
LPAR-05 Workshop:

Empirically Successful
Automated Reasoning in

Higher-Order Logic (ESHOL)

Christoph Benzmüller, John Harrison, and Carsten Schürmann
(eds.)

p={x|x in A and x in B}

p.p A B

Wexford Hotel, Montego Bay, Jamaica
December 2nd, 2005

The ESHOL-05 Workshop

This workshop brings together practioners and researchers who are involved in
the everyday aspects of logical systems based on higher-order logic. We hope to
create a friendly and highly interactive setting for discussions around the follow-
ing four topics. Implementation and development of proof assistants based on
any notion of impredicativity, automated theorem proving tools for higher-order
logic reasoning systems, logical framework technology for the representation of
proofs in higher-order logic, formal digital libraries for storing, maintaining and
querying databases of proofs.

We envision attendees that are interested in fostering the development and
visibility of reasoning systems for higher-order logics. We are particularly in-
terested in a discusssion on the development of a higher-order version of the
TPTP and in comparisons of the practical strengths of automated higher-order
reasoning systems. Additionally, the workshop includes system demonstrations.

ESHOL is the successor of the ESCAR and ESFOR workshops held at CADE
2005 and IJCAR 2004.

November, 2005

Christoph Benzmüller Saarland University, Germany
John Harrison Intel Corporation, USA
Carsten Schürmann IT University of Copenhagen, Denmark

Programme Committee

Peter Andrews Carnegie Mellon University, USA
Michael Beeson San Jose State University, USA
Chad Brown Saarland University, Germany

Gilles Dowek École Polytechnique, France
Christoph Kreitz Potsdam University, Germany
Larry Paulson Cambridge University, UK
Frank Pfenning Carnegie Mellon University, USA
Geoff Sutcliffe University of Miami, USA
Volker Sorge University of Birmingham, UK
Freek Wiedijk Nijmegen University, Netherlands

Schedule (December 2nd, 2005)

09:00-10:00 Invited Talk

Joe Hurd (Oxford): First Order Proof for Higher Order Logic
Theorem Provers

10:00-10:30 Coffee Break

10:30-12:30 Paper Session I

Michael Beeson: Implicit Typing in Lambda Logic

Christoph Benzmüller: LEO – A Resolution based Higher
Order Theorem Prover

Christoph Benzmüller, Volker Sorge, Mateja Jamnik
and Manfred Kerber: Combining Proofs of Higher-Order and
First-Order Automated Theorem Provers

12:30-13:30 Lunch Break

13:30-14:30 Invited Talk

Chad Brown (Saarbrücken): Benchmarks for Higher-Order
Automated Reasoning

14:30-15:30 Paper Session II

Jutta Eusterbrock: Co-Synthesis of New Complex Selection
Algorithms and their Human Comprehensible XML Documenta-
tion

Alwen Tiu, Gopalan Nadathur and Dale Miller: Mixing
Finite Success and Finite Failure in an Automated Prover

15:30-16:00 Coffee Break

16:00-17:00 System Demonstrations

Michael Beeson: Otter-λ

Chad Brown: TPS

Joe Hurd: Metis

Christoph Benzmüller: LEO

17:00-18:00 Discussion: Higher-Order TPTP – Feasible or Not?
Chair and Panelists: TBA

Table of Contents

First Order Proof for Higher Order Logic Theorem Provers (invited
talk, abstract) . 1

Joe Hurd

Implicit Typing in Lambda Logic . 5
Michael Beeson

System Description: LEO – A Resolution based Higher Order Theorem
Prover . 25

Christoph Benzmüller

Combining Proofs of Higher-Order and First-Order Automated
Theorem Provers . 45

Christoph Benzmüller, Volker Sorge, Mateja Jamnik, Manfred Kerber

Benchmarks for Higher-Order Automated Reasoning (invited talk,
abstract) . 59

Chad Brown

Co-Synthesis of New Complex Selection Algorithms and their Human
Comprehensible XML Documentation . 61

Jutta Eusterbrock

Mixing Finite Success and Finite Failure in an Automated Prover 79
Alwen Tiu, Gopalan Nadathur, Dale Miller

Otter-λ (system demonstration, abstract) . 99
Michael Beeson

TPS (system demonstration, abstract) . 101
Chad Brown

Metis (system demonstration, abstract) . 103
Joe Hurd

First Order Proof for Higher Order Logic
Theorem Provers (abstract)

Joe Hurd!

Computing Laboratory
University of Oxford,

joe.hurd@comlab.ox.ac.uk

Interactive theorem provers are useful for modelling computer systems and
then verifying properties of them by constructing a formal proof that the proper-
ties logically follow from the definition of the system. The expressivity of higher
order logic makes it easy to model systems in a natural way, and there are many
interactive theorem provers based on higher order logic, including HOL4 [4], Is-
abelle [12] and PVS [10]. In these theorem provers the system properties to be
formally verified are statements of higher order logic, which are presented to the
user as goals. The user proves goals by manually selecting tactics that reduce
goals to simpler subgoals, until eventually the subgoals are simple enough that
tactics can completely prove them. In general the initial goals corresponding
to system properties require some higher order reasoning to prove them (typ-
ically an induction), but many subgoals require only first order reasoning and
are efficiently proved by a standard first order calculus. Using first order provers
to support interactive proof in higher order logic theorem provers has been a
productive line of research, and the following is a chronological list of such com-
binations: FAUST in HOL [9]; SEDUCT in LAMBDA [3]; MESON in HOL [5];
3TAP in KIV [1]; blast in Isabelle [11]; Gandalf in HOL [6]; and Bliksem in
Coq [2].

There are two barriers to combining first order provers with interactive higher
order theorem provers. The first is the incompatibility of the different logics: a
method is required to convert a higher order logic goal to a set of first order
clauses, and then to lift a refutation of the clauses to a higher order logic proof.
Using the idea of an LCF kernel for first order refutations it is possible to make
this logical interface into a module, allowing several different interfaces between
first and higher order logic to co-exist [7]. The choice of interface to apply to a
particular higher order logic goal depends on both the syntactic structure of the
goal and which other interfaces have been tried.

The second barrier is an engineering one: the specifics of how to link up
the first order prover and extract the information necessary to reconstruct the
refutation and translate it to a higher order logic proof. The LCF kernel design of
the logical interface makes it simple to convert refutations to a form in which they
can be automatically translated to higher order logic proofs, and thus supports
experimentation with a full range of first order calculi. Experiments have shown
that resolution is more effective than model elimination for higher order logic

! Supported by a Junior Research Fellowship at Magdalen College, Oxford.

1

2 Joe Hurd

goals [8], and a calculus with specific rules for equality is also important for this
application.

All the above ideas are implemented in the Metis proof tactic in the HOL4
theorem prover, which is separately presented as a system description.

References

1. Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel, Wolfgang
Reif, Gerhard Schellhorn, and Peter H. Schmitt. Integration of automated and
interactive theorem proving. In W. Bibel and P. Schmitt, editors, Automated
Deduction: A Basis for Applications, volume II, chapter 4, pages 97–116. Kluwer,
1998.

2. Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction
in type theory using resolution. In David A. McAllester, editor, Proceedings of the
17th International Conference on Automated Deduction (CADE-17), volume 1831
of Lecture Notes in Computer Science, pages 148–163, Pittsburgh, PA, USA, June
2000. Springer.

3. H. Busch. First-order automation for higher-order-logic theorem proving. In Tom
Melham and Juanito Camilleri, editors, Higher Order Logic Theorem Proving and
Its Applications, 7th International Workshop, volume 859 of Lecture Notes in Com-
puter Science, Valletta, Malta, September 1994. Springer.

4. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL (A theorem-
proving environment for higher order logic). Cambridge University Press, 1993.

5. John Harrison. Optimizing proof search in model elimination. In Michael A.
McRobbie and John K. Slaney, editors, 13th International Conference on Auto-
mated Deduction (CADE-13), volume 1104 of Lecture Notes in Artificial Intelli-
gence, pages 313–327, New Brunswick, NJ, USA, July 1996. Springer.

6. Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin, and Laurent Théry, editors, Theorem Proving in
Higher Order Logics, 12th International Conference, TPHOLs ’99, volume 1690 of
Lecture Notes in Computer Science, pages 311–321, Nice, France, September 1999.
Springer.

7. Joe Hurd. An LCF-style interface between HOL and first-order logic. In Andrei
Voronkov, editor, Proceedings of the 18th International Conference on Automated
Deduction (CADE-18), volume 2392 of Lecture Notes in Artificial Intelligence,
pages 134–138, Copenhagen, Denmark, July 2002. Springer.

8. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In
Myla Archer, Ben Di Vito, and César Muñoz, editors, Design and Application
of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in
NASA Technical Reports, pages 56–68, September 2003.

9. R. Kumar, T. Kropf, and K. Schneider. Integrating a first-order automatic prover
in the HOL environment. In Myla Archer, Jeffrey J. Joyce, Karl N. Levitt, and
Phillip J. Windley, editors, Proceedings of the 1991 International Workshop on the
HOL Theorem Proving System and its Applications (HOL ’91), August 1991, pages
170–176, Davis, CA, USA, 1992. IEEE Computer Society Press.

10. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Sys-
tem Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
September 1999.

2

First Order Proof for Higher Order Logic Theorem Provers (abstract) 3

11. L. C. Paulson. A generic tableau prover and its integration with Isabelle. Journal
of Universal Computer Science, 5(3), March 1999.

12. Lawrence C. Paulson. Isabelle: A generic theorem prover. Lecture Notes in Com-
puter Science, 828:xvii + 321, 1994.

3

4

Implicit Typing in Lambda Logic

Michael Beeson1

San José State University, San José, Calif.
beeson@cs.sjsu.edu,

www.cs.sjsu.edu/faculty/beeson

Abstract. Otter-lambda is a theorem-prover based on an untyped logic
with lambda calculus, called Lambda Logic. Otter-lambda is built on
Otter, so it uses resolution proof search, supplemented by demodulation
and paramodulation for equality reasoning, but it also uses a new al-
gorithm, lambda unification, for instantiating variables for functions or
predicates. The basic idea of a typed interpretation of a proof is to “type”
the function and predicate symbols by specifying the legal types of their
arguments and return values. The idea of “implicit typing” is that if the
axioms can be typed in this way then the consequences should be ty-
pable too. This is not true in general if unrestricted lambda unification
is allowed, but for a restricted form of “type-safe” lambda unification it
is true. The main theorem of the paper shows that the ability to type
proofs if the axioms can be typed works for the rules of inference used
by Otter-lambda, if type-safe lambda unification is used, and if demod-
ulation and paramodulation from or into variables are not allowed. All
the interesting proofs obtained with Otter-lambda, except those explic-
itly involving untypable constructions such as fixed-points, are covered
by this theorem.

1 Introduction: the no-nilpotents example

We begin with an example. Consider the problem of proving that there are no
nilpotent elements in an integral domain. To explain the problem: an integral
domain is a ring R in which xy = 0 implies x = 0 or y = 0, i.e. there are no zero
divisors. A element c of R is called nilpotent if for some positive integer n, cn

(i.e., c multiplied by itself n times) is zero. Informally, one proves by induction
on n that cn is not zero. The equation defining exponentiation is xs(n) = x ∗ xn.
If c and cn are both nonzero, then the integral domain axiom implies that cn+1

is also nonzero. It is a very simple proof, but it is interesting because it involves
two types of objects, ring elements and natural numbers, and the proof involves
a mix of the algebraic axioms and the number-theoretical axioms (mathematical
induction). Since the proof is so simple, we can consider the issues raised by
having two types of objects without being distracted by a complicated proof.

