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The CADE ATP System Competition (CASC) is an
annual evaluation of fully automatic, first order Au-
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competition and demonstration divisions. An outline
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mary of the results, are presented.
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1. Introduction

The CADE ATP System Competition (CASC)
is an annual evaluation of fully automatic, first or-
der Automated Theorem Proving (ATP) systems
– the world championship for such systems. The
primary purpose of CASC is a public evaluation
of the relative capabilities of ATP systems. Ad-
ditionally, CASC aims to stimulate ATP research
in general, to stimulate ATP research towards au-
tonomous systems, to motivate implementation of
robust ATP systems, to provide an inspiring envi-
ronment for personal interaction between ATP re-
searchers, and to expose ATP systems within and
beyond the ATP community. Fulfillment of these
objectives provides stimulus and insight for the de-
velopment of more powerful ATP systems, leading
to increased and more effective usage.

CASC-20 was held on 26th July 2005, as part of
the 20th International Conference on Automated
Deduction (CADE-20). CASC-20 was the tenth
competition in the CASC series; see [14] and ci-
tations therein for information about the individ-
ual previous competitions, and [15] for a historical
overview and analysis of the first ten CASCs. Sev-

enteen ATP systems and system variants, listed
in Table 1, competed in the various competition
and demonstration divisions. The division winners
of CASC-J2 (the previous CASC) were automati-
cally entered into CASC-20 to provide benchmarks
against which progress can be judged.1 Details
of the CASC-20 design, and system descriptions
for the entered systems, are in [13] and on the
CASC-20 WWW site. The WWW site also pro-
vides access to all systems and competition re-
sources: http://www.tptp.org/CASC/20

CASC-20 was organized by Geoff Sutcliffe, and
was overseen by a panel consisting of Uli Furbach,
Roberto Nieuwenhuis, and John Slaney. The com-
petition computers were provided by the Depart-
ment of Computer Science at the University of
Manchester.

This paper is organized as follows: Sections 2
and 3 describe the divisions and organization of
CASC-20. Section 4 provides a commentated sum-
mary of the results. Short descriptions of the win-
ning systems are given in Section 5. Section 6 con-
cludes and discusses plans for future CASCs.

2. Divisions

CASC is run in divisions according to system
and problem characteristics. There are competition
divisions in which systems are explicitly ranked,
and a demonstration division in which systems
demonstrate their abilities without being formally
ranked.

Each competition division uses problems that
have certain logical, language, and syntactic char-
acteristics, so that the ATP systems that com-

1Gandalf c-2.6-SAT, the CASC-J2 SAT division assur-
ance class winner, was withdrawn from CASC-20 after un-

soundness was detected in testing against new problems
in TPTP v3.1.0. Paradox 1.0, the CASC-J2 SAT division
model class winner had solved only one less problem, and

thus provided an adequate benchmark for CASC-20.
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Table 1

The ATP systems and entrants

ATP System Divisions Entrants Affiliation

Darwin 1.2 MIX SAT∗ EPR Alexander Fuchs, University of Iowa,

Peter Baumgartner, Max-Planck-Institut für Informatik,

Cesare Tinelli University of Iowa

DCTP 10.21p EPR CASC CASC-J2 EPR winner

E 0.9pre3 MIX FOF SAT Stephan Schulz Technische Universität München

EPR UEQ

EP 0.9pre3 MIX∗ FOF∗ E 0.9pre variant

Mace2 2.2 SAT∗ William McCune Argonne National Laboratory

Mace4 0705D SAT∗ William McCune Argonne National Laboratory

MathServ 0.62 MIX FOF SAT Jürgen Zimmer Universität des Saarlandes

EPR UEQ (demo) Serge Autexier

MUSCADET 2.5 FOF Dominique Pastre Université René Descartes - Paris

Octopus JN05 MIX FOF (demo) Monty Newborn, Zongyan Wang McGill University

Otter 3.3 MIX∗ FOF UEQ William McCune Argonne National Laboratory

Paradox 1.0 SAT∗ CASC CASC-J2 SAT winner

Paradox 1.3 SAT∗ Koen Claessen, Niklas Sörensson Chalmers University of Technology

Prover9 0705 MIX∗ FOF∗ UEQ William McCune Argonne National Laboratory

THEO JN05 MIX (comp) Monty Newborn McGill University

FOF (demo)

