different time periods. It
can be proven that knowing the secret for one
time period does not help sign in another time
period—this will be the basis for forward security.

More precisely, let e1, e2, . . . , eT be distinct
integers, all greater than 2l, all pairwise rela-
tively prime and relatively prime with φ(n). Let
s1, s2, . . . , sT be such that sei

i ≡ 1/v (mod n) for
1 ≤ i ≤ T . In time period i, the signer will simply
use the GQ scheme with the secret key (n, si, ei)
and the verifier will use the GQ scheme with the
public key (n, v, ei).

17

algorithm GQ.key(k, l)
Generate random �k/2�-bit

primes p1, p2

n← p1p2

s
R← Z∗

n

e
R← [2l, 2l+1)
s.t. gcd(e, φ(n)) = 1

v ← 1/se mod n
SK ← (n, s, e)
PK ← (n, v, e)
return (SK ,PK)

algorithm GQ.sign(M, (n, s, e))
r

R← Z∗
n

y ← re mod n
σ ← H(y,M)
z ← rsσ mod n
return (z, σ)

algorithm GQ.ver(M, (n, v, e), (z, σ))
if z ≡ 0 (mod n) then return 0
y′ ← zevσ mod n
if σ = H(y′,M) then return 1

else return 0

Figure 1: The GQ Signature Scheme

This idea is quite simple. However, we still need
to address the following two issues: (i) how the
signer computes the si’s, and (ii) how both the
signer and the verifier obtain the ei’s.

Computing si’s. Notice that if the signer were
required to store all the si’s, this scheme would
require secret storage that is linear in T . How-
ever, this problem can be easily resolved. Let
fi = ei · ei+1 · . . . · eT . Let s[i,T] be such that
sfi

[i,T] ≡ 1/v (mod n). During the j-th time pe-
riod, the signer stores sj and s[j+1,T]. At update

time, the signer computes sj+1 = s
fj+2

[j+1,T] mod n

and s[j+2,T] = s
ej+1

[j+1,T] mod n. This allows secret
storage that is independent of T : only two values
modulo n are stored at any time (the fi and ei val-
ues are not stored—see below). It does, however,
require computation linear in T at each update,
because of the high cost of computing sj+1 from
s[j+1,T].

We can reduce the computation at each update
to be only logarithmic in T by properly utilizing
precomputed powers of s[j+1,T]. This will require

us, however, to store 1 + log2 T secrets instead
of just two. This optimization concerns only the
efficiency of the update algorithm and affects nei-
ther the other components of the scheme nor the
security, and is therefore presented separately in
Section .

Obtaining ei’s. In order for the scheme to be
secure, the ei’s need to be relatively prime with
each other and with φ(n), and greater than 2l.
Unlike in the GQ scheme, where the single value
e is included in the public key, we do not want to
include all the ei values in the public key, because
this will lengthen the key too much (by T (l + 1)
bits). Therefore, we simply require the signer to
include the correct ei value in the signature. Al-
though a forger may attempt to use an incorrect ei

value in a forgery, this is not a problem: it can be
proven that forgery for time period i is impossible
for any e value, as long as it is guaranteed to be
relatively prime with the values ei+1, ei+2, . . . , eT .

The last conditions can be verified in a number
of different ways. The simplest is to divide the
entire space of l + 1-bit integers into T intervals

18

(the i-th interval is the set of integers between
2l(1+(i−1)/T) and 2l(1+i/T))), and pick each ei

as prime from the i-th interval. Then the verifier
simply needs to check that the alleged ei in the
signature is indeed in the correct interval—it is
then guaranteed to be relatively prime with the
values ei+1, ei+2, . . . , eT (because they are primes
greater than the alleged ei value). Note that the
verifier need not perform any primality testing.

The signer need not store all the ei’s. Only the
one for the current time period is needed for sign-
ing. The ones for future periods are needed during
the key update procedure only. They can be re-
covered as needed; the signer need simply store
enough information to be able to recover them.
In most applications, it is probably simplest to
generate each ei as the first prime after the begin-
ning of the i-th interval, i.e., the first prime after
2l(1 + (i− 1)/T). Then one can either regenerate
ei’s from scratch, or, if some of storage is avail-
able, store the short offset between the beginning
of the interval, 2l(1 + (i− 1)/T , and the ei value
itself. We note that as l is about 128, (l + 1)-bit
primes should be quick to generate.

The resulting scheme is presented in Figure 2.
Note that, to ensure that each ei is relatively
prime with φ(n), we simply use “safe” primes
as factors of n: i.e., primes p1 and p2 such that
p1 = q1 + 1 and p2 = q2 + 1, where q1 and q2

are themselves prime. Then φ(n) = 4q1q2, and
has only two odd prime factors. One can relax
the condition: instead of having p1 and p2 be safe
primes, we can simply require that p1−1 and p2−1
have no odd prime factors of size less than 2l+1.
This will speed up key generation.

The scheme is provably forward-secure based
on the so-called “strong RSA” assumption [7, 12].
The assumption is that it is hard to extract a root
of v modulo n of any degree between 2 and 2l+1).
The proof, given in [16], is in the random oracle

model [9]: it assumes that the hash function H
behaves like a random function.

Other methods for obtaining ei’s. The following
other methods for finding ei’s offer potential ben-
efits to the signer at a small cost to the verifier.

If both the signer and the verifier have readily
available access to a table of first T odd primes
(which is particularly plausible if T is small), then
each ei can be simply picked as a power if the
i-th prime. In other words, if we let εi be the
i-th odd prime (starting our counting at ε1 = 3,
ε2 = 5, . . .), we can let ei = εαi

i , where αi is a large
enough value to ensure that ei > 2l (for example,
αi = l	log2 εi
).

The algorithms would change as follows: the
key generation and update algorithms would now
generate ei as εαi

i , and would therefore to have to
perform any primality testing on ei’s. The sign-
ing algorithm would remain the same, but would
not need to output ej as part of the signature,
thus shortening the signature. The verification
algorithm, instead of obtaining ej from the signa-
ture and verifying that it is in the correct inverval,
would simply have to compute ej directly as ε

αj

j .

Yet another method is available if the table of
small primes is inconvenient for a particular ap-
plication. Let S be some small integer value (to
be explained shortly), and let εi be a first prime
in the interval [(i − 1)S, iS). Again, let ei = εαi

i ,
where αi is a large enough value to ensure that
ei > 2l. S needs to be picked large enough to
guarantee that there exists at least one prime in
each interval [(i − 1)S, iS) for 1 ≤ i ≤ T . For
example, S = 34 will work for T = 1024, because
the largest gap between the first 1024 primes is
34; by the same reasoning, S = 72 will work for
T = 104, S = 114 will work for T = 105, and
S = 154 will work for T = 220 > 106.