How are we to formalize this theorem in first order logic? The traditional way
would be to have two unary predicates R(x) and N (x), whose meaning would
be ”x is a member of the ring R” and ”x is a natural number”, respectively.
Then the ring axioms would be “relativized to R”, which means that instead

5

II

of saying x + 0 = 0, we would say R(x) → x + 0 = 0, or in clausal form,
−R(x)|x + 0 = 0. (The vertical bar means “or”, and the minus sign means
“not”.) Similarly, the axiom of induction would be relativized to N . The axiom
of induction is usually formulated using a symbol s for the successor function, or
“next-integer” function. For example, s(4) = 5. The specific instance of induction
we need for this proof can be expressed by the two (unrelativized) clauses

xo $= 0 | xg(x) = 0 | xn = 0.

xo $= 0 | xs(g(x)) $= 0 | xn = 0.

To see that this corresponds to induction, think of g(x) as a constant (on which
x is not allowed to depend). Then the middle literal of the first clause is xc = 0.
That is the induction hypothesis. The middle literal of the second clause is
xs(c) $= 0. That is the negated conclusion of the induction step. We have used o
instead of 0 for the natural number zero, which might not be the same as the
ring element 0.

A traditional course in logic would teach you that to formalize this problem,
you need to relativize all the axioms using R and N . Just to be explicit, the
relativized versions of the induction axioms would be

−R(x) | − N (n) | xo $= 0 | xg(x,n) = 0 | xn = 0.

−R(x) | − N (n) | xo $= 0 | xs(g(x,n)) $= 0 | xn = 0.

−R(x) | − N (n) | N (g(n, x)).

and we would need additional axioms such as these:

−R(x) | − N (n) | R(xn).
−R(x) | − R(y) | R(x + y).
−R(x) | − R(y) | R(x ∗ y).
−R(x) | x + 0 = 0.

and so on for the other ring axioms.

2 Implicit typing in first order logic

Now here is the question: when formalizing this problem, do we need to relativize
the induction axioms and the ring axioms using R(x) and N (x), or not? Exper-
imentally, if we put the unrelativized axioms into Otter (Otter-λ is not needed,
since we have explicitly given the prover the required instance of induction), we
do find a proof. What does this proof actually prove? Certainly it shows that in
any integral domain whose underlying set is the natural numbers, there are no
nilpotents, since in that case all the variables range over the same set, and no
question of typing arises. We can prove informally that any countable integral
domain is isomorphic to one whose underlying set is the natural numbers. But
this is not the theorem that we set out to prove, so it may appear that we must
use R(x), N (x), and relativization to formalize this problem.

6

III

That is, however, not so. The method of “implicit typing” shows that under
certain circumstances we can dispense with unary predicates such as R and N .
One assigns a type to each predicate, function symbol, and constant symbol,
telling what the sort of each argument is, and the sort of the value (in case of
a function; predicates have Boolean value). Specifically each argument position
of each function or predicate symbol is assigned a sort and the symbol is also
assigned a “value type” or “return type”. For example, in this problem the ring
operations + and ∗ have the type of functions taking two R arguments and
producing an R value, which we might express as type(R, +(R, R)). If we use
N for the sort of natural numbers then we need to use a different symbol for
addition on natural numbers, say type(N, plus(N, N)), and we need to use a
different symbol for 0 in the ring and zero in N . The Skolem symbol g in the
induction axiom has the type specification type(N, g(R)). The exponentiation
function has the type specification type(R, RN)).

Constants are considered as 0-ary function symbols, so they get assigned
types, for example type(R, 0) and type(N, o). We call a formula or term correctly
typed if it is built up consistently with these type assignments. Note that variables
are not typed; e.g. x + y is correctly typed no matter what variables x and y
are. Types as we discuss them here are not quite the same as types in most
programming languages, where variables are declared to have a certain type.
Here, when a variable occurs in a formula, it inherits a type from the term in
which it occurs, and if it occurs again in the same clause, it must have the same
type at the other occcurence for the clause to be considered correctly typed. Once
all the function symbols, constants, and predicate symbols have been assigned
types, one can check (manually) whether the clauses supplied in an input file are
correctly typed.

Then one observes that if the rules of inference preserve the typing, and if
the axioms are correctly typed, and the prover finds a proof, then every step
of the proof can be correctly typed. That means that it could be converted
into a proof that used unary predicates for the sorts. Hence, if it assists the
proof-finding process to omit these unary predicates, it is all right to do so.
This technique was introduced long ago in [4], but McCune says it was already
folklore at that time. It implies that the proof Otter finds using an input file
without relativization actually is a valid proof of the theorem, rather than just
of the special case where the ring elements are the natural numbers.

“Implicit typing” is the name of this technique, in which unary predicates
whose function would be to establish typing are omitted. There are two ways to
use implicit typing. First, we could just omit the unary predicates, let a theorem-
proving program find a proof, and afterwards verify by hand (or by a computer
program) that the proof is indeed well-typed. Second, we could verify that the
axioms are well-typed, and prove that the inference rules used in the prover
lead from correctly typed clauses to correctly typed clauses. Let us explore this
second alternative. In order to state and prove a theorem, we first give some
definitions:

7

IV

Definition 1. A type specification is an expression of the form type(R, f(U, V)),
where R, U , and V are “type symbols”. Any first-order terms not containing vari-
ables may be used as type symbols. Here ‘type’ must occur literally, and f can
be any symbol. The number of arguments of f , here shown as two, can be any
number, including zero.

The type R is called the value type of f . The symbol f is called the symbol
of the type specification, and the number of arguments of f is the arity.

Definition 2. A typing of a term is an assignment of types to the variables
occurring in the term and to each subterm of the term. A typing of a literal is
similar, but the formula itself must get value type bool. A typing of a clause is
an assignment that simultaneously types all the literals of the clause. A typing
of a term (or literal or clause or set of clauses) t is correct with respect to a list
of type specifications S provided that

(i) each occurrence of a variable in t is assigned the same type.
(ii) each subterm r of t is typed according to a type specification in S. That

is, if r is f(u, v) and f(u, v),u, and v are assigned types a, b, and c respectively,
then there is a type specification in S of the form type(a, f(b, c)).

(iii) each occurrence of each subterm r of t in t has the same value type.

In the definition, nothing prevents S from having more than one type speci-
fication for the same function symbol and arity. Condition (iii) is needed in such
a case.

The phrase, correctly typed term t, is short for “term t and a correct typing
of t with respect to some list of type specifications given by the context”.

Remark. We do not allow type specifications to contain variables, but of
course at the meta-level we can refer to a “typing of the form i(U, U).” That
covers any specific typing such as i(N, N), etc. For first-order theories, usually
constant terms will suffice for naming the types (which are then usually called
sorts rather than types, as in “multi-sorted logic”).

The simplest theorem on implicit typing concerns the inference rule of (bi-
nary) resolution.1

Theorem 1. Suppose each function symbol and constant occurring in a theory
T is assigned a unique type specification, in such a way that all the axioms
of T are correctly typed (with respect to this list of type specifications). Then
conclusions reached from T by binary resolution (using first-order unification)
are also correctly typed.

Remark . This theorem is perhaps implicit in [4]. We give it here mainly to
prepare the way for extensions to lambda logic in the next section.
Proof. Suppose that literal P (r) resolves with literal −P (t), where r and t are
terms; then there is a substitution σ such that rσ = tσ, the unifying substitution.
1 In the following theorem, we assume (as is customary with resolution) that after a

theory has been brought to clausal form, the variables in distinct clauses are renamed
so that no variable occurs in more than one clause.

8

V

Here P stands for any atomic formula and t and r might stand for several terms if
P has more than one argument position. Since P (r) and P (t) are correctly typed
by hypothesis, r and t must have the same value type (if they are not variables).
The result of the resolution will be a disjunction of literals Qσ|Sσ, where Q and
S are the remaining (unresolved) literals in the clauses that originally contained
P (r) and −P (t), respectively. Now Q and S are correctly typed by hypothesis,
so we just need to show that applying the substitution σ to a correctly typed
term or literal will produce a correctly typed term or literal. This will be true
by induction on the complexity of terms, provided that substitution σ assigns
to each variable x in its domain, a term q whose value type is the same as the
value type of x in the clause in which x occurs. In first-order unification (but not
in lambda unification) variables get assigned a value in unification only when
the variable occurs as an argument, either of a parent term or a parent literal.
That is, a variable cannot occur in the position of a literal. Thus when we are
unifying f(x, u) and f(q, v), x will get assigned to q, and the type of x and the
value type of q must be the same since they are both in the first argument place
of f . That completes the proof.

Does this theorem apply to the no-nilpotents example? We have to be careful
about the type specification of the equality symbol. If we specify type(bool, =
(R, R)), then we cannot use the same equality symbol in the axioms for the
natural numbers, for example s(x) $= 0 and x = y|s(x) $= s(y). However, Otter
treats any symbol beginning with EQ as an equality; = is a synonym for EQ, but
one can also use, for example EQ2. Therefore, if we want to apply the theorem,
we need to use two different equality symbols. Of course, we could just use =
throughout and verify afterwards that the proof can be correctly typed, as = is
never used in the same clause for equality between natural numbers and equality
between ring elements; but if we want to be assured in advance that any proof
Otter will find will be correctly typable, then we need to use different equality
symbols. If we do so, then the theorem does apply.

There are, of course, more inference rules than just binary resolution. Even in
this example, the proof uses demodulation. The theorem above can be extended
to include the additional rules of inference factoring, paramodulation, and de-
modulation. For those not familiar with those rules we review their definitions.
Factoring permits the derivation of a new clause by unifying two literals in the
same clause that have the same sign, and applying the resulting substitution
to the entire clause. Paramodulation is the following: suppose we have already
deduced t = q (or q = t) and P [z := r], and unification of t and r produces a sub-
stitution σ such that tσ = rσ; then we can deduce P [z := qσ]. Paramodulation
from variables is the case in which t is a variable. Paramodulation into a variable
is the case in which r is a variable. Demodulation is similar to paramodulation,
except that (i) unlike paramodulation, it is unidirectional (i.e., the hypothesis
must be t = q, not q = t), (ii) it is applied only under certain circumstances and
using formulas designated in an input file as “demodulators”. From the point of
view of soundness proofs, it is a special case of paramodulation.

9

VI

Theorem 2. Suppose each function symbol and constant occurring in a theory
T is assigned a unique type specification, in such a way that all the axioms of
T are correctly typed (with respect to this list of type specifications). The type
specifications of equality symbols must have the form type(bool, = (X, X)) for
some type X. Then conclusions reached from T by binary resolution, hyperres-
olution, factoring, demodulation, and paramodulation (using first-order unifica-
tion in applying these rules) are also correctly typed, provided demodulation and
paramodulation are not applied to or from variables.