Vampire 7.0 MIX∗ FOF∗ CASC CASC-J2 MIX∗, FOF∗ winner

Vampire 8.0 MIX∗ FOF∗ EPR Andrei Voronkov University of Manchester

UEQ

Waldmeister 704 UEQ CASC CASC-J2 UEQ winner

MIX∗ indicates participation in the MIX division proof class, FOF∗ indicates participation in the FOF
division proof class, and SAT∗ indicates participation in the SAT division model class - see Section 2.

pete in the division are, in principle, able to at-
tempt all the problems in the division. The sys-
tems are ranked according to the numbers of prob-
lems solved, with ties decided by average CPU
times over problems solved. Some divisions are fur-
ther divided into problem categories, which make
it possible to analyze, at a more fine grained level,
which systems work well for what types of prob-
lems. The categories have no effect on the compe-
tition rankings, which are made at only the divi-
sion level. The demonstrate division uses the same
problems as the competition divisions - he entry
specifies which competition divisions’ problems are
to be used. The results for the demonstration divi-
sion are presented along with the competition di-
visions’ results, but may not be comparable with
those results.

Table 2 shows the divisions and problem cate-
gories used in CASC-20. Mixed means Horn and
non-Horn problems, with or without equality, but
not unit equality problems (see the UEQ divi-
sion), really non-propositional means with an in-

finite Herbrand universe (so that the problems
cannot necessarily be solved by finite saturation
methods), and effectively propositional means non-
propositional with a finite Herbrand universe.

The MIX, FOF, and SAT divisions each had two
ranking classes: an assurance class - ranked ac-
cording to the number of problems solved (a “yes”
output, giving an assurance of the existence of a
proof/model), and a proof/model class - ranked
according to the number of problems solved with
an acceptable proof/model output to stdout. The
competition panel judged whether or not each sys-
tem’s proof/model format is acceptable.

3. Organization

The CASC-20 competition divisions ran on 44
AMD Athlon XP 2200+ computers, each having a
1.8 GHz CPU, 512 MB memory, and the Linux 2.4
operating system. Demonstration division systems
can run on the competition computers, or the com-
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Table 2

Divisions and Problem categories

Division Problems Problem Categories

MIX Mixed CNF really non-propositional theo-
rems (unsatisfiable clause sets)

HNE - Horn with No Equality
HEQ - Horn with some (not pure) Equality

NNE - Non-Horn with No Equality
NEQ - Non-Horn with some (not pure) Equality

PEQ - Pure Equality

FOF First-order form non-propositional theo-
rems (axioms with a provable conjecture)

FNE - FOF with No Equality
FEQ - FOF with Equality

SAT CNF really non-propositional non-

theorems (satisfiable clause sets)

SNE - SAT with No Equality

SEQ - SAT with Equality

EPR Effectively propositional CNF theorems

and non-theorems (clause sets)

EPT - Effectively Propositional Theorems (unsatisfiable clause sets)

EPS - Effectively Propositional non-theorems (Satisfiable clause sets)

UEQ Unit equality CNF really non-propos-
itional theorems (unsatisfiable clause sets)

—

puter(s) can be supplied by the entrant: MathServ
ran on a computer with an Intel Xeon 2.8 GHz
CPU, 2 GB memory, and the SuSE Linux 9.1 op-
erating system. Octopus ran on a network of 152
computers, each having an Intel P3 or P4 CPU, at
least 512 MB memory, and a version of either the
FreeBSD or Linux operating system. THEO ran
on the competition computers.

The problems were taken from the TPTP prob-
lem library [16], v3.1.0. The TPTP version used for
the competition is not released until after the com-
petition, so that new problems have not been seen
by the entrants. Problems with a TPTP difficulty
rating in the range 0.21 to 0.99 (solvable by some
but not all state-of-the-art ATP systems [17]), and
not tagged as “biased” (not designed specifically
to be suited or ill-suited to some ATP system, cal-
culus, or control strategy) by the TPTP, were el-
igible for use. In TPTP v3.1.0 there are very few
EPR or FNE problems with ratings other than
0.00 and 1.00 (i.e., the problems can either be eas-
ily solved or are not solvable by current ATP sys-
tems). Therefore in the EPR division, and FNE
category, problems with rating 0.00 to 0.20 were
also made eligible for use. The problems used were
randomly selected from the eligible problems at
the start of the competition, based on a seed pro-
vided by the competition panel. The random se-
lection was subject to a limitation on the number
of very similar problems in each division and cate-
gory [12], and biased to ensure (if possible) the se-
lection of at least 50% new problems in each divi-
sion and category. Problems with rating 0.00 were
selected after problems with greater rating. The