19

algorithm IR.key(k, l, T)
Generate random �k/2�-bit safe primes p1, p2: generate primes q1, q2, s.t. pi ← 2qi+1 are prime
n← p1p2

s[1,T]
R← Z∗

n

Generate primes e1, . . . , eT s.t. 2l(1 + (i− 1)/T) ≤ ei < 2l(1 + i/T).
f2 ← e2 · . . . · eT mod φ(n), where φ(n) = 4q1q2

s1 ← sf2

[1,T] mod n ; s[2,T] ← se1

[1,T] mod n

v ← 1/s1
e1 mod n

SK 1 ← (n, s1, s[2,T], e1) (n and e1 are included for convenience and need not be kept secret)
PK ← (n, v, T)
Securely erase all the intermediate results, leaving only SK 1,PK unerased.

In particular, q1, q2, p1, p2, φ(n) must be erased.
Note that the values n and e1, . . . , eT need not be kept secret or erased.

algorithm IR.sign(M,SK j)
Let SK j = (n, sj, s[j+1,T], ej)
r

R← Z∗
n

y ← rej mod n
σ ← H(y,M, j, ej)
z ← rsj

σ mod n
return (z, σ, j, ej)

algorithm IR.ver(M,PK , (z, σ, j, e))
Let PK = (n, v, T)
if e ≥ 2l(1 + j/T) or e < 2l or e is even then return 0
if z ≡ 0 (mod n) then return 0
y′ ← zevσ mod n
if σ = H(y′,M, j, e) then return 1 else return 0

algorithm IR.update(SK j)
Let SK j = (n, sj, s[j+1,T], ej)
if j = T then return “error”
Recover ej+1, . . . , eT

sj+1 ← s
ej+2·...·eT

[j+1,T] mod n; s[j+2,T] ← s
ej+1

[j+1,T] mod n

SK j+1 ← (n, sj+1, s[j+2,T], ej+1)
Securely erase SK j and all the intermediate results. Leave only SK j+1 unerased.

Figure 2: Our forward-secure signature scheme (without efficiency improvements). Highlighted in red
are the differences from the GQ (Fig. 1).

The algorithms would change as follows: the
key generation and update algorithms would now
first generate each εi as a prime from the interval
[(i − 1)S, iS), and then compute ei as εαi

i . Thus,
they would perform primality testing on the short
value εi, rather than the long value ei. The sign-
ing algorithm would remain the same, but would
output εj as part of the signature, instead of ej .

The verification algorithm would obtain εj from
the signature, check that it is odd and greater
than (j − 1)S, and compute ej as εαi

i . Note that,
again, the verification algorithm would not need
to perform primality testing.

20

3 Optimizing key update

The key update in our scheme requires comput-
ing si such that sei

i ≡ 1/v mod n. The solution
we used in the previous section took T − i− 1 ex-
ponentiations. This computation can be reduced
dramatically if the storage is increased slightly.
Specifically, in this section we demonstrate how
replacing the single secret s[j,T] with log2 T secrets
can reduce the complexity of the update algorithm
to only log2 T exponentiations.

Abstracting the Problem. Consider all subsets of
ZT = {1, 2, . . . , T}. Let each such subset S ⊆ ZT

correspond to the secret value sS = s
∏

i/∈S ei

[1,T] . For
example, s[1,T] corresponds to ZT , s[i,T] corre-
sponds to {i, i+1, . . . , T}, v−1 corresponds to the
empty set, and each si corresponds to the single-
ton set {i}. Raising some secret value sS to power
ei corresponds to dropping i from S.

Thus, instead of secrets and the exponentiation
operation, we can consider sets and the operation
of removing an element. Our problem, then, can
be reformulated as follows: design an algorithm
that, given ZT , outputs (one-by-one, in order) the
singleton sets {i} for 1 ≤ i ≤ T . The only way to
create new sets is to remove elements from known
sets. The algorithm should minimize the num-
ber of element-removal operations (because they
correspond to the expensive exponentiation oper-
ations).

Pebbling. Let each subset of ZT correspond to a
node in a graph. Connect two sets by a directed
edge if the destination can be obtained from the
source by dropping a single element. The result-
ing graph is the T -dimensional hypercube, with
directions on the edges (going from higher-weight
nodes to lower-weight nodes; see Fig. 3).

Figure 3: Hypercube for the subsets of {1, 2, 3, 4}.

Consider now ommitting some of the edges of
this hypercube, together with the ∅ node corre-
sponding to the value v. The resulting graph
looks much simpler (see Fig. 4) and contains all
the edges need for our algorithm.

Figure 4: Simplified tree on the non-empty sub-
sets of {1, 2, 3, 4}.

Represent each set stored as a pebble at the
corresponding node in a graph. Then removing
an element from a set corresponds to moving the
corresponding pebble down the corresponding di-
rected edge. If the original set is preserved, then
a “clone” of a pebble is left at the original node.

Our goal now can be reformulated as follows in
terms of pebbles: find a pebbling strategy that,
starting at the node ZT , reaches every node {i}
in order. Moreover, we wish to optimize this strat-
egy by minimizing the following three parameters:

21

Figure 5: Pebbling the tree on the interval {1, ..., 16}. The configuration corresponds to the time when
the first singleton {1} is output. The pebbles are at the nodes {2}; {3, 4}; {4, 5, 6, 7, 8}; and {6, ..., 16},
and correspond to the four stored values s2, s[3,4], s[4,8], and s[6,16].

(a) storage requirements — the number of pebbles
used at any given time; (b) total number of expo-
nentiations — the total number of pebble moves;
and (c) the worst-case running time of the update
algorithm — the max number of pebble moves
between any two consecutive hits of a singleton.

The Pebbling Algorithm. Suppose we start with
a single pebble at the root of the tree. Each pebble
moves down the tree as follows. When reaching
a branch (a node with two children) the pebble
splits into two siblings — one taking the left edge
and the other taking the right. The right sibling
“donates” its moves to the left one, until the left
sibling reaches the next branch. Then (when the
left sibling splits again) the right pebble proceeds

down its right path. A pebble is discarded upon
reaching a leaf.

Thus, left-moving pebbles always move two
edges per time period, while right-moving peb-
bles stay still while their left-moving pebbles are
moving, and then move one-edge per time period
until the next branch (their average speed thus is
2/3).