Proof. Conclusions reached by hyperresolution can also be reached by binary
resolution, so that part of the theorem follows from the previous theorem. The
results on factoring, paramodulation and demodulation follow from the fact that
applying a substitution produced by unification preserves correct typings. The
lemma that we need is that if p and r unify, then they have the same value type.
If neither is a variable, this follows from the assumption that the axioms of T
are correctly typed. (If one is a variable, this need not be the case.)

Suppose, for example, that r = s is to be used as a demodulator on term
t. The demodulator is applied by unifying r with a certain subterm p of t. Let
σ be the substitution that performs this unification, so pσ = rσ. Then p and
r, since they unify, have the same value type, and hence p, pσ, and rσ all have
the same value type. The type specification of equality must have the form
type(bool, = (X, X)) for some type X; so r and s have the same value type,
so rσ and sσ have the same value type. Hence sσ and pσ also have the same
value type, and hence the result of replacing p in t by sσ (the result of the
demodulation) is a correctly typed term.

Example. This example will show that one cannot allow “overloading”, or
multiple type specifications for the same symbol, and still use implicit typing
with guaranteed correctness. For example, suppose we want to use x + y both
for natural numbers and for integers. Thinking of integers, we write the axiom
x + (−x) = 0, and thinking of natural numbers we write 1 + x $= 0, Resolving
these clauses, we find a contradiction upon taking x = 1.

Example. This example, taken from Euclidean geometry, shows that the the-
orem cannot be extended to paramodulation from variables. In this example,
EQpt stands for equality between points, EQline stands for equality between
lines, I(a, b) stands for point a incident to line b, and p1(u) and p2(u) are two
distinct points on line u. The types here are boolean, point, and line. Axioms
(1) and (2) are correctly typed:

EQpt(x, y)|I(x, line(x, y)). (1)
EQline(line(p1(u), p2(u)), u). (2)

Paramodulating from the first clause of (1) into (2), we unify x with line(p1(u), p2(u)),
and thus derive

EQline(y, u)|I(line(p1(u), p2(u)), line(line(p1(u), p2(u)), y)). (3)

This conclusion is incorrectly typed since y is a point and u is a line.
10

VII

Example. This simpler example illuminates the situation with regard to paramod-
ulation from variables. Consider the three unit clauses x = a, P (b), and −P (c).
These clauses lead to a contradiction using paramodulation from the variable
x and binary resolution. But without paramodulation from variables, no con-
tradiction can be derived. This shows that we have lost first-order refutation
completeness, already in the first order case, as the price of implicit typing. But
this is good: if equality is between objects of type A and P is a predicate on ob-
jects of type B, then these clauses are not contradictory. This loss of first-order
completeness already occurs in the first-order case, and is not a phenomenon
special to lambda logic. Question: “but if b and c have the same type, then
shouldn’t the contradiction be found?” Answer: ‘b’ and ‘c’ are constants in an
untyped language, so they do not have types. Contradictions, like all proofs, are
syntactic and involve the symbols. What the example shows is that, if many-
sorted models are considered, there are models of this theory, even though the
theory has no first-order models; and the theorem shows that the inference rules
in question are sound for multi-sorted models.

3 Lambda logic and lambda unification

Lambda logic is the logical system one obtains by adding lambda calculus to first
order logic. This system is formulated, and some fundamental metatheorems are
proved, in [1]. The appropriate generalization of unification to lambda logic
is this notion: two terms are said to be lambda unified by substitution σ if
tσ = sσ is provable in lambda logic. An algorithm for producing lambda unifying
substitutions, called lambda unification, is used in the theorem prover Otter-λ,
which is based on lambda logic rather than first-order logic, but is built on
the well-known first-order prover Otter [3]. In Otter-λ, lambda unification is
used, instead of only first-order unification, in the inference rules of resolution,
factoring, paramodulation, and demodulation.

We do not regard this work as a “combination of first-order logic and higher-
order logic”. Lambda logic is not higher-order, it is untyped. Lambda unification
is not higher-order unification, it is unification in (untyped) lambda logic. While
there probably are interesting connections to typed logics, some of the questions
about those relationships are open at present, and out of the scope of this paper.
Similarly, while there are projects aimed at combining first-order provers and
higher-order provers, that approach is quite different from ours. Otter-lambda
is a single, integrated prover, not a combination of a first-order prover and a
higher-order prover. There is just one database of deduced clauses on which
inferences are performed; there is no need to pass data between provers. Whether
other provers can find proofs for the examples that Otter-lambda can find proofs
for, we do not know and cannot report on. This paper is solely about lambda
logic, lambda unification, and Otter-lambda. This subject offers quite enough
complications for one paper.

In Otter-λ input files, we write lambda(x, t) for λx. t, and we write Ap(x, y)
for x applied to y, which is often abbreviated in technical papers to x(y) or

11

VIII

even xy. In this paper, Ap will always be written explicitly, but we use both
lambda(x, t) and λx. t.

Our main objective in this section is to define the lambda unification algo-
rithm. As we define it here, this is a non-deterministic algorithm: it can return,
in general, many different unifying substitutions for two given input terms. As
implemented in Otter-lambda, it returns just one unifier, making some specific
choice at each non-deterministic choice point. As for ordinary unification, the
input is two terms t and s (this time terms of lambda logic) and the output,
if the algorithm succeeds, is a substitution σ such that tσ = sσ is provable in
lambda logic.

We first give the relatively simple clauses in the definition. These have to do
with first-order unification, alpha-conversion, and beta-reduction.

The rule related to first-order unification just says that we try that first;
for example Ap(x, y) unifies with Ap(a, b) directly in a first-order way. However,
the usual recursive calls in first-order unification now become recursive calls to
lambda unification. In other words: to unify f(t1, . . . , tn with g(s1, . . . , sm), this
clause does not apply unless f = g and n = m; in that case we do the following:

for i = 1 to n {
τ = unify(ti, si);
if (τ = failure)

return failure;
σ = σ ◦ τ; }

return σ
Here the call to unify is a recursive call to the algorithm being defined.

The rule related to alpha-conversion says that, if we want to unify lambda(z, t)
with lambda(x, s), let τ be the substitution z := x and then unify tτ with s, re-
jecting any substitution that assigns a value depending on x.2 If this unification
succeeds with substitution σ, return σ.

The rule related to beta-reduction says that, to unify Ap(lambda(z, s), q)
with t, we first beta-reduce and then unify. That is, we unify s[z := q] with t
and return the result.

Lambda unification’s most interesting instructions tell how to unify Ap(x, w)
with a term t, where t may contain the variable x, and t does not have main
symbol Ap. Note that the occurs check of first-order unification does not apply
in this case. The term w, however, may not contain x. In this case lambda
unification is given by the following non-deterministic algorithm:

1. Pick a masking subterm q of t. That means a subterm q such that every
occurrence of x in t is contained in some occurrence of q in t. (So q “masks” the
occurrences of x; if there are no occurrences of x in t, then q can be any subterm
of t, but see the next step.)

2 Care is called for in this clause, as illustrated by the following example: Unify
lambda(x, y) with lambda(x, f(x)). The “solution” y = f(x) is wrong, since substi-
tuting y = f(x) in lambda(x, y) gives lambda(z, f(x)), because the bound variable
is renamed to avoid capture.

12

IX

2. Call lambda unification to unify w with q. Let σ be the resulting substitution.
If this unification fails, or assigns any value other than a variable to x, return
failure. If it assigns a variable to x, say x := y reverse the assignment to y := x
so that x remains unassigned.
3. If qσ occurs more than once in tσ, then pick a set S of its occurrences. If q
contains x then S must be the set of all occurrences of qσ in t. Let z be a fresh
variable and let r be the result of substituting z in tσ for each occurrence of qσ
in the set S.
4. Append the substitution x := λz. r to σ and return the result.

There are two sources of non-determinism in the above, namely in steps 1 and
3. These steps are made deterministic in Otter-λ as follows: in step 1, if x occurs
in t, we pick the largest masking subterm q that occurs as a second argument of
Ap.3 If x occurs in t, but no masking subterm occurs as a second argument of
Ap, we pick the smallest masking subterm. If x does not occur in t, we pick a
constant that occurs in t; if there is none, we fail. In step 3, if q does not contain
x, then an important application of this choice is to proofs by mathematical
induction, where the choice of q corresponds to choosing a constant n, replacing
some of the occurrences of n by a variable, and deciding to prove the theorem by
induction on that variable. Therefore the choice of S is determined by heuristics
that prove useful in this case. In the future we hope to implement a version
of lambda unification that returns multiple unifiers by trying different sets S
in step 3. Our proofs in this paper apply to the full non-deterministic lambda
unification, as well as to any deterministic versions, unless otherwise specified.

Example. Lambda unification can lead to untypable proofs, for example those
needed to produce fixed points in lambda calculus. As an example, if we unify
Ap(x, y) with f(Ap(x, y)), the masking subterm q is x itself; w is y so σ is y := x;
wσ is x and tσ is Ap(x, x). Thus we get the following result:4

x := lambda(z, f(Ap(z, z))) y := x

Type restrictions will be violated if we have specified the typing:

type(B, Ap(i(A, B), A)). type(B, f(B)).

Variable x has type i(A, B), and variable y has type A, so the unification of x
and y violates type restrictions, since i(A, B) is not the same type as A.

Definition 3. We say that a particular lambda unification (of Ap(X, w) with
t) is type-safe (with respect to some explicit or implicit typings) if the masking
subterm q selected by lambda unification has the same type (with respect to those

3 The point of this choice is that, if we want the proof to be implicitly typable, then
q should be chosen to have the same type as w, and w is a second argument of Ap.

4 The symbol i does not have to be “defined” here; type assignments can be arbitrary
terms. But intuitively, i(A,B) could be thought of as the type of functions from type
A to type B.

13

X

typings) as the term w, and q is a proper subterm of t (unless the two argu-
ments of Ap have the same type). We also require that the value type assigned
to Ap(X, w) is the same as the value type assigned to t.

The example preceding the definition illustrates a lambda unification that is not
type-safe for any reasonable typing. The masking subterm is x; type safety would
require x to be assigned the same type as y. But x occurs as a first argument
of Ap and y as a second argument of Ap. Therefore the type specification of Ap
would have to be of the form type(V, Ap(U, U)); but normally Ap will have a
type specification of the form type(B, Ap(i(A, B), A)).

Remark. A discussion of the relationship, if any, between lambda unification
and the higher-type unification algorithms already in the literature is beyond the
scope of this paper. The algorithms apply to different systems and have different
definitions. Similarly, the exact relationship between lambda logic and various
sytems of higher-order logic, if there is any, is beyond the scope of this paper (or
any paper of this length).

4 Implicit typing in lambda logic

If we consider the no-nilpotents example in lambda logic, we can state the axiom
of mathematical induction in full generality, and Otter-lambda can use lambda
unification to find the specific instance of induction that is required. (See the
examples on the Otter-lambda website.) The proof, obtained without relativiz-
ing to unary predicates, is correctly typable. This is not an accident: there are
theorems about implicit typing that guarantee it.

We first give an example to show that the situation is not as straightforward
as in first-order logic. If we use the axioms of group theory in lambda logic,
must we relativize them to a unary predicate G(x)? As we have seen above,
that is not necessary when doing first-order inference. We could, for example,
put in some axioms about natural numbers, and not relativize them to a unary
predicate N (x), and as long as our axioms are correctly typed, our proofs will
be correctly typed too. There is, however, reason to worry about this when we
move to lambda logic.