numbers of problems used in each division’s prob-
lem categories were (roughly) proportional to the
numbers of eligible problems, after taking into ac-
count the limitation on very similar problems. Ta-
ble 3 gives the numbers of eligible problems, the
maximal numbers that could be used after taking
into account the limitation on very similar prob-
lems, and the numbers of problems used, in each
division and category. In contrast to many previ-
ous CASCs, all the divisions and categories had
sufficient eligible problems to use all the comput-
ing time available for the number of systems en-
tered (in the EPR division and FNE category this
was because of the eligibility of easy problems).
The PEQ, FEQ, and SEQ categories had sufficient
new problems to permit the bias to 50% new prob-
lems to be fulfilled, and the FNE and UEQ cate-
gories also had reasonable numbers of new prob-
lems. These numbers reflect the increase in equal-
ity and FOF problems in the TPTP, and corre-
spondingly in the general use of ATP. To ensure
that no system received an advantage or disadvan-
tage due to the specific presentation of the prob-
lems in the TPTP, the tptp2X utility was used to
rename all predicate and function symbols, ran-
domly reorder the formulae and the clauses’ lit-
erals, and randomly reverse the equalities in the
UEQ problems.

The ATP systems were delivered to the com-
petition organizers in source code form, and in-
stalled (by what whatever compilation, etc, pro-
cess necessary) on the competition computers by
the organizers. The ATP systems were required
to be sound and fully automatic. The organizers
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Table 3

Numbers of eligible and used problems

Division MIX FOF SAT EPR UEQ

Category HNE HEQ NNE NEQ PEQ FNE FEQ SNE SEQ EPT EPS

Eligible 90 142 191 660 285 39 681 155 169 429 209 180

Eligible new 0 0 0 0 43 11 220 1 29 0 0 33

Max usable 64 63 69 537 207 39 681 155 169 429 76 180

Max new 0 0 0 0 43 11 220 1 29 0 0 33

Used 20 20 20 60 30 35 115 60 60 60 60 120

New used 0 0 0 0 15 11 58 1 29 0 0 33

tested the systems for soundness by submitting
non-theorems to the systems participating in the
MIX, FOF, EPR, and UEQ divisions, and theo-
rems to the systems participating in the SAT and
EPR divisions. Claiming to have found a proof of
a non-theorem or a disproof of a theorem indicates
unsoundness. No systems failed this test. However,
after the competition the entrant of THEO discov-
ered that THEO was unsound for FOF problems,
and THEO was thus retrospectively disqualified
from the FOF division of the competition by the
competition panel. It should be noted that the un-
soundness occurred only for certain types of prob-
lems - with more than 256 constants, and that
there was no intention to deceive. THEO was ret-
rospectively entered into the demonstration FOF
division, and the results amended to report failure
by THEO for the seven affected problems. Fully
automatic operation meant that any command line
switches had to be the same for all problems.

A 600s CPU time limit was imposed on each so-
lution attempt. A wall clock time limit of double
the CPU time limit was imposed in the compe-
tition divisions, to limit very high memory usage
that causes swapping.

4. Results

For each ATP system, for each problem, three
items of data were recorded: whether or not the
problem was solved, the CPU time taken, and
whether or not a proof or model was output. This
section summarizes the results, and provides some
commentary. Detailed results, including the sys-
tems’ output files, are available from the CASC-20
WWW site. In each of the results summary tables
below, the CASC-J2 winner is emphasized.

4.1. The MIX Division

Tables 4 and 5 summarize the results in the MIX
division. As Vampire outputs refutations, Vampire
was the winner of both the ranking classes. Only
the newer version of Vampire beat last year’s win-
ner, confirming the dominance of Vampire in this
division. The improved performance of Vampire
8.0 over Vampire 7.0 is due to bugfixes in the or-
derings used. The Vampires ware the only strat-
egy scheduling systems (i.e., running a selected se-
quence of search strategies, each with a fraction of
the time limit, until one finds a solution) in the
MIX division of CASC-20. This is a change from
the previous few years, where strategy scheduling
systems have dominated. The benefits of strategy
scheduling, in the context of a large enough time
limit for multiple strategies to each be allocated
enough CPU time to be effective, is evident. A
naive strategy scheduling of Vampire 8.0, E, and
Prover9, in which each is given 200s (one third of
the 600s limit), would have resulted in the solu-
tion of 141 problems. E and EP have lower average
times than the Vampires, due to the use of a single
strategy rather than strategy scheduling.