To use pebbling for key update, simply replace
the s[i+2,T] value in the secret key with a list L of
pebbles, generated and updated according to the
detailed algorithms Figure 6. The secret si+1 is
generated during key update from L (instead of
via long exponentiation from s[i+2,T]).

22

Additional Steps for IR.key:
Define data structure Pebble = {s, pb, pe, rb, re}

// s is the secret that the pebble contains; the other four variables are named as follows:
// “p” stands for “position,” “r” for “responsibility,” “b” for “begin” and “e” for “end”

Let Pebble R← {s[1,T], 1, 1, T, T}; let L be a list of Pebbles, containing the single element R

for i← −	(T − 2)/2
 to 0
PebbleStep(L)

New Steps for IR.update (instead of modular exponentiations):
PebbleStep(L)
Remove the first element of L; its s value is sj+1 to be put into SK j+1

Procedure PebbleStep(L)
for each Pebble P in L, in order

if P.pb = P.pe do nothing // Pebble doesn’t move because it is at destination
else if P.pb = P.rb then MoveLeft(P) // Move left twice, unless you hit bottom after first move

if P.pb �= P.pe then MoveLeft(P) and skip over the next pebble in L
else MoveRight(P)

Procedure MoveLeft(P)
if P.pe = P.re // Need to split this pebble into two

Create a new Pebble P1, and insert it into L immediately following P
P1.s← P.s, P1.pb ← P.pb, P1.pe ← P.pe , P1.re ← P.re, P1.rb ← 	(P.rb + P.re + 1)/2

P.re ← 	(P.rb + P.re − 1)/2

P.s← P.sepe mod n; P.pe ← P.pe − 1

Procedure MoveRight(P)
P.s← P.sepb mod n; P.pb ← P.pb + 1

Figure 6: Pebbling techniques to speed up key update

In [16] we prove that this strategy guarantees
that at any moment there are at most 1 + log2 T
pebbles and that all the pebbles always arrive at
the leaves at the right times. The amount of steps
in any time period does not exceed log2 T .

We also show that using pebbling does not com-
promise security, because none of the secrets con-
tained in the pebbles can assist the adversary in
forging past signatures (in fact, all the secrets in
the pebbles at time period i can be derived from
s[i,T]).

23

References

[1] Michel Abdalla, Sara Miner, and Chanathip
Namprempre. Forward-secure threshold sig-
nature schemes. In David Naccache, ed-
itor, Progress in Cryptology — CT-RSA
2001, volume 2020 of Lecture Notes in
Computer Science, pages 143–158. Springer-
Verlag, April 8-12 2001.

[2] Michel Abdalla and Leonid Reyzin. A
new forward-secure digital signature scheme.
In Tatsuaki Okamoto, editor, Advances
in Cryptology—ASIACRYPT 2000, volume
1976 of Lecture Notes in Computer Science,
pages 116–129, Kyoto, Japan, 3–7 December
2000. Springer-Verlag. Full version available
from the Cryptology ePrint Archive, record
2000/002, http://eprint.iacr.org/.

[3] Jee Hea An, Michel Abdalla, Mihir
Bellare, and Chanathip Namprempre.
From identification to signatures via
the Fiat-Samir transform: Minimizing
assumptions for security and forward-
security. Available from http://www-
cse.ucsd.edu/users/mihir/papers/id-
sig.html.

[4] Ross Anderson. Invited lecture. Fourth An-
nual Conference on Computer and Commu-
nications Security, ACM; summary appears
in [5], 1997.

[5] Ross Anderson. Two re-
marks on public key cryptology.
http://www.cl.cam.ac.uk/users/rja14/,
2001.

[6] Giuseppe Ateniese, Jan Camenisch, Marc
Joye, and Gene Tsudik. A practical and prov-
ably secure coalition-resistant group signa-
ture scheme. In Mihir Bellare, editor, Ad-
vances in Cryptology—CRYPTO 2000, vol-

ume 1880 of Lecture Notes in Computer Sci-
ence, pages 255–270. Springer-Verlag, 20–
24 August 2000.

[7] Niko Barić and Birgit Pfitzmann. Collision-
free accumulators and fail-stop signa-
ture schemes without trees. In Walter
Fumy, editor, Advances in Cryptology—
EUROCRYPT 97, volume 1233 of Lecture
Notes in Computer Science, pages 480–494.
Springer-Verlag, 11–15 May 1997.

[8] Mihir Bellare and Sara Miner. A
forward-secure digital signature scheme.
In Michael Wiener, editor, Advances in
Cryptology—CRYPTO ’99, volume 1666
of Lecture Notes in Computer Science,
pages 431–448. Springer-Verlag, 15–19 Au-
gust 1999. Revised version is available from
http://www.cs.ucsd.edu/˜mihir/.

[9] Mihir Bellare and Phillip Rogaway. Ran-
dom oracles are practical: A paradigm for
designing efficient protocols. In Proceedings
of the 1st ACM Conference on Computer
and Communication Security, pages 62–73,
November 1993. Revised version appears in
http://www.cs.ucsd.edu/˜mihir/.

[10] Giovanni Di Crescenzo, Niels Ferguson, Rus-
sell Impagliazzo, and Markus Jakobsson.
How to forget a secret. In STACS ’99: 16th
Annual Symposium on Theoretical Aspects
in Computer Science, volume 1563 of Lecture
Notes in Computer Science. Springer-Verlag,
March 1999.

[11] Amos Fiat and Adi Shamir. How to
prove yourself: Practical solutions to iden-
tification and signature problems. In An-
drew M. Odlyzko, editor, Advances in
Cryptology—CRYPTO ’86, volume 263 of
Lecture Notes in Computer Science, pages
186–194. Springer-Verlag, 1987, 11–15 Au-
gust 1986.

24

[12] Eiichiro Fujisaki and Tatsuaki Okamoto. Sta-
tistical zero knowledge protocols to prove
modular polynomial relations. In Burton S.
Kaliski Jr., editor, Advances in Cryptology—
CRYPTO ’97, volume 1294 of Lecture Notes
in Computer Science, Springer-Verlag, 1997.

[13] Shafi Goldwasser, editor. Advances in
Cryptology—CRYPTO ’88, volume 403
of Lecture Notes in Computer Science.
Springer-Verlag, 1990, 21–25 August 1988.

[14] Louis Claude Guillou and Jean-Jacques
Quisquater. A “paradoxical” indentity-
based signature scheme resulting from zero-
knowledge. In Goldwasser [13], pages 216–
231.