In lambda calculus, every term has a fixed point. That is, for every term F we
can find a term q such that Ap(F, q) = q. Another form of the fixed point theorem
says that for each term H, we can find a term f such that Ap(f, x) = H(f, x).
Applying this to the special case when H(f, x) = c ∗ Ap(f, x), where c is a
constant and ∗ is the group multiplication, we get Ap(f, x) = c ∗ Ap(f, x). It
follows from the axioms of group theory that c is the group identity. On the
other hand, in lambda logic it is given as an axiom that there exist two distinct
objects, say c and d, and since each of d and c must equal the group identity,
this leads to a contradiction. Looked at model-theoretically, this means it is
impossible, given a lambda model M , to define a binary operation on M and an
identity element of M that make M into a group.

Since these axioms are contradictory in lambda logic, what is the value of a
proof of a theorem from these axioms? One might think that there is none, and

14

XI

that to be able to trust an automatically produced proof from these axioms I
would need to check it independently, or reformulate the axioms by relativizing
the group axioms to a unary predicate G. The point of this paper is that there
are good theoretical reasons why I do not need to do that. Even though there
exists a derivation of a contradiction in lambda logic from these axioms, it is not
a well-typed derivation, and since the axioms are well-typed, the theorems in
this paper guarantee that deduced conclusions will also be well-typed. In other
words, if we attempt to prove that every element is equal to c, we will put in
the negated goal x $= c, but if we use only “type-safe” lambda unification, as
defined below, we will not be able to construct the fixed point needed to derive a
contradiction. If, however, we use unrestricted lambda unification, we can derive
it. If we put in the (negation of) the untyped fixed-point equation itself, then
we can also prove that (even with type-safe lambda unification), but we need a
non-well typed axiom in the input file.

First, let us consider how to type the relevant axioms. Writing G for the type
of group elements, 1 for the group identity, and i(G, G) for the type of maps from
G to G, we would have the following type specifications:

type(G, 1).
type(G, ∗(G, G)).
type(G, Ap(i(G, G), G).
type(i(G, G), lambda(G, G)).

In general, of course, we want type(i(X, Y), lambda(X, Y)), but the special case
shown is enough in this example. According to these type specifications, the
axioms are correctly typable, and when Otter-λ produces a proof, the proof
turns out to also be correctly typable. This is not an accident, as we will see.

In defining type specifications for lambda logic, the following technicality
comes up: Normally in predicate logic we tacitly assume that different symbols
are used for function symbols and predicate symbols. Thus P (P (c)) would not be
considered a well-formed formula. In lambda logic we do wish to be able to define
propositional functions, as well as functions whose values are other objects, so we
allow Ap both as a predicate symbol and a function symbol. However, except for
Ap, we follow the usual convention that predicate symbols and function symbols
use distinct alphabets. This is the reason for clauses (4) and (5) in the following
definition.

Definition 4. A list of type specifications S is called coherent if
(1) for each (predicate or function) symbol f (except possibly Ap and lambda)
and arity n, it contains at most one type specification of symbol f and arity n;
the value type of a predicate symbol must be Prop and of a function symbol, must
not be Prop.
(2) type(i(X, Y), lambda(X, Y)) belongs to S if and only if

type(Y, Ap(i(X, Y), X)) belongs to S.
(3) all type specifications with symbol Ap have the form type(V, Ap(i(U, V), U)),
for the same type U , which is called the “ground type” of S.

15

XII

(4) all type specifications with symbol lambda have the form
type(i(U, V), lambda(U, V)),5 where U is the ground type of S.

(5) There are at most two type specifications in S with symbol Ap; if there are
two, then exactly one must have value type Prop.

Conditions (2) and (3) guarantee that beta-reduction carries correctly typed
terms to correctly typed terms. One might wish for a less restrictive condition in
(4) and (5), allowing functions of functions, or functions of functions of functions,
etc. But this is the condition for which we can prove theorems at the present
time, and it covers a number of interesting examples in algebra and number
theory.

If S is a coherent list S of type specifications, it makes sense to speak of “the
type assigned to a term t by S”, if there is at least one type specification in S
for the main symbol and arity of t. Namely, unless the main symbol of t is Ap,
only one specification in S can apply, and if the main symbol of t is Ap, then we
apply the specification that does not have value type Prop. Similarly, it makes
sense to speak of “the type assigned to an atomic formula by S”. When the main
symbol of t is Ap, we can speak of “the type assigned to t as a term” or “the
type assigned to t as a formula”, using the specification that does not or does
have Prop for its value type.

Theorem 3. Let S be a coherent list of type specifications. Let s and t be two
correctly typed terms or two correctly typed atomic formulas with respect to S.
Let σ be a substitution produced by successful type-safe lambda unification of s
and t. Then sσ and tσ are correctly typed, and S assigns the same type to s, t,
and sσ.

Example. Let s be Ap(X, w) and t be a+b. We can unify s and t by the substitu-
tion σ given by X := lambda(x, x + b) and w := a. If type(0, Ap(i(0, 0), 0)) and
type(0, +(0, 0)) then these are correctly typed terms and the types of sσ and a+b
are both 0. It may be that Ap also has a type specification type(Prop, Ap(i(0, P rop), 0)),
used when the first argument of Ap defines a propositional function. However,
this additional type specification will not lead to mis-typed unifications, since
the two type specifications of Ap are coherent.
Proof. We proceed by induction on the length of the computation by lambda
unification of the substitution σ.

(i) Suppose s is a term f(r, q) (or with more arguments to f), and either
f is not Ap, or r is neither a variable nor a lambda term. Then t also as the
form f(R, Q) for some R and Q, and σ is the result of unifying r with R to
get rτ = Rτ and then unifying qτ with Qτ , producing substitution ρ so that
σ = τ ◦ ρ. By the induction hypothesis, rτ is correctly typed and gets the same
type as r and Rτ ; again by the induction hypothesis, qτρ and Qτρ are correctly
typed and get the same type as q. Then sσ = f(rσ, qσ) = f(rτρ, qτρ) is also
correctly typed.
5 Intuitively, this says that if z has type X and t has type Y then lambda(z, t) has

type i(X,Y), the type of functions from X to Y .
16

XIII

(ii) The argument in (i) also applies if s is Ap(r, q) and t is Ap(R, Q) and
lambda unification succeeds by unifying these terms as if they were first-order
terms.

(iii) If s is a constant then sσ is s and there is nothing to prove.
(iv) If s is a variable, what must be proved is that t and s have the same value

type. A variable must occur as an argument of some term (or atom) and hence
the situation really is that we are unifying P (s, . . .) with some term q, where P
is either a function symbol or a predicate symbol. If P is not Ap, then q must
have the form P (t, . . .), and t and s occur in corresponding argument positions
(not necessarily the first as shown). Since these terms or atoms P (t, . . .) and
P (s, . . .) are correctly typed, and S is coherent, t and s do have the same types.
The case when P is Ap will be treated below.

(v) Suppose s is Ap(r, q), where r = lambda(z, p), and z does occur in p.
Then s beta-reduces to p[z := q], and lambda unification is called recursively to
unify p[z := q] with t. By induction hypothesis, t, tσ, p[z := q], and p[z := q]σ are
well-typed and are assigned the same value type, which must be the value type,
say V , of p. Since S is coherent, the type assigned to lambda(z, p) is i(U, V),
where U is the “ground type”, the type of the second arg of Ap. The type of q is
U since q occurs as the second arg of Ap in the well-typed term s. The type of
s, which is Ap(r, q), is V . We must show that sσ is well-typed and assigned the
value type V . Now sσ is Ap(rσ, qσ). It suffices to show that qσ has type U and
rσ has type i(U, V). We first show that the type of qσ is U . Since z has type
U in lambda(z, p), qσ occurs in the same argument positions in p[z := q]σ as z
does in p, and since z does occur at least once in p, and p[z := q]σ is well-typed,
qσ must have the same type as z, namely U . Next we will show that rσ has
type i(U, V). We have rσ = lambda(z, p)σ = lambda(z, pσ) (since the bound
variable z is not in the domain of σ). We have pσ[z := qσ] = p[z := q]σ] and the
type of the latter term is V as shown above. The type of A[z := B] is the type
of A, and moreover A[z := B] is well-typed provided A and B are well-typed
and z gets the same type as B. That observation applies here with A = pσ and
B = qσ, since the type of z is U and the type of qσ is U . Therefore the type
of pσ is the same as the type of pσ[z := qσ], which is the same as p[z := q]σ,
which has type the same as p[z := q], which we showed above to be V . Since
rσ = lambda(z, pσ), and z has type U , rσ has type i(U, V), which was what had
to be proved.

(vi) There are two cases not yet treated: when s is Ap(X, w), and when
s is a variable X occurring in the context Ap(X, w). We will treat these cases
simultaneously. As described in the previous section, the algorithm will (1) select
a masking subterm qσ of tσ (2) unify w and q with result σ (failing if this fails),
(3) create a new variable z, and substitute z for some or all occurrences of qσ
in tσ, obtaining r, and (4) produce the unifying substitution σ together with
X := lambda(z, r).

Assume that t is a correctly typed term. Then every occurrence of q in t
has the same type, by the definition of correctly typed. Since by hypothesis
this is type-safe lambda unification, q and w have the same type, call it U .

17

XIV

Since q unifies with w, by the induction hypothesis qσ and wσ are correctly
typed and get the same types as q and w, respectively, namely U . If Ap(X, w)
has type Prop, then the type of s and that of t are the same by hypothesis.
Otherwise, both occur as arguments of some function or predicate symbol P , in
corresponding argument positions, and hence, by the coherence of S, they are
assigned the same (value) type V . Then X has the type i(U, V). We now assign
the fresh variable z the type U ; then r is also correctly typed, and gets the same
type V as s and t, since it is obtained by substituting z for some occurrences
of qσ in tσ. For this last conclusion we need to use the fact that q is a proper
subterm of t, by the definition of type-safe unification; hence r is not a variable,
so the value type of r is well-defined, since S is coherent. Since S is coherent,
there is a type specification in S of the form type(i(U, V), lambda(U, V)). Thus
the term lambda(z, r) can be correctly typed with type i(U, V), the same type
as X. Hence Xσ has the same type as X, and sσ has the same type as s. That
completes the proof of the theorem.

Theorem 4 (Implicit Typing for Lambda Logic). Let A be a set of clauses,
and let S be a coherent set of type specifications such that each clause in A
is correctly typable with respect to S. Then all conclusions derived from A by
binary resolution, hyperresolution, factoring, paramodulation, and demodulation
(including beta-reduction), using type-safe lambda unification in these rules of
inference, are correctly typable with respect to S, provided paramodulation from or
into variables are not allowed, and paramodulation into or from terms Ap(X, w)
with X a variable is not allowed, and demodulators similarly are not allowed to
have variables or Ap(X, w) terms on the left.