As has been the case in the last two CASCs,
there is a gap between the top systems and the
lower ranked systems, here coming after Prover9.
The strong performance of Prover9, a new system,
is noteworthy. Its strong performances in MIX,
FOF, and UEQ divisions won it the “Outstanding
newcomer” award for CASC-20.

Only the Vampires performed weakly on the new
problems relative to their overall performance. All
of the new problems were PEQ lattice theory prob-
lems that are unit equality problems with the ex-
ception of a single non unit axiom. There is no sig-
nificant correlation between the performances on
these near-UEQ lattice theory problems and the
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Table 4

MIX division results

ATP System MIX Avg Prfs New

/150 time out /15

Vampire 8.0 137 40.6 137 9

Vampire 7.0 133 45.5 133 11

E 0.9pre3 117 24.1 0 13

EP 0.9pre3 117 30.0 108 13

Prover9 0705 100 45.6 100 12

THEO JN05 52 48.7 52 0

Darwin 1.2 32 13.1 0 0

Otter 3.3 27 46.4 27 0

Demonstration division

MathServ 0.62 121 38.1 0 13

Octopus JN05 79 24.8 79 1

fully UEQ lattice theory problems (see Section 4.5)
that have a very similar axiomatization. This in-
dicates that different techniques are necessary for
near-UEQ and fully UEQ problems.

The rankings in the categories align quite closely
with the division ranking, with the exception of
Prover9’s relatively strong performance in the
HNE category and the Vampires’ relatively weaker
performances in the PEQ category. Prover9’s
strong HNE performance was due to a strat-
egy that examines the depths of the positive
and negative literals in non-unit clauses, and de-
cides whether a forward search (positive hyper-
resolution) or a backward search (negative hyper-
resolution) should be used. The Vampires’ weaker
PEQ performances were due to the weaker perfor-
mances on the new problems.

In the demonstration division MathServ per-
formed fairly well. MathServ selects an existing
(publicly available prior to CASC-20) ATP sys-
tem to run on each problem according to syntac-
tic characteristics of the problem. In the MIX di-
vision MathServ always chose EP 0.82, thus the
MathServ results reflect what EP 0.82 would have
achieved in the MIX division - slightly better than
the newer EP 0.9pre3! The reason for this reversal
is that E 0.9pre3 is not a significantly better sys-
tem than E 0.822, and MathServ ran on a faster
computer with more memory than E 0.9pre3 in the
competition.

2The improvement in version 0.9pre3 over version 0.82

was less than expected, due to a bug in version 0.9pre3’s
problem classification. This was repaired in the E 0.9 public
release.

Table 5

MIX category results

ATP System HNE HEQ NNE NEQ PEQ

/20 /20 /20 /60 /30

Vampire 8.0 19 18 19 58 23

Vampire 7.0 19 17 19 53 25

E 0.9pre3 15 13 16 47 26

EP 0.9pre3 15 13 16 47 26

Prover9 0705 17 13 10 34 26

THEO JN05 10 0 14 27 1

Darwin 1.2 5 0 10 14 3

Otter 3.3 9 0 3 10 5

Demonstration division

MathServ 0.62 16 15 17 47 26

Octopus JN05 12 3 16 44 4

The individual problem results show that three
problems were solved by all the systems. Four
problems, LAT036-1, LAT192-1, LCL423-1, and
SYN314-1.002.001, were unsolved. These prob-
lems were eligible because they have been solved
by Gandalf c-2.6 [18], Vampire 8.0 on a faster com-
puter, Darwin 1.2, and Bliksem 1.12 [2], respec-
tively. Eleven problems were solved by only Vam-
pires (eight by both versions and three by only ver-
sion 8.0). Other unique solutions were by E and
Prover9, each of which solved one problem that no
other system solved.