[15] C. Günther. An identity-based key-exchange
protocol. In G. Brassard, editor, Ad-
vances in Cryptology—CRYPTO ’89, volume
435 of Lecture Notes in Computer Science.
Springer-Verlag, 1990, 20–24 August 1989.

[16] Gene Itkis and Leonid Reyzin. Forward-
secure signatures with optimal signing and
verifying. In Joe Kilian, editor, Advances
in Cryptology—CRYPTO 2001, volume 2139
of Lecture Notes in Computer Science,
pages 332–354. Springer-Verlag, 19–23 Au-
gust 2001.

[17] Gene Itkis and Leonid Reyzin. SIBIR:
Signer-base intrusion-resilient signa-
tures. In Yung [28]. Available from
http://eprint.iacr.org/2002/054/.

[18] Gene Itkis and Leonid Reyzin. SIBIR:
Signer-base intrusion-resilient signa-
tures. In Yung [28]. Available from
http://eprint.iacr.org/2002/054/.

[19] Jonathan Katz. A forward-secure public-
key encryption scheme. Technical Re-
port 2002/060, Cryptology e-print archive,
http://eprint.iacr.org, 2002.

[20] Anton Kozlov and Leonid Reyzin. Forward-
secure signatures with fast key update. Un-
published Manuscript, 2002.

[21] Hugo Krawczyk. Simple forward-secure sig-
natures from any signature scheme. In Sev-
enth ACM Conference on Computer and
Communication Security, 2000.

[22] Tal Malkin, Daniele Micciancio, and Sara
Miner. Efficient generic forward-secure sig-
natures with an unbounded number of time
periods. In Advances in Cryptology—
EUROCRYPT 2002, Springer-Verlag, 2002.

[23] Silvio Micali. A secure and efficient digi-
tal signature algorithm. Technical Report
MIT/LCS/TM-501, Massachusetts Institute
of Technology, Cambridge, MA, March 1994.

[24] Kazuo Ohta and Tatsuaki Okamoto. A mod-
ification of the Fiat-Shamir scheme. In Gold-
wasser [13], pages 232–243.

[25] Heidroon Ong and Claus P. Schnorr. Fast
signature generation with a Fiat Shamir-like
scheme. In I. B. Damg̊ard, editor, Advances
in Cryptology—EUROCRYPT 90, volume
473 of Lecture Notes in Computer Science,
pages 432–440. Springer-Verlag, 1991.

[26] Adi Shamir. On the generation of crypto-
graphically strong pseudorandom sequences.
ACM Transactions on Computer Systems,
1(1):38–44, February 1983.

[27] Dawn Xiaodon Song. Practical forward se-
cure group signature schemes. In Eighth
ACM Conference on Computer and Com-
munication Security, pages 225–234. ACM,
November 5–8 2001.

[28] Moti Yung, editor. Advances in
Cryptology—CRYPTO 2002, Lecture
Notes in Computer Science. Springer-Verlag,
18–22 August 2002.

25

Attacks On RC4 and WEP

Scott Fluhrer
Cisco Systems, Inc.,

170 West Tasman Drive,
San Jose, CA 95134,
sfluhrer@cisco.com

Itsik Mantin
Computer Science department,

The Weizmann Institute,
Rehovot 76100, Israel

itsik@wisdom.weizmann.ac.il

Adi Shamir
Computer Science department,

The Weizmann Institute,
Rehovot 76100, Israel.

shamir@wisdom.weizmann.ac.il

Abstract

RC4 is the most widely used stream cipher in software ap-

plications. In this paper we summarize the known attacks

on RC4, and show that it is completely insecure in a natu-

ral mode of operation which is used in the widely deployed

Wired Equivalent Privacy protocol (WEP, which is part of

the 802.11b Wi-Fi standard). The new passive ciphertext-

only attack can find an arbitrarily long key in negligible

time which grows linearly (rather than exponentially) with

the key size, and it gets even faster if WEP is replaced by

its “improved” version WEP2.

1 The RC4 Stream Cipher

A large number of stream ciphers were proposed
and implemented over the last twenty years. Most
of these designs were based on linear feedback
shift registers, which are easy to analyze, have
good statistical properties, and are very efficient
in hardware, but are relatively slow in software.
There was a clear need for a different design which
would be more software friendly, and in 1987 Ron
Rivest developed the RC4 stream cipher, whose
software implementation is extremely compact
and efficient. Its design was kept a trade secret
until 1994, when someone anonymously posted
it to the Cypherpunks mailing list. RC4 is cur-
rently the most widely-used stream cipher in the

world: It is used to protect Internet traffic us-
ing the SSL (Secure Sockets Layer) protocol, it is
integrated into Microsoft Windows, Lotus Notes,
Apple AOCE, Oracle Secure SQL, and many other
software applications, and it was chosen to be part
of the Cellular Digital Packet Data specification.

RC4 has a secret internal state which is a per-
mutation S of all the N = 2n possible n-bit values,
where n is typically chosen as 8. In addition, the
state contains two indices 0 ≤ i, j < N . The ini-
tial state is derived from a key (whose typical size
is between 40 and 256 bits) by a Key-Scheduling
Algorithm (KSA), and then the pseudo-random
generation algorithm (PRGA) alternately modi-
fies the state (by exchanging two out of the N
values) and produces an output (by picking one
of the N values in S). For n = 8, this gives RC4
a huge state of about 1700 bits.

More specifically, the PRGA initializes i and
j to 0, and then repeatedly increments i as
a counter, increments j pseudo randomly (by
adding the value of S pointed to by i), exchanges
the two values of S pointed to by i and j, and out-
puts the value of S pointed to by S[i] + S[j]1 (see
Figure 1). Note that every entry of S is swapped
at least once (possibly with itself) within any N
consecutive rounds, and thus the permutation S

1Here and in the rest of this note all the numeric addi-
tions are carried out modulo N .

26

evolves fairly rapidly during the output generation
process.

S[i] S[j]

i jOutput

t

S[t]

2550 1

S[0]S[1]

Figure 1: RC4 PRGA Round Operation

The KSA structure is very similar to the PRGA
structure described above. It initializes S to
the identity permutation and i and j to 0, and
then applies N rounds in which i is sequentially
stepped across S, and j is updated by adding to it
S[i] and the next word of the key (in cyclic order).

We denote the size of the key by �, and the n-
bit RC4 variant by RC4n. The value in position
p of the permutation S is denoted by S[p]. Using
this notation, the RC4 algorithms are specified in
Figure 2.