Remark. The second restriction on paramodulation is necessary, as shown by the
following example. Suppose Ap has a type specification type(Prop, Ap(i, 0, P rop), 0)).
Without the restriction, we could paramodulate from x + 0 = x into Ap(X, x),
unifying x+0 with Ap(X, x) as in the example after Theorem 3, with the substi-
tution X := lambda(x, x + 0). The conclusion of the paramodulation inference
would be x. That is a mistyped conclusion, since x does not have the type Prop,
although Ap does have value type Prop.
Proof. Note that a typing assigns type symbols to variables, and the scope of a
variable is the clause in which it occurs, so as usual with resolution, we assume
that all the variables are renamed, or indexed with clause numbers, or otherwise
made distinct, so that the same variable cannot occur in different clauses. In
that case the originally separate correct typings T [i] (each obtained from S by
assigning values to varaibles in clause C[i]) can be combined (by union of their
graphs) into a single typing T . We claim that the set of clauses A is correctly
typed with respect to this typing T . To prove this correctness we need to prove:

(i)each occurrence of a variable in A is assigned the same type by T . This fol-
lows from the correctness of C[i], since because the variables have been renamed,
all occurrences of any given variable are contained in a single clause C[i].

(ii) If r is f(u, v), and r occurs in A, and f(u, v),u, and v are assigned types
a,b,c respectively, then there is a type specification in S of the form type(a, f(b, c)).

18

XV

If the term r occurs in A, then r occurs in some C[i], so by the correctness of
T [i], there is a type specification in S as required.

(iii) each occurrence of each term r that occurs in A has the same value type.
This follows from the coherence of S. The different typings T [i] are not allowed
to assign different value types to the same symbol and arity.

Hence A is correctly typed with respect to T .
All references to correct typing in the rest of the proof refer to the typing T .
We prove by induction on the length of proofs that all proofs from A using

the specified rules of inference lead to correctly typed conclusions. The base
case of the induction is just the hypothesis that A is correctly typable. For the
induction step, we take the rules of inference one at a time. We begin with binary
resolution. Suppose the two clauses being resolved are P |Q and −R|B, where
substitution σ is produced by lambda unification and satisfies Pσ = Rσ. Here
Q and B can stand for lists of more than one literal, in other words the rest of
the literals in the clause, and the fact that we have shown P and −R as the first
literals in the clause is for notational convenience only. By hypothesis, P |Q is
correctly typed with respect to S, and so is −R|B, and by Theorem 3, Pσ|Qσ
and −Rσ|Bσ are also correctly typed. The result of the inference is Qσ|Bσ.
But the union of correctly typed terms, literals, or sets of literals (with respect
to a coherent set of type specifications) is again correctly typed, by the same
argument as in the first part of the proof. In other words, coherence implies that
if some subterm r occurs in both Qσ and in Bσ then r gets the same value
type in both occurrences. That completes the induction step when the rule of
inference is binary resolution.

Hyperresolution and negative hyperresolution can be “simulated” by a se-
quence of binary resolutions, so the case in which the rule of inference is hyper-
resolution or negative hyperresolution reduces to the case of binary resolution.
The rule of “factoring” permits the derivation of a new clause by unifying two
literals in the same clause that have the same sign, and applying the resulting
substitution to the entire clause. By Theorem 3, a clause derived in this way is
well-typed if its premise is well-typed.

Now consider paramodulation. In that case we have already deduced t = q
and P [z := r], and unification of t and r produces a substitution σ such that tσ =
rσ. The conclusion of the rule is P [z := qσ]. We have disallowed paramodulation
from or into variables in the statement of the theorem; therefore t and r are not
variables. Let us write Type(t) for the value type of (any term) t. Because t = q
is correctly typed, we have Type(t) = Type(q). If neither t nor q is an Ap term,
then Type(tσ) = Type(qσ), since they have the same functor. If one of them
is an Ap term, then by hypothesis it is not of the form Ap(X, w), with X a
variable. Then by Theorem 3, Type(tσ) = Type(t) and Type(qσ) = Type(q) =
Type(t) = Type(tσ). Thus in any case Type(qσ) = Type(tσ). The value type of
r is the same at every occurrence, since P [z := r] is correctly typed. To show
that P [z := qσ] is correctly typed, it suffices to show that Type(qσ) = Type(r),
which is the same as the type of rσ. Since the terms t and r unify, and neither
is a variable, their main symbols are the same, since by hypothesis r is not of

19

XVI

the form Ap(X, w). Hence Type(r) = Type(rσ) = Type(tσ) = Type(qσ), which
is what had to be shown.

Now consider demodulation. In this case we have already deduced t = q and
P [z := tσ] and we conclude P [z := qσ], where the substitution σ is produced
by lambda unification of t with some subterm ρ of P [z := ρ]. Taking r = tσ, we
see that demodulation is a special case of paramodulation, so we have already
proved what is required. That completes the proof of the theorem.

Example: fixed points. The fixed point argument which shows that the group
axioms are contradictory in lambda logic requires a term Ap(f, Ap(x, x)). The
part of this that is problematic is Ap(x, x). If the type specification for Ap is
type(V, Ap(i(U, V), U)), then for Ap(x, x) to be correctly typed, we must have
V = U = i(U, U). If U and V are type symbols, this can never happen, so the
fixed point construction cannot be correctly typed. It follows from the theorem
above that this argument cannot be found by Otter-λ from a correctly typed
input file. In particular, in lagrange3.in we have correctly typed axioms, so we
will not get a contradiction from a fixed point argument.

On the other hand, in file lambda4.in, we show that Otter-λ can verify the
fixed-point construction. The input file contains the negated goal

Ap(c, Ap(lambda(x, Ap(c, Ap(x, x))), lambda(x,Ap(c, Ap(x,x)))))
$= Ap(lambda(x, Ap(c, Ap(x, x))), lambda(x, Ap(c,Ap(x, x)))).

Since this contains the term Ap(x, x), it cannot be correctly typed with respect
to any coherent list of type specifications T . Otter-λ does find a proof using
this input file, which is consistent with our argument above that fixed-point
constructions will not occur in proofs from correctly typable input files. The fact
that the input file cannot be correctly typed, which we just observed directly,
can also be seen as a corollary of the theorem, since Otter-λ finds a proof. The
fact that the theoretical result agrees with the results of running the program is
a good thing.

Remarks. (1) The (unrelativized) axioms of group theory are contradictory
in lambda logic, but if we put in only correctly-typed axioms, Otter-λ will find
only correctly typed proofs, which will be valid in the finite type structure based
on any group, and hence will not be proofs of a contradiction.

(2) We already knew that resolution plus factoring plus paramodulation from
non-variables is not refutation-complete, even for first-order logic; and we re-
marked when pointing that out that this permits typed models of some theories
that are inconsistent when every object must have the same type. Here is another
illustration of that phenomenon in the context of lambda logic.

(3) Of course Otter-lambda can find the fixed-point proof that gives the
contradiction; but to make it do so, we need to put in some non-well-typed
axiom, such as the negation of the fixed-point equation.

20

XVII

5 Enforcing type-safety

The theorems above are formulated in the abstract, rather than being theorems
about a particular implementation of a particular theorem-prover. As a practical
matter, we wish to formulate a theorem that does apply to Otter-λ and covers
the examples posted on the Otter-λ website, some of which have been mentioned
here. Otter-λ never uses paramodulation into or from variables, so that hypoth-
esis of the above theorems is always satisfied. But Otter-λ does not always use
only type-safe lambda unification; nor would we want it to do so, since it can find
some untyped proofs of interest, e.g. fixed points, Russell’s paradox, etc. Once
Otter-λ finds a correctly typable proof, we can check by hand (and could easily
check by machine) that it is correctly typable. Nevertheless it is of interest to be
able to set a flag in the input file that enforces type-safe unification. In Otter-λ,
if you put set(types) in the input file, then only certain lambda unifications
will be performed, and those unifications will always be type-safe.

Spefically, restricted lambda unification means that, when selecting a masking
subterm, only a second argument of Ap or a constant will be chosen. This is the
restriction imposed by the flag set(types). We now prove that this enforces
type safety under certain conditions.

Theorem 5 (Type safety of restricted lambda unification). Suppose that
a given set of axioms admits a coherent type specification in which there is no typ-
ing of the form Ap(U, U), and all constants receive type U . Then all deductions
from the given axioms by binary resolution, factoring, hyperresolution, demodu-
lation (including beta-reduction) paramodulation (except into or from variables
and Ap terms), lead to correctly typable conclusions, provided that restricted
lambda unification is used in those rules of inference.

Proof. It suffices to show that lambda unifications will be type-safe under these
hypotheses. The unification of Ap(x, w) with t is type-safe (by definition) if
in step (1) of the definition of lambda unification, the masking subterm q of
t has the same type as w. Now q is either a constant or term containing x
that appears as a second argument of Ap, since those are the “restrictions” in
restricted lambda unification. If q is a variable then it must be x, and must
occur as a second argument of Ap; but x occurs as a first argument of Ap, and
all second arguments of Ap get the same type, so there must be a typing of
the form type(T, Ap(U, U)). But such a typing is not allowed, by hypothesis.
Therefore q is not a variable. Then if q contains x, it must occur as a second
argument of Ap, as does w; hence by hypothesis w and q get the same type.
Hence we may assume q is a constant. But by hypothesis, all constants get the
same type as the second arguments of Ap. That completes the proof.

6 Some examples covered by Theorem 5

It remains to substantiate the claims made in the abstract and introduction,
that the theorems in this paper justify the use of implicit typing in Otter-λ for

21

XVIII

the various examples mentioned. The first theorems apply in generality to any
partial implementation of non-deterministic lambda unification, used in com-
bination with resolution and paramodulation, but disallowing paramodulation
into and from variables. Only Theorem 5 applies to Otter-lambda specifically,
when the set(types) command is in the input file. We will now check explicitly
that interesting examples are covered by this theorem.

Let us start with the “no nilpotents” example. It appears prima facie not to
meet the hypotheses of Theorem 5, since that theorem requires that all constants
have the same type as the second argument of Ap. In this example the type of Ap
is the one needed for mathematical induction: type(Prop, Ap(i(N, Prop), N)), so
the type of the second arg of Ap is N ; but the axioms include a constant o for
the zero of the ring. This is not a serious problem: we can simply replace o
in the axioms by zero(0), where zero is a new function symbol with the type
specification type(R, zero(N)). (The name zero is immaterial; this is just some
function symbol.) The term zero(0) is not a constant, so it won’t be selected as
a masking term (where it would interfere with the proof of Theorem 5). But it
will be treated essentially as a constant elsewhere in the inference process; and if
we were worried about that, we could use a weight template to ensure that it has
the same weight as a constant and hence will be treated exactly as a constant.
On the logical side we have the following lemma to justify the claim:

Lemma 1. Let T be a theory with at least one constant c. Let T ∗ be obtained
from T by adding a new function symbol f , but no new axioms. Then (i) T ∗ plus
the axioms c = f(x) is conservative over T .

(ii) If T contains another constant b and we let Ao be the result of replacing
c by f(b) in A, then T proves A if and only if T ∗ proves Ao.

(iii) There is an algorithm for transforming any proof of Ao in T ∗ to a proof
of A in T .

Proof. (i) Every model of T can be expanded to a model of T ∗ plus c = f(x)
by interpreting f as the constant function whose value is the interpretation of c.
The completeness theorem then yields the stated conservative extension result.