As has been observed in previous CASCs, EP
failed to produce refutations for some of the prob-
lems it solved, due to the separate post-production
of refutations after their existence has been as-
sured.

4.2. The FOF Division

Table 6 summarizes the results in the FOF divi-
sion. As Vampire outputs proofs, Vampire 8.0 was
the winner of both the ranking classes. All the sys-
tems except MUSCADET work by converting to
CNF and producing a refutation. MUSCADET is
a natural deduction system, best suited to mathe-
matical, especially set theory, problems. The Vam-
pires’ use of CNF conversion means that the im-
proved performance of Vampire 8.0 over Vampire
7.0 in the MIX division carries over to the FOF
division. Additionally, Vampire 8.0’s CNF conver-
sion was improved by a naming technique that
results in fewer and shorter clauses, and a bet-
ter Skolemization algorithm that sometimes makes
Skolem functions with fewer arguments.



6 G. Sutcliffe / CASC-20

Table 6

FOF division and category results

ATP System FOF Avg Prfs New FNE FEQ

/150 time out /69 /35 /115

Vampire 8.0 131 31.6 131 54 35 96

Vampire 7.0 129 26.7 129 55 34 95

E 0.9pre3 122 12.4 0 50 34 88

EP 0.9pre3 122 15.2 117 50 34 88

Prover9 0705 113 33.2 110 53 34 79

Otter 3.3 66 63.0 66 28 33 79

MUSCADET 2.5 31 0.0 0 4 13 18

Demonstration division

MathServ 0.62 113 33.2 0 48 35 79

Octopus JN05 121 22.2 120 47 34 87

THEO JN05 93 19.4 93 34 33 60

The higher ranked systems performed well on
the large number of new problems. These new
problems come from a range of domains, including
common sense reasoning, graph theory, arithmetic,
and software verification. The successful solution
of such a range of new problems indicates that the
systems have strategies that are general purpose
and that extend usefully to new unseen problems.

The individual problem results show that four-
teen problems were solved by all the systems, with
thirteen being in the FNE category. This large
number of undifferentiating problems was to be ex-
pected due to the use of easy problems in the FNE
category. Three problems, CSR001+1, MGT035+2,
and SWV115+1, were unsolved. These problems
were eligible because they have been solved by
SPASS 2.1 [19], E 0.82, and SPASS 2.1, respec-
tively. MGT035+2 was also solved in the demonstra-
tion division by MathServ, because MathServ uses
E 0.82. Thirty-two of the new problems came from
the SWV domain, obtained from the software certifi-
cation process described in [3]. Of these seven were
solved by only Prover9, indicating some specialist
capability of this new system.

Both EP and Prover9 solved some problems for
which they did not output proofs. For Prover9 this
is due to some problems being solved in the conver-
sion from FOF to CNF, and those steps not being
documented in the output, and hence the problems
are not counted as having a proof output.

4.3. The SAT Division

Table 7 summarizes the results in the SAT di-
vision. As Paradox outputs models, Paradox was

the winner of both the ranking classes. The Para-
dox systems dominated the division, with the new
Paradox improving over the older version that had
won the previous two CASCs, especially in terms
of time taken. The improvement in Paradox 1.3
is due to the use of a better SAT solver, a faster
and smarter clause instantiation implementation,
and a preprocessing step that detects and removes
unnecessary clauses.

There were 30 new problems in the SAT divi-
sion, all except for one of which are lattice the-
ory problems. The results show that the top three
systems had no difficulty with these, while the
lower ranked systems could solve none of them.
Of the three problems not solved by Paradox
1.3, LCL415-1 and PUZ049-1 were solved by E.
PUZ049-1 has a finite model with a very large
domain. It is unknown if LCL415-1 has a finite
model.3 The problems solved by Paradox neces-
sarily have finite models. It would be desirable to
have more test problems with infinite models, and
the community is encouraged to contribute such
problems to the TPTP.