KSA(K)
Initialization:

S ← 〈0, 1, . . . , N − 1〉
j ← 0

Scrambling:
For i ← 0 . . . N − 1

j ← j + S[i] + K[i mod �]
S[i] ↔ S[j]

PRGA(S)
Initialization:

i ← 0
j ← 0

Generation loop:
i ← i + 1
j ← j + S[i]
S[i] ↔ S[j]
t ← S[i] + S[j]
Output z ← S[t]

Figure 2: The Key-Scheduling Algorithm and the Pseudo-

Random Generation Algorithm

2 Security Overview of RC4

Since RC4 is such a widely used stream cipher,
it had attracted considerable attention in the re-
search community since it was first proposed.
However, so far no one had found an attack on the
PRGA part of RC4 which is even close to being
practical: For n = 8 and sufficiently long keys, the

best known attack requires more than 2700 time
to find its initial state. However, many interest-
ing properties of RC4 were found over the years.
Due to space limitations, these properties are only
briefly described in this note, and a more compre-
hensive overview of RC4 security, including a de-
tailed description of all the published results, can
be found in [Man01].

Finney specifies in [Fin94] a class of states that
RC4 can never enter. This class contains all the
states for which i = a, j = a+1 and S[a+1] = 1 (a
fraction of 1/N2 of all the RC4 states are in this
class). Analysis of states of this type indicates
that these states are connected by short cycles
of length N(N − 1) and thus this class is closed
under the RC4 round operation. Since the state
transition in RC4 is invertible and the initial state
(i = j = 0) is not of this type, RC4 can never
enter these states for any key. If RC4 could be
initialized to such a state, the generated stream
would have a very short period and its internal
states could be elegantly extracted (as noted by
Pudovkina and described in [Man01]).

The huge RC4 internal state is not random, and
thus the size of the effective key does not properly
reflect its security. A good benchmark for the se-
curity of RC4 variants is the time complexity of a
“branch and bound” attack that eliminates large
clusters of internal state candidates that contra-
dict the generated outputs. Such an attack is an-
alyzed in [MT98] and [KMP+98], and is based on
the “guess on demand” paradigm. These attacks
simulate the generation process by keeping track
of all the known permutation values and guess-
ing/branching when an unknown value is needed
in order to continue the simulation. The time
complexity of this attack is analytically derived
in [KMP+98], and the results are compatible with
experimental data obtained by scaled-down simu-
lations. This attack is very inefficient (i.e., worse
than exhaustive search for typical key sizes), and

27

can be carried out in practice only for RC4n≤5

(e.g. for n = 5 its time complexity is 253, but for
the common choice of n = 8 its time complexity
is 2779).

Mantin and Shamir use a variant of this at-
tack in [MS01] (and more extensively in [Man01]).
They present some interesting classes of RC4
states that make it possible to deduce several per-
mutation values with high probability. Then they
use the attack of Knudsen et al ([KMP+98]) in
order to complete the rest of the internal state.
This 2-phase attack is practical for the 5-bit ver-
sion. More analysis of RC4 round operation is de-
scribed in [MT98]. In addition, Jenkins in [Jen98]
shows a significant correlation between the secret
and known parts of the RC4 state. For example,
this correlation implies that given i and z, the
probability of S[i] to be their difference (i − z) is
twice the expected 1/N . This correlation is ex-
plained by Mantin in [Man01] as a special case of
a more general correlation.

A significant research effort is dedicated to the
statistical analysis of RC4 outputs, and in partic-
ular to the construction of distinguishers between
RC4 and truly random bit generators. Golić de-
scribes in [Gol97] a linear statistical weakness of
RC4, caused by a positive correlation between the
second binary derivative of the LSB and 1. This
weakness implies that RC4 outputs of length 240

can be reliably distinguished from random strings.
This result is further improved by Fluhrer and
McGrew in [FM00]. They analyze the distribution
of triplets consisting of the two outputs produced
at times t and t + 1, and the known value of i ≡ t
(mod N), and notice small biases in the distribu-
tion of (7N−8) of these N3 triplets: some of these
probabilities are positively biased (1

N3 (1 + 1/N)),
while others are negatively biased (1

N3 (1− 1/N)).
These biases enable distinguishing between RC4
and a truly random source by analyzing sequences
of about 230 output words.

Interesting as they are, all these statistical
anomalies of the RC4 PRGA have little practical
impact on its cryptographic strength, since they
do not make it possible to derive either the plain-
texts or the keys which correspond to given ci-
phertexts. However, the RC4 KSA is much more
problematic, since it was designed to be unnec-
essarily simple: it initializes the secret S and j
to known values, uses the key bytes in cyclic or-
der to increment j, performs a single pass over S,
and starts producing outputs immediately after-
wards. As a result, the first few output bytes of
the PRGA are either biased or related to some key
bytes, and thus the analysis of these bytes makes
it possible to attack RC4 in some modes of op-
eration. The best protective mechanism against
these attacks (which is used in some but not all
implementations of RC4) is to discard a long pre-
fix of PRGA outputs after completing the KSA
part. Such dummy steps (which produce no out-
puts) are used in many other stream cipher de-
signs, such as the A5/1 scheme which is used in
GSM cellular phones and analyzed in [BSW00].

We now describe some of these prefix attacks
on RC4 in more detail. Roos notes in [Roo95]
that for keys which have K[0] + K[1] = 0, the
first output is equal to K[2] + 3 with probabil-
ity 2−2.85. The cryptanalyst can use this fact to
deduce two bytes of information about the key
(K[0] + K[1] and K[2]) with probability 2−10.85

instead of the trivial 2−16, and thus reduce the
effective key length in exhaustive search by about
five bits.

Mantin and Shamir describe in [MS01] a major
bias in the distribution of RC4’s second output
word: it is zero with twice the expected probabil-
ity of 1/N , and thus RC4 outputs can be distin-
guished from random strings by analyzing about
28 words of output produced by unrelated and
unknown keys. In addition, this bias makes it
possible to deduce the second plaintext word in

28

many broadcast applications (such as groupware
or email) in which the same message is encrypted
multiple times under different keys. A similar bias
occurs in the first pair of output words, which are
both zero with probability of 3/N2 instead of the
expected 1/N2. The existence of the second word
distinguisher and its improved performance (com-
pared to previously known distinguishers which
require 222 times more data) demonstrates the dif-
ference between the PRGA and the KSA mecha-
nisms of RC4.

Mantin in [Man01] and Mironov in [Mir02] an-
alyze the distribution of KSA outputs. Both of
them calculate, for every permutation value, the
distribution of its location in the KSA final per-
mutation and show that the probability of the
value a to end up in location b in S at the end
of the KSA process is

P [S∗[b] = a] =

{
p(qa + qb̄ − qa+b̄) a ≤ b

p(qa + qb̄) a > b

where S∗ is the KSA output permutation, x̄
def
=

N − 1 − x, p = 1/N and q = 1 − p.