(ii) Ao is equivalent to A in T ∗ plus c = f(x), so by (i), Ao is provable in T ∗

plus c = f(x) if and only if T proves A. In particular, if T ∗ proves Ao then T
proves A. Conversely, if T proves A and we just replace c with f(b) in the proof,
we get a proof of Ao in T ∗.

(iii) The algorithm is fairly obvious: simply replace every term f(t) in the
proof with c. (Not just terms f(b) but any term with functor f is replaced by c.)
Terms that unify before this replacement will still unify after the replacement,
so resolution proof steps will remain valid. The axioms of T ∗ plus c = f(x) are
converted to axioms of T plus c = c. Paramodulation steps remain paramod-
ulation steps and demodulations remain demodulations. Since no variables are
introduced, paramodulations that were not from or into variables are still not
from or into variables. That completes the proof of the lemma.

This lemma shows us that logically, the formulation of the no-nilpotents prob-
lem with zero(0) for the ring zero is equivalent to the original formulation with

22

XIX

a constant o for the ring zero; and Theorem 5 directly applies to the formulation
with o(0). In practice, if we run Otter-lambda with o replaced by zero(0) in
the input file, we find the same proof as before, but with o replaced by zero(0).
In essence this amounts to the observation that o was never used as a masking
term in lambda unification in the original proof. Technically we should run the
input file with zero(0) first. Theorem 5 guarantees that if we find a proof, it will
be well-typed. The lemma guarantees that we can convert it into a proof of the
original formulation using a text editor to replace all terms with functor zero
by the original constant o.

Remark. Of course there is little difference between 0 and zero(0), and of
course we could allow the user of Otter-lambda to specify which constants have
“ground type” and which do not, and only use constants of “ground type” in
lambda-unification. In effect that is what this theorem allows us to do, without
checking the types of constants at run time: just rename all the “non-ground”
constants by wrapping them in one extra function symbol.

We conclude with another example. Bernoulli’s inequality is

(1 + nx) < (1 + x)n if x > −1 and n > 0 is an integer.

Otter-lambda, in a version that calls on MathXpert [2] for “external simplifica-
tion”, is able to prove this inequality by induction on n, being given only the
clausal form of Peano’s induction axiom, with a variable for the induction pred-
icate. The interest of the example in the present context is the fact that three
types are involved: real numbers, positive integers, and propositions. The propo-
sitional functions all have N , the non-negative integers, for the ground type, but
the types are not disjoint: N is a subset of the reals R. Moreover, the left-hand
side of the inequality uses n in multiplication, so if multiplication is typed to
take two real arguments, the inequality as it stands will not be well-typed.

The solution is to introduce a symbol for an injection map i : N → R. The
inequality then becomes

(i(1) + i(n)x) < (i(1) + x)n

This formulation is well-typed, if we type i as a function from N to R. Again, in
the definition of exponentiation we have to use 0 for the natural number zero,
and zero(0) for the real number zero, so that all the constants will have type N .
If that is done, Theorem 5 applies, and we can be assured that the inference steps
performed by Otter-lambda proper will lead from well-typed formulas to well-
typed formulas. However, the theorem does not cover the external simplification
steps performed by MathXpert. To ensure that these do not lead to mis-typed
conclusions, we have to discard any results containing a minus sign or division
sign, as that might lead out of the domain of integers. Problems involving em-
bedded subtypes also arise even in typed theorem provers or proof checkers, so
it is interesting that those problems are easily solved in lambda logic. The inter-
ested reader can find the input and output files for this and other examples on
the Otter-lambda website.

23

XX

References

1. Beeson, M., Lambda Logic, in Basin, David; Rusinowitch, Michael (eds.) Automated
Reasoning: Second International Joint Conference, IJCAR 2004, Cork, Ireland, July
4-8, 2004, Proceedings. Lecture Notes in Artificial Intelligence 3097, pp. 460-474,
Springer (2004).

2. MathXpert Calculus Assistant, software available from (and described at)
www.HelpWithMath.com.

3. McCune, W., Otter 3.0 Reference Manual and Guide, Argonne National Laboratory
Tech. Report ANL-94/6, 1994.

4. Wick, C., and McCune, W., Automated reasoning about elementary point-set topol-
ogy, J. Automated Reasoning 5(2) 239–255, 1989.

24

System Description: Leo – A Resolution based

Higher-Order Theorem Prover

Christoph Benzmüller

Fachbereich Informatik, Universität des Saarlandes
66041 Saarbrücken, Germany (www.ags.uni-sb.de/~chris)

Abstract. We present Leo, a resolution based theorem prover for clas-
sical higher-order logic. It can be employed as both an fully automated
theorem prover and an interactive theorem prover. Leo has been im-
plemented as part of the Ωmega environment [23] and has been inte-
grated with the Ωmega proof assistant. Higher-order resolution proofs
developed with Leo can be displayed and communicated to the user via
Ωmega’s graphical user interface Loui. The Leo system has recently
been successfully coupled with a first-order resolution theorem prover
(Bliksem).

1 Introduction

Many of today’s proof assistants such as Isabelle [22, 20], Pvs [21], Hol [12],
Hol-Light [13], and Tps [2, 3] employ classical higher-order logic (also known as
Church’s simple type theory) as representation and reasoning framework. One
important motivation for the development of automated higher-order proof tools
thus is to relieve the user of tedious interactions within these proof assistants by
automating less ambitious (sub)problems.

In this paper we present Leo, an automated resolution based theorem prover
for classical higher-order logic. Leo is based on extensional higher-order reso-
lution which, extending Huet’s constrained resolution [14, 15], proposes a goal
directed, rule based solution for extensionality reasoning [6, 4, 5]. The main mo-
tivation for Leo is to serve as an automated subsystem in the mathematics
assistance system Ωmega [23]. Additionally, Leo was intended to serve as a
standalone automated higher-order resolution prover and to support the illus-
tration and tutoring of extensional higher-order resolution. A previous system
description of Leo has been published in [7]. Novel in this system description is
the section on Leo’s interaction facilities and its graphical user interface. We also
provide more details on Leo’s automation and point to some recent extensions.

This system description is structured as follows: In Sections 2 and 3 we briefly
address Leo’s connection with Ωmega and Leo’s calculus. Section 4 presents
the interactive theorem prover Leo and Section 5 the automated theorem prover
Leo. In Section 6 we illustrate how Leo’s resolution proofs can be inspected
with Ωmega’s graphical user interface Loui. Some experiments with Leo are
mentioned in Section 7 and Section 8 concludes the paper.

25

2 Leo is a Subsystem of Ωmega

Leo has been realized as a part of the Ωmega framework. This framework (and
thus also Leo) is implemented in Clos [25], an object-oriented extension of Lisp.
Leo is mainly dependent on Ωmega’s term datastructure package Keim. The
Keim package provides many useful data structures (e.g., higher-order terms,
literals, clauses, and substitutions) and basic algorithms (e.g., application of
substitution, subterm replacement, copying, and renaming). Thus, the usage
of Keim allows for a rather quick implementation of new higher or first-order
theorem proving systems. In addition to the code provided by the Keim-package,
Leo consists of approximately 7000 lines of Lisp code.

Amongst the benefits of the realization of Leo within the Ωmega framework
are:

– Employing Keim supported a quick implementation of Leo. Important in-
frastructure could be directly reused or had to be only slightly adapted or
extended.

– An integration of Leo with the proof assistant and proof planner Ωmega

was easily possible.
– Leo can easily be combined with other external systems already integrated

with Ωmega. Combinations of reasoning systems are particularly well sup-
ported in Ωmega with the help of the agent based reasoning framework
Oants [8].

– Leo may retrieve and store theorems and definitions via Ωmega from Mbase,
which is a structured repository of mathematical knowledge.

– Leo employs Ωmega’s input language Post.

There are also drawbacks of Leo’s realization as a part of Ωmega:

– Leo’s latest version is only available in combination with the Ωmega pack-
age. Installation of Ωmega, however, is very complicated. Consequently,
there is a conflict with the objective of providing a lean standalone theorem
prover.

– The Keim datastructures are neither very efficient nor are they optimized
or easily optimizable with respect to Leo.

Ωmega and with it Leo can be download from http://www.ags.uni-sb.de/˜omega.

3 Leo Implements Extensional Higher-Order Resolution

Leo is based on a calculus for extensional higher-order resolution. This calculus
is described in [6, 4] and more recently in [5].

Extensionality treatment in this calculus is based on goal directed extension-
ality rules which closely connect the overall refutation search with unification
by allowing for mutually recursive calls. This suitably extends the higher-order
E-unification and E-resolution idea, as it turns the unification mechanism into
a most general, dynamic theory unification mechanism. Unification may now

26

itself employ a Henkin complete higher-order theorem prover as a subordinated
reasoning system and the theory under consideration (which is defined by the
sum of all clauses in the actual search space) dynamically changes.

In order to illustrate Leo’s extensional higher-order resolution approach we
discuss the TPTP (v3.0.1 as of 20 January 2005, see http://www.tptp.org) exam-
ple SET171+3. This problem addresses distributivity of union over intersection1

∀Aoα, Boα, Coα A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

In a higher-order context we can define the relevant set operations as follows

∪ := λYoα, Zoα (λxα x ∈ Y ∨ x ∈ Z)

∩ := λYoα, Zoα (λxα x ∈ Y ∧ x ∈ Z)

∈:= λZα, Xoα (X Z)

After recursively expanding the definitions in the input problem, i.e., com-
pletely reducing it to first principles, Leo turns it into a negated unit clause. Un-
like in standard first-order resolution, clause normalization is not a pre-process
in Leo but part of the calculus. Internalized clause normalization is an impor-
tant aspect of extensional higher-order resolution in order to support the (recur-
sive) calls from higher-order unification to the higher-order reasoning process.
Thus, Leo internally provides rules to deal with non-normal form clauses and
this is why it is sufficient to first turn the input problem into a single, usually
non-normal, negated unit clause. Then Leo’s internalized clause normalization
process can take care of subsequent normalization.

In our concrete case, this normalization process leads to the following unit
clause consisting of a (syntactically not solvable) unification constraint (here
Boα, Coα, Doα are Skolem constants and Bx is obtained from expansion of x ∈
B):

[(λxα Bx ∨ (Cx ∧ Dx)) =? (λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))]

Note that negated primitive equations are generally automatically converted
by Leo into unification constraints. This is why [(λxα Bx ∨ (Cx ∧ Dx)) =?

(λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))] is generated, and not [(λxα Bx ∨ (Cx ∧ Dx)) =
(λxα (Bx∨Cx)∧ (Bx∨Dx))]F . Observe that we write [.]T and [.]F for positive
and negative literals, respectively. This unification constraint has no ’syntactic’
pre-unifier. It is solvable ’semantically’ though with the help of the extensionality

1 We use Church’s notation oι, which stands for the functional type ι → o. The reader
is referred to [1] for a more detailed introduction. In the remainder, o will denote the
type of truth values and ι defines the type of individuals. Other small Greek letters
will denote arbitrary types. Thus, Xoα (resp. its η-long form λyα Xy) is actually a
characteristic function denoting the set of elements of type α for which the predicate
associated with X holds. We use the square dot ‘ ’ as an abbreviation for a pair of
brackets, where ‘ ’ stands for the left one with its partner as far to the right as is
consistent with the bracketing already present in the formula.