Table 7

SAT division and category results

ATP System SAT Avg Mdls New SNE SEQ

/120 time out /30 /60 /60

Paradox 1.3 117 3.3 117 30 58 59

Paradox 1.0 116 8.5 116 29 58 58

Mace4 0705D 83 2.4 83 29 29 54

Mace2 2.2 40 10.9 40 0 16 24

Darwin 1.2 20 4.5 20 0 20 0

E 0.9pre3 11 4.6 0 0 9 2

Demonstration division

MathServ 0.62 7 10.6 0 0 7 0

4.4. The EPR Division

Table 8 summarizes the results in the EPR di-
vision. The winner, DCTP 10.21p, was the win-
ner of the previous CASC. Darwin 1.2, in second
place and the outstanding newcomer of CASC-J2,
has a notably lower average solution time. This
is because DCTP is a strategy scheduling system,
while Darwin is monolithic. Only Vampire output
proofs, and only Darwin and Paradox output mod-

3After correspondence with the researchers who proposed
this problem.
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els. It would be desirable to have a system that
outputs both.

The individual problem results show that many
problems were solved by all systems. This was due
to the use of easy problems. No problems were un-
solved, but two problems, NLP213-1 and NLP216,
were solved by only Paradox, and one problem,
PUZ037-3, was solved by only the two weakest sys-
tems in the division, E and Vampire. These dis-
tinctive solutions indicate some useful unique ca-
pabilities of these weaker systems.

Table 8

EPR division and category results

ATP System EPR Avg Ps/Ms New EPT EPS

/120 time output /0 /60 /60

DCTP 10.21p 117 14.9 0/0 0 59 58

Darwin 1.2 113 1.3 0/54 0 59 54

Paradox 1.3 111 7.6 0/55 0 56 55

E 0.9pre3 96 1.5 0/0 0 57 39

Vampire 8.0 91 1.1 59/0 0 59 32

Demonstration division

MathServ 0.62 86 8.4 0/0 0 55 31

4.5. The UEQ Division

Table 9 summarizes the results in the UEQ divi-
sion. The winner, Waldmeister 704, was the winner
of the previous CASC. Waldmeister’s performance
is significantly better than that of the other sys-
tems. In particular, Waldmeister performed much
better on the new problems (all in lattice theory)
than the other systems.

The individual problem results show that four
problems, LAT145-1, LAT162-1, LAT164-1, and
LAT169-1 (all new lattice theory problems), were
unsolved. These problems were eligible because
they had been solved by SCOTT 6.1 [5], EQP
0.9d [8] and Gandalf c-2.6, Scott 6.1 and SOS 1.0
[11], and Bliksem 1.12, respectively. One problem,
GRP196-1, was solved by only Vampire, and three
problems, LAT152-1, LAT154-1, and LAT156-1 (all
new problems), were solved by only Otter. The
new lattice theory problems evidently provided
new challenges for the ATP systems.

Table 9

UEQ division results

ATP System UEQ Avg Prfs New

/120 time out /33

Waldmeister 704 110 56.5 110 24

Prover9 0705 86 40.1 86 5

Vampire 8.0 71 48.3 71 0

E 0.9pre3 63 2.5 0 0

Otter 3.3 23 20.0 23 5

Demonstration division

MathServ 0.62 64 30.0 0 1

5. Descriptions of the Winning Systems

Vampire 8.0 [10], is an automatic theorem
prover for classical first-order logic. Its kernel im-
plements the calculi of ordered binary resolution
with superposition for handling equality. Knuth-
Bendix and lexicographic path ordering are avail-
able; Knuth-Bendix ordering was used for CASC-
20. The splitting rule and negative equality split-
ting are simulated by the introduction of new pred-
icate definitions and dynamic folding of such defi-
nitions. A number of standard redundancy criteria
and simplification techniques are used for pruning
the search space: subsumption, tautology deletion
(optionally modulo commutativity), subsumption
resolution, rewriting by ordered unit equalities,
and a lightweight basicness. The shell of Vampire
accepts problems in full FOF syntax, clausifies,
and performs a number of useful transformations
before passing the result to the kernel. When a
refutation is found, the system produces a verifi-
able proof, which validates both the clausification
phase and the refutation of the CNF. The auto-
matic mode of Vampire 8.0 was derived from ex-
tensive experimental data obtained on problems
from TPTP v3.0.1. Input problems are classified
taking into account simple syntactic properties,
such as being Horn or non-Horn, presence of equal-
ity, etc. Additionally, the presence of some impor-
tant kinds of axioms, such as set theory axioms,
associativity, and commutativityi, is taken into ac-
count. Every class of problems is assigned a fixed
schedule consisting of a number of kernel strate-
gies, which are called one by one with different
time limits. The main improvements to Vampire
from version 7.0 to 8.0 are bugfixes in the orderings
used, the availability of lexicographic path order-
ing, a naming technique in the CNF transforma-
tion, a better Skolemization algorithm, the ability
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to parse the new TPTP input syntax as well as the
KIF syntax, the possibility of working with multi-
ple knowledge bases, and a query answering mode.
Vampire is implemented in C++.