In particular, the probability that value 1
reaches location 0 is 37% more than the expected
probability of 1/N , the probability that value 255
reaches location 0 is 26% less than the expected
probability, and the probability that the KSA
output permutation is 〈1, 2, . . . , 255, 0〉 is about
270 times larger than the expected probability.
Mantin also shows how this analysis can be used
to connect states which are N PRGA (rather than
KSA) rounds away. In addition, he analyzes the
KSA execution on short keys and shows more bi-
ases, caused by the cyclic usage of short keys.

Fluhrer, Mantin and Shamir present in [FMS01]
another weakness of the KSA. They identify large
classes of weak keys, in which a small part of the
secret key determines a large number of bits in

the permutation S produced by the KSA. In ad-
dition, the PRGA translates these patterns in its
initial S into patterns in the prefix of the output
stream, and thus RC4 has the undesirable prop-
erty that for these weak keys its initial outputs
are disproportionally affected by a small number
of key bits. The length of these weak keys is
divisible by some non-trivial power of two, i.e.,
� = 2qm for some q > 0. When RC4n uses such
a weak key of � words, fixing Θ(n + q�) bits of K
(as a particular pattern) determines Θ(qN) bits
of the initial permutation with probability of one
half and determines various prefixes of the output
stream with various probabilities (depending on
their length). In addition, this weakness implies
that RC4 has low sampling resistance (as defined
in [BSW00]), and thus it is more vulnerable to
time/memory/data tradeoff attacks.

3 802.11b and Wired Equivalent

Privacy

The IEEE 802.11 wireless network standard
(which is also known as Wi-Fi) [Com99] is an
extremely popular way to connect multiple PC’s
at home or in the office without using cables.
Since such a wireless network is very vulnerable
to eavesdropping and misuse, the standard speci-
fies the Wired Equivalent Privacy (WEP) encryp-
tion protocol which can be used to make the se-
curity of wireless communication comparable to
that of a wired network. Since its publication,
the security of WEP was subjected to a continu-
ous debate between its designers at the Wireless
Ethernet Compatibility Alliance (WECA) and the
cryptographic community.

WEP uses a 40-bit secret key (which was the
largest easily exportable key when WEP was de-
signed), shared between all the users and the net-
work access point. For every packet, the sender

29

chooses a new 24 bit Initialization Vector (IV),
and the 64-bit RC4 key is the concatenation of
the chosen IV (occurring first) and the shared key
(occurring last). Such an IV-based mode of oper-
ation is commonly used in stream ciphers in or-
der to generate different PRGA outputs from the
same long term key, and the frequent resetting of
the PRGA is designed to overcome the unreliable
nature of the Wireless LAN environment. In ad-
dition, WEP computes a CRC-32 checksum over
the data payload, appends it to the plaintext and
encrypts both parts in order to verify the integrity
of the data.

Several vulnerabilities of this WEP protocol
were discovered and analyzed in the last few years.
These vulnerabilities are only briefly described in
this note (see [Arb] for detailed overview of the
published results). The simplest weakness is the
small size of the secret key and the IV: A 40-bit
key can be recovered by an exhaustive search in
less than one day. In addition, the limited size
(224) of the IV space implies that IVs (and thus
key-streams) are reused during the encryption of
different packets. Consequently, this mode can be
attacked by constructing a dictionary of all the 224

IVs along with their corresponding key streams.
In addition, WEP defines no easy mechanism for
changing the shared key, and thus the key is usu-
ally changed only infrequently, increasing the at-
tacker’s chance to construct this dictionary. Other
known attacks exploit the poor authentication to
spoof messages. However, these are secondary at-
tacks which do not allow the attacker to derive
the key with an attack which is faster than ex-
haustive search. The first “real” attack which
makes it possible to derive an arbitrarily long key
in time which grows only linearly (rather than ex-
ponentially) with its length in the weakest attack
model of known plaintext and IV (rather than the
stronger related key or chosen IV attacks) was de-
veloped in [FMS01], and is outlined in the next
section.

4 The WEP Attack

In order to carry out the attack, the cryptanalyst
needs the first output word of a large number of
RC4 streams along with the IV that was used to
generate each one of them. Since in WEP the
IVs are transmitted in the clear and the first mes-
sage word in most packets is a known constant
(see [SIR01]), these requirements are automati-
cally satisfied.

Let us begin by defining our notation. To indi-
cate an RC4 state after using keywords [0, . . . , r]
(i.e., after r + 1 rounds) during KSA we use the
subscript r in Sr, ir, jr and tr (thus the KSA
output S∗ is also denoted SN−1). In addition,
we define several functions over permutations, re-
lated to applying the first PRGA round to the
given permutation. I(S), J(S), T (S) and Z(S)
are the state indices, the output index and the
output word of the first PRGA round, given S

as an input. Thus I(S)
def
= 1, J(S)

def
= S[1],

T (S) def= S[1]+S[S[1]] and Z(S) is usually S[T (S)]
(unless T (S) is I(S) or J(S)). K represents the
�-word RC4 key, which is a concatenation of the
initialization vector IV (whose length is denoted
by �′′) and the secret key SK (whose length is
denoted by �′).

4.1 The Basic Idea

The basic step of the attack (which we call the
sub-attack) assumes knowledge of some prefix of
the RC4 keywords, and derives the next keyword
(which we sometimes denote as the target key-
word). The attack starts with the known IV as
a basis, and repeatedly applies the sub-attack in
order to recover all the keywords in the secret key
SK.

30

The sub-attack: Let us assume that the first x
words of the KSA key are known. This makes it
possible to simulate the first x rounds of the KSA
and compute the permutation Sx−1 and the in-
dices ix−1 and jx−1 at that point. The next value
of i is also known (ix = x) but the next value of
j (jx) depends on the unknown target keyword
K[x] (since jx = jx−1 + Sx−1[x] + K[x]) and thus
each of the values jx and K[x] can be easily de-
rived from the other. Now let us concentrate on
the value Sx[x]. This value is swapped into this
position in round x and thus it was in position jx

just before this round. Consequently, given Sx[x],
we can compute which value was in position jx

in the known permutation Sx−1, and by inverting
this permutation, we can recover jx itself.