27

principles. Thus, Leo applies its goal directed functional and Boolean extension-
ality rules which replace this unification constraint (in an intermediate step) by
the negative literal (where x is a Skolem constant):

[(Bx ∨ (Cx ∧ Dx)) ⇔ ((Bx ∨ Cx) ∧ (Bx ∨ Dx))]F

This intermediate unit clause is not in normal form and subsequent normalization
generates 12 clauses including the following four:

[Bx]F [Bx]T ∨ [Cx]T [Bx]T ∨ [Dx]T [Cx]F ∨ [Dx]F

This set is essentially of propositional logic character and trivially refutable by
Leo. For the complete proof of the problem Leo needs less than one second (on
a notebook with an Intel Pentium M processor 1.60GHz and 2 MB cache) and
a total of 36 clauses is generated.

4 Leo is an Interactive Theorem Prover

Leo is an interactive theorem prover based on extensional higher-order resolu-
tion. The motivation for this is twofold. Firstly, the provided interaction features
support interaction with the automation of this calculus. For this an automated
proof attempt may be interrupted at any time and the system developer can
then employ the interaction facilities to investigate the proof state and to per-
form some steps by hand. He may then again proceed with the automated proof
search. Secondly, the interaction facilities can be employed for tutoring higher-
order resolution in the classroom and they have in fact been employed for this
purpose.

We illustrate below an interactive session with Leo within the Ωmega sys-
tem. For this we assume that the Ωmega system has already been started.
Interaction within Ωmega is supported in two ways. We may use the graphical
user interface Loui, or Ωmega’s older Emacs based command line interface.
Both interfaces can be started and used simultaneously. In this section we de-
scribe interaction only within the Emacs based interface. All commands could
alternatively also be invoked via Loui.

After starting Ωmega we are offered the following command line prompt in
the Emacs interface:

OMEGA:

We assume that we have added the following problem, formalized in Post,
to Ωmega’s structured knowledge bass.

∃Qo(oι)(oι) poo((aoιmι) ∧ ((boιmι) ∨ (coιmι))) ⇒ poo((aoιmι) ∧ (Qo(oι)(oι)coιboι))

The Post representation of this problem is

28

(th~defproblem little
(in base)
(constants (p (o o)) (a (o i)) (b (o i)) (c (o i)) (m i))
(conclusion
(EXISTS (lam (Q (o (o i) (o i)))

(IMPLIES (p (AND (a m) (OR (b m) (c m))))
(p (AND (a m) (Q c b))))))))

All problems have names and the name chosen for our problem is little. The
in-slot in this problem definition specifies Mbase theories from which further
knowledge, e.g., definitions and lemmata, is inherited. Examples of some Mbase

theories are typed-set, relation, function, and group. Our very simple
example problem is defined in the knowledge repository for theory base, and no
further information is included. The assertion we want to prove is specified in the
conclusion-slot and the typed constant symbols which occur in the assertion
are declared in the constants-slot.

We now load all problems defined in theory base and then call the Ωmega

command show-problems to display the names of all problems. ’[...]’ indicates
that some less interesting output information from Leo has been deleted here
for presentation purposes.

OMEGA: load-theory-problems base
[...]

OMEGA: show-problems
[...]
EMBEDDED
little
less-little
TEST
[...]

Next we initialize the Ωmega proof assistant with the proof problem little
and display Ωmega’s central proof object after initialization.

OMEGA: prove little
Changing to proof plan LITTLE-1

OMEGA: show-pds
...

LITTLE () ! (EXISTS [Q:(O (O I) (O I))] OPEN
(IMPLIES
(P (AND (A M) (OR (B M) (C M))))
(P (AND (A M) (Q C B)))))

OMEGA:

Then we initialize Leo with this problem. Here we choose the default set-
tings (suggested in the ’[]’-brackets) as input parameters for Leo. Each tactic
(here EXT-INPUT-RECURSIVE) determines a specific flag setting of Leo. This flag
setting is displayed after initialization.

OMEGA: leo-initialize
NODE (NDLINE) Node to prove with LEO: [LITTLE]
TACTIC (STRING) The tactic to be used by LEO: [EXT-INPUT-RECURSIVE]
THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be expanded: [()]
Expanding the Definitions....
Initializing LEO....

29

Applying Clause Normalization....
============== variable settings ================

Value(LEO*F-FO-ATP-RESOURCE) = 0
Value(LEO*F-COOPERATE-WITH-FO-ATP) = NIL
Value(LEO*F-TACTIC) = EXT-INPUT-RECURSIVE
Value(LEO*F-VERBOSE-HALF) = NIL
Value(LEO*F-VERBOSE) = NIL
Value(LEO*F-WEIGHT-AGE-INT) = 4
Value(LEO*F-SOS-TYPE) = TOSET
Value(LEO*F-USABLE-TYPE) = INDEX
Value(LEO*F-CLAUSE-LENGTH-RESTRICTION) = NIL
Value(LEO*F-SAVE-FO-CLAUSES) = T
Value(LEO*F-SUBSUM-MATCH-RESSOURCE) = NIL
Value(LEO*F-SOS-SUBSUMTION) = NIL
Value(LEO*F-BACKWARD-SUBSUMTION) = T
Value(LEO*F-FORWARD-SUBSUMTION) = T
Value(LEO*F-PARAMODULATION) = NIL
Value(LEO*F-REMOVE=EQUIV-NEG) = NIL
Value(LEO*F-REMOVE=EQUIV-POS) = NIL
Value(LEO*F-REMOVE=LEIBNIZ-NEG) = NIL
Value(LEO*F-REMOVE=LEIBNIZ-POS) = NIL
Value(LEO*F-EXT-DECOMPOSE-ONLY) = T
Value(LEO*F-EXT-UNICONSTRCLS-ONLY) = NIL
Value(LEO*F-EXTENSIONALITY-NUM) = 6
Value(LEO*F-EXT-INPUT-TREATMENT-RECURSIVE) = T
Value(LEO*F-EXT-INPUT-TREATMENT) = NIL
Value(LEO*F-EXTENSIONALITY) = T
Value(LEO*F-NO-FLEX-UNI) = NIL
Value(LEO*F-UNI-RESSOURCE) = 5
Value(LEO*F-PRIM-SUBST-TYPES) = NIL
Value(LEO*F-PRIMITIVE-SUBSTITUTION) = T
Value(LEO*F-FACTORIZE) = T
Value(LEO*F-AUTO-PROOF) = NIL
Value(LEO*F-MAIN-COUNTER) = 0

=========== end variable settings =============

OMEGA:

During initialization Leo first recursively expands defined symbols occurring
in the assumptions or the assertion with respect to the specified theories (here
we have none). Then it negates the assertion, turns it into a negated unit input
clause and subsequently normalizes it with its internalized normalization rules.
The resulting clauses are put either into Leo’s set of support (if they stem from
the assertion) or the usable set (if they stem from assumptions; here we have
none). Leo clauses have unique names starting with cl and followed by an au-
tomatically created number. In ’()’-brackets further clause specific information
follows and the ’{ }’-brackets contain the clause literals. Negative literals have
a leading - and positive literals a leading +. Type information is usually not
displayed. All symbols starting with dc are free variables.

OMEGA: show-clauses
================= BEGIN ===============================

The set of support
cl3(1.5|1):{(-(p (and (a m) (dc2 c b))))}
cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}

The set of usable clauses
================= END =================================

Leo offers a list of commands, for instance, to apply calculus rules, to ma-
nipulate and maintain the proof state, or to display information.

30

OMEGA: show-commands leo-interactive
[...]
DECOMPOSE: Applies decomposition on a clause.
DELETE-CLAUSE: Deletes a clause from the current environment.
END-REPORT: Closes the report stream.
EXECUTE-LOG: Reads a log file stepwise and eventuelly stores

some of its commands in a new log file.
EXIT: Leave the current command interpreter top level.
EXT: Applies extensionality rule on a clause.
[...]
FACTORIZE: Applies factorization rule on a clause.
[...]
GUI-PROOF: Displays the LEO proof of node in the GUI.
[...]
LEO-PROVE: Prove with default parameter-settings.
NEW-LOG: Sets the log mode and the log file name to the

given path name.
PARA: Applies paramodulation rule on two clauses.
PRE-UNIFIERS: Computes the pre-unifiers of a clause.
PRE-UNIFY: Applies pre-unification on a clause.
PRIM-SUBST: Applies primitive substitution rule on a clause.
[...]
READ-LEO-PROBLEM: Read a file, which contains a POST

representation of a problem, and transforms this
problem into clause normal form.

[...]
RESOLVE: Applies resolution rule on two clauses.
SAVE-CLAUSE: Save a clause for use after termination of LEO

under its clausename.
[...]
SET-FLAG: Sets a global flag
SET-TACTIC: Sets the tactic.
SHOW-CLAUSE: Displays a clause, determined by name.
SHOW-CLAUSES: Displays the two clause sets: the set of support

(LEO*G-SOS) and the set of usable clauses
(LEO*G-USABLE).

[...]
PROJECT: Applies projection rule on a clause.
SHOW-DERIVATION: Displays a linearized derivation of a the clause.
SHOW-FLAGS: Shows the global flags
SHOW-LEO-PROBLEM: Displays the given problem in POST.
SHOW-LEO-PROOF: Displays the linearized LEO proof
SHOW-TACTICS: Shows the tactics.
SHOW-VARS: Shows the global vars.
START-REPORT: Opens the tex and html report streams.
STEP-LOG: Reads a log file stepwise and eventuelly stores

some of its commands in a new log file.
SUBSUMES: Determines whether a clause subsumes another clause.
[...]
WRITE-DERIVATION: Writes the derivation of a clause in a file.
WRITE-LOUIDERIVATION: Writes the derivation of a clause in LOUI format

in a file.
WRITE-LOUIPROOF: Writes the proof in LOUI format in a file.
WRITE-PROOF: Writes the proof in a file.

OMEGA:

We apply the resolution rule to the clause cl3 and cl4 on literal positions
1 and 1 respectively. This results in the clause cl5 which consists only of a
unification constraint. In this display unification constraints are presented as
negated equations (on the datastructure level they are distinguished from them
as already mentioned in Section 3). Provided that we can solve the unification
constraint cl5, we have found an empty clause and we are done.

OMEGA: resolve

31

NAME1 (STRING) of a clause: cl3
NAME2 (STRING) of a clause: cl4
POSITION1 (INTEGER) in clause 1: 1
POSITION2 (INTEGER) in clause 2: 1
Clause 1: cl3(1.5|1):{(-(p (and (a m) (dc2 c b))))}.
Clause 2: cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}.
Res(CL3[1],CL4[1]):

(cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))
(p (and (a m) (or (b m) (c m))))))}).

OMEGA:

We ask Leo to compute the pre-unifiers for this unification constraint.

OMEGA: pre-unifiers
NAME (STRING) of a clause: cl5
The clause: cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))

(p (and (a m) (or (b m) (c m))))))}.
pre-unifiers: ({(dc37 --> [lam ?h45 ?h46.(or (?h46 m) (?h45 m))])}

{(dc37 --> [lam ?h45 ?h46.(or (?h46 m) (c m))])}
{(dc37 --> [lam ?h45 ?h46.(or (b m) (?h45 m))])}
{(dc37 --> [lam ?h45 ?h46.(or (b m) (c m))])}).

