CSC 220: PROGRAMMING 11 1

Midterm Solutions OCTOBER 11, 2001. 5:00-6:15 PM

There are six problems each worth five points for a total of 30 points. Show
all your work, partial credit will be awarded. When there is not enough room
on the test page itself, write in the provided blue books and write and sign
your name on each one. No notes, no collaboration.

Name:

Problem | Credit

Ol =] W[DO

Total

CSC 220:

PROGRAMMING 11 2

1. Fill in the method bodies of addToCounter and getCounter to finish
the following program.

clas

{

p
{

clas

{

s ProblemOne

ublic static void main(String [] args)
MyObjectOne moo = new MyObjectOne() ;
moo .addToCounter(5) ;

moo .addToCounter(2) ;
System.out.println(moo.getCounter()) ;

s MyObjectOne

int counter = 0 ;
void addToCounter(int numberToAdd)

{
// increment counter by numberToAdd
counter = counter + numberToAdd ; /* PROBLEM SOLN */
}
int getCounter()
{
// return the value of counter
return counter ; /* THE PROBLEM SOLUTION */
}

CSC 220: PROGRAMMING 11

2. Suppose we have a LinkedList ADT which is required to efficiently
return the current length of the list, where length of a linked list is the
number of nodes on the list. It is too time-consuming to count afresh
the number of nodes each time getLength is invoked, so you get the
great idea of keeping a “hidden” variable which is always updated with
the current linked list length. Complete the following two methods

inside the class ProblemTwo to implement this idea.

class ProblemTwo

{

private int count
private Node root

0 ;
null ;

void insertAtHead(String s)

{

Node n = new Node() ;

n.content = s ;

n.next = root ;

root = n ;

// add code to keep count variable current
count++ ; /* THE PROBLEM SOLUTION */

int getLength()

// return the length of the linked list
return count ; /* THE PROBLEM SOLUTION */

CSC 220: PROGRAMMING 11 4

3. In this version of a linked list, rather than insert the same string twice,
we first try to find the string on the linked list, and if it is on the list,
instead we increment its count. Finish the code below.

class ProblemThree {

private int count = 0 ;
private NodeThree root = null ;

void insertAtHead(String s) {
NodeThree n = findOnList(s) ;
if (if n!=null) {
// ASSERT n.contents.equals(s)==true
// don’t re-insert, adjust count
n.count ++ ; /* THE PROBLEM SOLUTION x*/

}
else {
// insertAtHead, as Problem Threee
// code omitted, assume it’s here
+

NodeThree findOnList(String s) {
// returns n such that n.content.equals(s)==true
// or null, if no such n exists.

// code omitted, assume it’s here and it works!

class NodeThree {

NodeThree next
String content
int count = 1 ;

null ;
null ;

CSC 220: PROGRAMMING 11 5

4. So then you have another great idea. To do a delete, rather than
removing the element from the list, because this is a pain, you simply
decrement its count. Assume class ProblemThree is reproduced below,
you just have to fill in the deleteFromList method.

class ProblemFour
{

// instance variables and methods as in class ProblemThree

void deleteFromList(String s)

{
// do the find, if found, check count>0, and if so
// decrement count
/* PROBLEM SOLUTION START */
NodeThree nt = findOnList(s) ;
if ((nt!=null) && (nt.count>0))
nt.count—-- ;
/* PROBLEM SOLUTION END */
}

CSC 220: PROGRAMMING 11 6

5. Now you are troubled. You imagine your list full of elements with count
zero. So you decide to write a method, cleanUpList, which runs the
list and deletes nodes with count zero. Write it.

class ProblemFive

{

// 1instance variables and methods as in class ProblemFour

void cleanUpList() {
/* PROBLEM SOLUTION BEGIN HERE */

//

deal with zero-count nodes at head of list

while ((root!=null) && (root.count==0))

//
//

root = root.next ;
Postcondition: either list is empty or first
element in list has count>0

NodeThree nt = root ;

//

LOOP INVARIANT: (nt==null) || (nt.count>0)

while (nt!=null) {

}

//
//
//
//
//
//

if ((nt.next!=null) && (nt.next.count==0))
nt.next = nt.next.next ;
else nt = nt.next ;

Argue termination: each time through the loop
nt gets one nearer the end of the list.

L.I. + Termination == GOAL

nt has pointed to each thing that has remained
on the list, and by invariant, if nt!=null then
nt.count>0.

/* PROBLEM SOLUTION END HERE x/

}

CSC 220: PROGRAMMING 11 7

6. Then you begin to wonder about who will call cleanUpList? So you
decide that the linked list object should take care of cleaning up after
itself. Also, since the user of the linked list object needn’t know about
count zero nodes, they should be “hidden” from the public version of
the find method. That is, the post-condition on the return value n of
the public find method is:

ASSERT: (n==null) || (n.count>0)

Discuss how you decided to do all this and produce Java code for the
affected methods.

Justify why this “lazy deletion” (marking a record as deleted and really
deleting it at some later time, when it is more convenient) is just as
efficient as non-lazy (immediate) deletion.

Solution: Oen approach is to include list clean-up during list search.
List print can remain the same, it may be important for debugging to
see the zero-count nodes. It depends what the purpose of the print
routine is. The result is nearly as efficient as immediate deletion since
a deleted node is handled just one extra time, during the search step
that truely deletes it.

CSC 220: PROGRAMMING 11

6. (extra workspace) NodeThree findOnList(String s)

{

// clean up root

while ((root!=null) && (root.count==0))
root = root.next ;

// ASSERT: list is empty or root.count>0.

NodeThree nt = root ;
// L.I.: (nt==null) || (nt.count>0)
while (nt!=null)

{
// clean-up element following nt in list
if ((nt.next!=null) && (nt.next.count===
nt.next = nt.next.next ;
else {
// when clean, check nt for find or mo
if (nt.content.equals(s)) break ;
nt = nt.next ;
+
+
return nt ;

0)

ve on