Thus the target keyword depends on jx, which
depends on Sx[x]. The main idea of the sub-attack
is to identify and isolate cases where the first out-
put word (which is assumed to be known) is corre-
lated with Sx[x] and thus with the target keyword.
By analyzing such cases, the sub-attack uses the
known output word to guess the target keyword
with a significant success probability. This at-
tack is probabilistic rather than deterministic, but
it can be repeated with multiple IVs in order to
make the statistical information about the target
keyword more robust.

4.2 The Details

We apply this attack by concentrating on cases in
which the first output byte z has a relatively high
probability to be equal to Sx[x]. In order to create
such a situation, we have to guarantee that:

- z is defined with high probability only by known
permutation values.

- The most likely value of z is equal to Sx[x].

Because i scans through the permutation, the
values that occur to the right of x at round x par-
ticipate in an exchange (and are almost always
changed) at some later round. However, values
that occur to the left of x (including position x it-
self) have a reasonably high probability to remain
untouched until the end of the KSA, since the in-
dex j chooses N − x random values among the
N possible values in the remaining rounds, and
thus it misses any particular value with probabil-
ity which is at least the constant e−1 (and which
gets even higher as x increases).

The first output word z is determined by only
three permutation values (those in locations I(S),
J(S) and T (S)), as illustrated in Figure 3. In

S[0]J(S)

I(S) J(S)

B Z(S)

T(S)

Figure 3: RC4 first output word

order to satisfy the first requirement, we want
I(Sx) and J(Sx) to be in positions 0, . . . , x of
Sx. In order to satisfy the second requirement,
we want to make sure that the index T (Sx) of
the output word is exactly x. In other words, we
are interested in cases in which 1, Sx[1] < x and
Sx[1] + Sx[Sx[1]] = x. When this happens we say
that the state of RC4 is in an x-resolved condi-
tion, and the first output word has a high prob-
ability to be Sx[x]. In addition, since the state
after x rounds is completely determined by the
first (known) x keywords, we can define for every
x a class of keys, which we denote as x-good keys2,
which are guaranteed to lead to a x-resolved state
after x KSA rounds (on class of such keys is de-
scribed in Figure 4).

2
RC4 keys, i.e., a concatenation of IVs with shared

WEP keys.

31

When an x-good key occurs, the values in po-
sitions 1, S[1] and S[1] + S[S[1]] have a rela-
tively high probability to remain untouched dur-
ing rounds x+ 1, . . . , N − 1. The probability that
three locations will not be pointed to by a pseudo
random index during the remaining N − 1 − x
rounds is better than ((1 − 1

N)N)3 ≈ e−3 ≈ 5%.
Thus, when an x-good key occurs, the output
word is equal to Sx[x] with probability of at least
5%. As specified above, the target keyword can
then be guessed from the first output word z
through the relations K[x] = jx−jx−1−Sx−1[x] =
S−1

x−1[Sx[x]] − jx−1 − Sx−1[x] = S−1
x−1[z] − jx−1 −

Sx−1[x]. This guess is correct with probability
better than 5%, which is twelve times higher than
the 1/256 probability of guessing an incorrect
value for n = 8. We can thus carry out a vot-
ing process, in which each x-good key votes for
some target keyword candidate, and we can iden-
tify the correct keyword with probability better
than 0.5 by examining just 60 x-good keys3.

Hence, if we know some x-prefix of the RC4
key, we can derive the next keyword by analyzing
only 60 pairs of an x-good key and the first out-
put word it produces. By starting with the known
IV part of the key and repeatedly using this tech-
nique, we can recover the keywords one by one
until the whole key is extracted. The time com-
plexity of the attack is negligible, and the main
difficulty in applying this attack is the collection
of sufficiently many good keys. We thus have to
estimate how many (IV, z) pairs are needed in or-
der to completely restore the �′-word secret key
when it is preceeded by an �′′-word non-secret IV.

The full analysis of this issue is described in
[FMS01]. As shown in that paper, the fraction

3An important observation is that x-good keys can be
correctly identified by tracking the first x KSA rounds. If
we had to carry out the voting process with random rather
than good keys, the probability distribution of votes would
have been much flatter.

of x-good keys for n = 8 increases from 2−14.42

for x = 3 to 2−10.44 for x = 16, (the probability
increases with x since for large x there are more
acceptable values for J(Sx)). The number of pairs
required for the sub-attack is 60 · 1

fraction , which
varies between 220.32 (for x = 3) and 216.35 (for
x = 16). Notice that an x1-good key is not nec-
essarily x2-good, and thus the same collection of
(IV, z) pairs can be used to find the 60 good pairs
for all the possible values of x. Consequently, the
total number of pairs which are needed by the
complete attack is the maximum, rather than the
sum, of the corresponding numbers in the sub-
attacks. In particular, we can attack WEP (for
n = 8) with an arbitrarily long key and ran-
domly chosen 3-word IVs by collecting only 220.32

(IV, z) pairs. If we modify WEP by using 16-
word IVs and 16-word shared key (as used in the
“improved” version which is unofficially known as
WEP2), the data complexity of the attack actu-
ally drops to 216.35.

Some implementations of WEP use counters
(instead of randomizers) in order to generate the
IVs. In order to analyze the security of such vari-
ants, we introduce several classes of IVs that are
likely to lead to x-good keys. Consider for exam-
ple all the IVs of the form (x, 255, V, . . .).

Figure 4 describes the state evolution when an
RC4 key with such a prefix is used.

Since J(S2) = S2[1] = 0 < x and T (S2) = S2[1] +
S2[S2[1]] = x, the state after 3 KSA rounds is x-
resolved, and thus most keys that start with this
pattern are x-good.

If the IVs are generated by a multibyte counter
in little endian order (and hence the first byte of
the IV increments the fastest), then the attacker
can search for IVs of the form (x, 255, V) for �′′ ≤
x ≤ �−1 and different V s. By looking only at such
IVs the attacker gets a single good pair for every

32

x

255

V

2550 1 2

i
x
j

1 2 255x

j
0

i

0

2 255x
i

0 1

j

T(S)J(S) I(S)

K

Figure 4: First KSA rounds for keys of the structure

〈x, 255, V, . . .〉. The 1 in position x is likely to be swapped with

Sx−1[jx] during round x.

x after going through all the combinations of the
first two words (216 pairs), and he gets 60 good
pairs after searching through at most 222 pairs.

If the IVs are generated by a multibyte counter
in big endian order (and hence the last byte of
the IV increments the fastest), then the amount
of data that is required for the attack depends on
�′′. For �′′ = 3 it is 216� (e.g., 220 for � = 16).
However, this approach works well only for short
IVs. Other cases can be obtained by exploiting
other 3-good keys (such as the (V,N − V,N − 2)
and the (V,N −V +1, N −1) sets) or by guessing
the first unknown keywords and then looking for
IVs that lead to a resolved permutation under the
guessed assignment4.