Paradox 1.3 [1], the SAT division winner, is a
finite-domain model generator that produces hu-
man readable models. Paradox 1.3 is basically the
same solver as Paradox 1.0, with a few minor
modifications. The main algorithm is based on a
MACE-style [6] flattening and instantiation of the
first order clauses into propositional clauses that
encode the existence of a model of a fixed size.
These propositional problems are generated for in-
creasing domain sizes and given to a SAT solver.
Features that already existed in Paradox 1.0 in-
clude polynomial-time clause splitting heuristics,
the use of incremental SAT, static symmetry re-
duction techniques, and the use of sort inference.
New features in Paradox 1.3 are the simplifica-
tion of problems containing pure predicate sym-
bols (appearing positively (resp. negatively) in all
clauses where they occur), and a new fast clause
instantiation algorithm. Another notable change
from Paradox 1.0 is the use of the incremental
SAT-solver MiniSat [4] as its SAT-engine. The
main part of Paradox is implemented in Haskell
using the GHC compiler, linked together with the
MiniSat library which is written in C++.

DCTP 10.21p, the EPR division winner, and
Waldmeister 704, the UEQ division winner, were
the winners in CASC-J2, and were described in the
CASC-J2 report [14].

Prover9 0705 [9], the best newcomer, is a
saturation-style Otter-loop prover for first-order
and equational logic. It descends from Otter [7]
and from other provers associated with Argonne,
in particular, ITP, AURA, and the TP series.
Prover9 has available ordered resolution, ordered
paramodulation, UR resolution, hyperresolution,
and several variants of those inference rules. The
term structure is not shared, and several types
of term, literal, and clause indexing are used for
the inference rules, rewriting, and subsumption.
Strategies for the automatic mode used in CASC-
2005 include (1) term ordering by LPO, with a
simple rule for symbol precedence, (2) selective use
of non-orientable equations as rewrite rules, (3) a
rule based on term depth for determining inference
rules for Horn sets, (4) a limited-resource strategy
for limiting the number of clauses kept, and (5) a
method for attempting to reduce FOF problems to

independent subproblems. Experimentation with
the CASC-J2 problems led to the weighting func-
tion used for selecting given clauses. Strategies not
used include recognition of theories (e.g., for deter-
mining the term ordering or symbol precedence)
and multiple searches with different inference rules
or strategies. Prover9 is implemented in C.

6. Conclusion

CASC-20 was the tenth large scale competition
for first order ATP systems. The results showed
small but significant improvements over last year’s
systems. The consistent strong performances of
a few systems in the last few CASCs has estab-
lished these systems as the preferred general pur-
pose ATP systems for research and application.
CASC makes these systems publicly available, and
thus provides starting points from which new de-
velopers can leverage the knowledge of highly ex-
perienced ATP system developers. Section 4 has
highlighted some gaps in the characteristics of the
ATP systems in the competition, and new devel-
opers are encouraged to take up the challenge of
filling them.

For CASC-J3 (CASC will be part of the 3rd IJ-
CAR, as part of FLoC, in 2006) the FOF division
will be promoted to the primary place. This change
reflects the increased number of FOF contributions
to the TPTP (550 new FOF problems between
TPTP v3.0.1 and TPTP v3.1.0, in contrast with
only 168 new CNF problems), and the correspond-
ing increased use of FOF in applications. The FOF
problems in CASC-J3 will use the full set of FOF
operators defined in the TPTP syntax, e.g., <= and
<∼>, and no standardizing preprocessing will be
performed.

CASC-20 fulfilled its objectives, by evaluat-
ing the relative abilities of current ATP systems,
and stimulating development of and interest in
ATP systems. The competition highlighted areas
of ATP where progress was made in the last year.
Through the continuity of the event and consis-
tency in the the reporting of the results, perfor-
mance comparisons with previous and future years
are easily possible. The competition provided ex-
posure for system builders both within and outside
of the community, and provided an overview of the
implementation state of running, fully automatic,
first order ATP systems.
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