5 Summary

Shortly after the publication of a preliminary ver-
sion of [FMS01], Stubblefield, Ioannidis and Ru-
bin ([SIR01]) implemented the attack and success-
fully derived a 128 bit WEP key by passively ob-
serving a real network during a single evening.
Several optimization techniques can reduce the
required amount of data to the number of pack-
ets sent on a fully loaded network in less than

4
This approach is further described in [FMS01].

// This procedure recovers the key
// Parameters meaning:
// Pairs: a set of 〈IV, z〉 pairs,
// �′′, �′: the sizes of the IV and the secret key SK
Attack(Pairs, �′′, �′)

kp ← NULL // an (x − �′′)-word known prefix of SK
For x ← �′′..� − 1 // The size of the known prefix

c ← SubAttack(x, Pairs, �′, kp)
kp ← kp ◦ c

Return kp

// This procedure recovers the next keyword
// Parameters meaning: as in the main procedure
SubAttack(x, Pairs, �′′, kp)

For Every 〈IV, z〉 ∈ Pairs
K ← IV ◦ prefix // Known prefix of the RC4 key
[ix−1, jx−1, Sx−1] ← KSA(K,x)
// Apply x KSA rounds on the key K (|K| ≥ x)
If (1 < x, Sx−1[1] < x, Sx−1[1] + Sx−1[Sx−1[1]] = x)

Vote for S−1
x−1[z] − jx−1 − Sx−1[x]

Return Most popular candidate

Figure 5: The pseudo-code of the attack.

15 minutes. The implications of this attack were
described by Ron Rivest in a tech-note that was
published several weeks later at the RSA web site
([Riv01]):
“Those who are using the RC4-based WEP or
WEP2 protocols to provide confidentiality of their
802.11b communications should consider these
protocols to be “broken”, and to plan remedial ac-
tions as necessary to mitigate the attendant risks.
Actions to be considered should include using en-
cryption at higher protocol layers and upgrading
to improved 802.11b standards when these be-
come available”.

One proposal to modify WEP in response to
this attack is TKIP. In this proposal, the key sup-
plied to the KSA is constructed by concatenating
the 3 byte IV with a hash of the secret key and the
IV. Furthermore, the IV is limited to values that
tend not to form x-resolved conditions for small x,
and the secret key is updated at least once every
10,000 packets.

33

While we believe that the core idea of RC4 re-
mains sound, we are worried about the lack of ro-
bustness of the KSA process which makes the en-
cryption algorithm completely insecure in several
natural modes of operation. We recommend ei-
ther a complete overhaul of the KSA part of RC4,
or at least a modification which discards the first
N bytes (or more) produced by the PRGA.

References

[Arb] W. A. Arbaugh. 802.11
security vulnerabilities.
http://www.cs.umd.edu/∼waa/
wireless.html.

[BSW00] A. Biryukov, A. Shamir, and D. Wag-
ner. Real time cryptanalysis of A5/1
on a PC. In FSE’2000, 2000.

[Com99] LAN/MAN Standard Comitee. Wire-
less LAN medium access control
(MAC) and physical layer (PHY)
specifications, 1999 edition. IEEE
standard 802.11, 1999.

[Fin94] H. Finney. an RC4 cycle that can’t
happen, September 1994.

[FM00] S. R. Fluhrer and D. A. McGrew. Sta-
tistical analysis of the alleged RC4
keystream generator. In FSE’2000,
2000.

[FMS01] S. R. Fluhrer, I. Mantin, and
A. Shamir. Weaknesses in the key
scheduling algorithm of RC4. In
SAC’2001, 2001.

[Gol97] J. D. Golić. Linear statistical weak-
ness of alleged RC4 key-stream gener-
ator. In EUROCRYPT’97, 1997.

[Jen98] R. J. Jenkins. ISAAC and
RC4. Technical report, 1998.
http://burtleburtle.net/bob/rand/
isaac.html.

[KMP+98] L. R. Knudsen, W. Meier, B. Preneel,
V. Rijmen, and S. Verdoolaege. Anal-
ysis methods for (alleged) RC4. In
ASIACRYPT’98, 1998.

[Man01] I. Mantin. The security of
the stream cipher RC4. Mas-
ter’s thesis, The Weizmann In-
stitue of Science, October 2001.
http://www.wisdom.weizmann.ac.il/
∼itsik/RC4/thesis.html.

[Mir02] I. Mironov. (Not so) random shuffles
of RC4. In Crypto’02, 2002.

[MS01] I. Mantin and A. Shamir. A prac-
tical attack on broadcast RC4. In
FSE’2001, 2001.

[MT98] S. Mister and S. E. Tavares. Crypt-
analysis of RC4-like ciphers. In
SAC’98, 1998.

[Riv01] R. Rivest. RSA security response
to weaknesses in key scheduling algo-
rithm of RC4. Tech note, RSA Data
Security, Inc, October 2001.

[Roo95] A. Roos. A class of weak keys in the
RC4 stream cipher. sci.crypt posting,
September 1995.

[SIR01] A. Stubblefield, J. Ioannidis, and
A. D. Rubin. Using the fluhrer,
mantin and shamir attack to break
WEP. Technical Report TD-4ZCPZZ,
AT&T Labs, August 2001.

34

RSA Laboratories Cryptobytes
Volume 5, No.2 — Summer/Fall 2002

A B O U T R S A L A B O R A T O R I E S

An academic environment within a commercial organization,
RSA Laboratories is the research center of RSA Security Inc.,
the company founded by the inventors of the RSA public-key
cryptosystem. Through its research program, standards develop-
ment, and educational activities, RSA Laboratories provides
state-of-the-art expertise in cryptography and security technol-
ogy for the benefit of RSA Security and its customers.

Please see www.rsasecurity.com/rsalabs for more information.

N E W S L E T T E R A V A I L A B I L I T Y A N D

C O N T A C T I N F O R M A T I O N

CryptoBytes is a free publication and all issues, both current
and previous, are available at www.rsasecurity.com/rsalabs/
cryptobytes. While print copies may occasionally be distributed,
publication is primarily electronic.

For more information, please contact:

cryptobytes-editor@rsasecurity.com.

©2002 RSA Security Inc. All rights reserved.

RSA and RSA Security are registered trademarks of RSA Security Inc. All other trademarks are the

property of their respective owners.

CRYPTOBYTES VOLUME 5, NO. 2, 2002