OMEGA:

Pre-unification of clause cl5 first generates these four pre-unifiers and then
subsequently applies them to cl5. Instantiation of different pre-unifiers usually
leads to different result clauses. In our simple case here, however, we obtain four
copies of the empty clause.

OMEGA: pre-unify cl5
The clause: cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))

(p (and (a m) (or (b m) (c m))))))}.
Result: (cl14(0|3):{NIL} cl15(0|3):{NIL} cl16(0|3):{NIL} cl17(0|3):{NIL}).

OMEGA:

We now display the derivation of clause cl14 in the Emacs interface. cl14
is the clause we obtain by application of the first pre-unifier from above. The
employed pre-unifier (see clause cl7) is displayed in non-idempotent form. After
applying pre-unifiers Leo subsequently normalizes the resulting clauses. This is
why we have this superfluous looking normalization step from cl7 to cl14.

OMEGA: show-derivation cl14
================= clauses ==================
=============

Clause cl2 is #<Justified by ((Input))> :
cl2(20|0):{(+(not (exists [lam dc-20735.
(implies (p (and (a m) (or (b m) (c m))))

(p (and (a m) (dc-20735 c b))))])))}
=============

================== proof ===================
Clause cl2 is #<Justified by ((Input))> :
cl2(20|0):{(+(not (exists [lam dc-20735.
(implies (p (and (a m) (or (b m) (c m))))

(p (and (a m) (dc-20735 c b))))])))}
=============

Clause cl3 is #<Justified by ((CNF)) on (cl2)> :
cl3(1.5|1):{(-(p (and (a m) (dc-20738 c b))))}
=============

Clause cl2 is #<Justified by ((Input))> :
cl2(20|0):{(+(not (exists [lam dc-20735.

32

(implies (p (and (a m) (or (b m) (c m))))
(p (and (a m) (dc-20735 c b))))])))}

=============
Clause cl4 is #<Justified by ((CNF)) on (cl2)> :
cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}
=============

Clause cl5 is #<Justified by
((RES 1 1) (RENAMING {(dc2 --> dc37)})) on (cl3 cl4)> :
cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))

(p (and (a m) (or (b m) (c m))))))}
=============

Clause cl7 is #<Justified by
((UNI {(?h113 --> [lam ?h122 ?h123.m])

(?h107 --> [lam ?h120 ?h121.m])
(?h101 --> [lam ?h111 ?h112.(?h111 (?h113 ?h111 ?h112))])
(?h100 --> [lam ?h105 ?h106.(?h106 (?h107 ?h105 ?h106))])
(dc37 --> [lam ?h98 ?h99.(or (?h100 ?h98 ?h99)

(?h101 ?h98 ?h99))])})
(RENAMING {})) on (cl5)> :

cl7(0|2):{NIL}
=============

Clause cl14 is #<Justified by ((CNF)) on (cl7)> :
cl14(0|3):{NIL}
=============

========== clauses in proof: 7 ============

OMEGA:

We now slightly modify our example problem and obtain a much harder one.

∃Qo(oι)(oι) poo((aoιmι) ∧ ((boιmι) ∨ (coιmι))) ⇒ poo((Qo(oι)(oι)coιboι) ∧ (aoιmι))

In Post this problem is represented as

(th~defproblem less-little
(in base)
(constants (p (o o)) (a (o i)) (b (o i)) (c (o i)) (m i))
(conclusion
(EXISTS (lam (Q (o (o i) (o i)))

(IMPLIES (p (AND (a m) (OR (b m) (c m))))
(p (AND (Q c b) (a m))))))))

While problem little can still be solved by simple higher-order to first-order
transformational approaches, this is not easily the case for the modified problem
less-little since extensionality reasoning is required. The syntactic difference
to little, however, is small. We only switched the two inner conjuncts in the
right hand side of the implication. We now first load the problem, then initialize
Leo and then display Leo’s initial proof state.

OMEGA: prove less-little
Changing to proof plan LESS-LITTLE-1

OMEGA: show-pds
...

LESS-LITTLE () ! (EXISTS [Q:(O (O I) (O I))] OPEN
(IMPLIES
(P (AND (A M) (OR (B M) (C M))))
(P (AND (Q C B) (A M)))))

OMEGA: leo-initialize
NODE (NDLINE) Node to prove with LEO: [LESS-LITTLE]
TACTIC (STRING) The tactic to be used by LEO: [EXT-INPUT-RECURSIVE]

33

THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be expanded: [()]
Expanding the Definitions....
[...]

OMEGA: show-clauses
================= BEGIN ===============================

The set of support
cl3(1.5|1):{(-(p (and (dc-304 c b) (a m))))}
cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}

The set of usable clauses
================= END =================================

OMEGA:

Again we resolve between clauses cl3 and cl4.

OMEGA: resolve cl3 cl4 1 1
Clause 1: cl3(1.5|1):{(-(p (and (dc-304 c b) (a m))))}.
Clause 2: cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}.
Res(CL3[1],CL4[1]): (cl5(1|2):{(-(= (p (and (dc1573 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}).

OMEGA:

Now the resulting clause cl5 is not pre-unifiable. Its unification constraint
has no ’syntactic’ solution.

OMEGA: pre-unifiers cl5
The clause: cl5(1|2):{(-(= (p (and (dc1573 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}.
pre-unifiers: NIL.

OMEGA: pre-unify cl5
The clause: cl5(1|2):{(-(= (p (and (dc1573 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}.
Result: NIL.

OMEGA:

However, there is a semantic solution which we find by application of Leo’s
combined extensionality treatment. This first decomposes the unification con-
straint and then applies Boolean extensionality (beforehand it usually tries to
exhaustively apply functional extensionality, which is not applicable here).

OMEGA: decompose cl5
The clause: cl5(1|2):{(-(= (p (and (dc1500 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}.
Decomposed: (cl6(1|3):{(-(= (and (dc1500 c b) (a m))

(and (a m) (or (b m) (c m)))))}).

OMEGA: ext cl6
The clause: cl6(1|3):{(-(= (and (dc1500 c b) (a m))

(and (a m) (or (b m) (c m)))))}
Result: (cl14(4.5|4):{(+(a m) +(dc-4682 c b))}

cl13(6.0|4):{(+(c m) +(b m) +(dc-4681 c b))}
cl12(1.5|4):{(+(a m))}
cl11(4.5|4):{(+(c m) +(b m) +(a m))}
cl10(6.0|4):{(-(b m) -(a m) -(dc-4680 c b))}
cl9(6.0|4):{(-(c m) -(a m) -(dc-4679 c b))}).

OMEGA:

This set of resulting (first-order like) clauses is refutable and Leo can find a
refutation. Unfortunately Leo is very bad at first-order reasoning (since it does

34

not employ optimizations and implementation tricks that are well known in the
first-order community) and therefore the refutation of this clause set is not very
efficient. This motivates a cooperation with first-order provers; see Sections 5
and 7 for further details.

5 Leo is an Automated Theorem Prover

Leo is first and foremost an automated theorem prover for classical higher-order
logic. Within Ωmega it can be applied to prove (sub)problems automatically.
Below we first reinitialize Ωmega with the problem less-little and then call
Leo in its standard flag setting to it.

OMEGA: prove less-little
Changing to proof plan LESS-LITTLE-7

OMEGA: show-pds
...

LESS-LITTLE () ! (EXISTS [Q:(O (O I) (O I))] OPEN
(IMPLIES
(P (AND (A M) (OR (B M) (C M))))
(P (AND (Q C B) (A M)))))

OMEGA: call-leo-on-node
NODE (NDLINE) Node to prove with LEO: [LESS-LITTLE]
TACTIC (STRING) The tactic to be used by LEO: [EXT-INPUT-RECURSIVE]
SUPPORTS (NDLINE-LIST) The support nodes: [()]
TIME-BOUND (INTEGER) Time bound for proof attempt: [100]
THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be
expanded: [(ALL)]
DEFS-LIST (SYMBOL-LIST) Symbols whose definitions will not be
expanded: [(= DEFINED EQUIV)]
INSERT-FLAG (BOOLEAN) A flag indicating whether a partial result will
be automatically inserted.: [()]
Looking for expandable definitions
Initializing LEO....
Applying Clause Normalization....
[...]
Start proving ...
Loop: (100sec left)
#1 (SOS 2 USABLE 0 EXT-QUEUE 0 FO-LIKE 4)

(99sec left)
#2 (SOS 1 USABLE 1 EXT-QUEUE 0 FO-LIKE 4)

[...]
(94sec left)
#29 (SOS 72 USABLE 12 EXT-QUEUE 0 FO-LIKE 98)

(91sec left)
#30 (SOS 111 USABLE 13 EXT-QUEUE 0 FO-LIKE 138)

Total LEO time: 8446
**** proof found (next clause nr: cl599) *****
; cpu time (non-gc) 7,600 msec user, 0 msec system
; cpu time (gc) 750 msec user, 10 msec system
; cpu time (total) 8,350 msec user, 10 msec system
; real time 8,451 msec
; space allocation:
; 8,909,213 cons cells, 3,568 symbols, 122,908,112 other bytes,
; 0 static bytes

OMEGA:

35

Leo’s Architecture and Main Loop

Leo’s basic architecture adapts the set of support approach. The four corner-
stones of Leo’s architecture (see Fig. 1) are:

EXT

Lightest

Resolved

Paramod

Prim−substFactorized

Ext−mod Uni−cont

USABLE

UnifiedProcessed

CONT

SOS
1

2

4
5 6

7

9

9

9

11

13

1
2
3
4
5
6
7
8
9

10
11
12
13

choose lightest from SOS
integrate light. to USABLE

8

12

resolve with USABLE
paramodulate with USABLE
factorize lightest
primitive substitution on lightest
extensionality treatment on EXT
pre−unification on CONT

store continuation object
check if extensionally interesting

3

10

implemented
not yet implemented

integrate Unified into SOS
pre−unification on Processed

Architecture of LEO

process results (tautology deletion)

Fig. 1. Leo’s main architecture (the ’dotted lines’ indicates functionalities which are
usually disabled or not fully available yet)

USABLE The set of all usable clauses, which initially only contains clauses that
are assumed to be satisfiable, i.e., the clauses stemming from the assumptions
of the theorem to prove.

SOS The set of support, which initially only contains the clauses belonging to
the negated assertion.

EXT The set of all extensionally interesting clauses, i.e., heuristically determined
clauses which are stored for extensionality treatment. Initially this set is
empty. See Step 12 of the main loop description below.

CONT The set of all continuations created by the higher-order pre-unification
algorithm when reaching the pre-unification search depth limit. The idea is
to support continuations of interrupted pre-unification attempts at a later
time. (This store is not activated yet in Leo)

36

Leo’s main loop (see Fig. 1) consists of the steps 1–13 as described below
(the Initialize step is applied only at the very beginning of the proof attempt
and is not part of the main loop). This loop, whose data-flow is graphically
illustrated in Figure 1, is executed until an empty clause, i.e., a clause consisting
no literals or only of flex-flex-unification constraints2, is detected.

Leo employs a higher-order subsumption test that is, apart from the tech-
nical details, very similar to the ones employed in first-order provers. Instead of
first-order matching, the criteria for comparing the single literals is higher-order
simplification matching, i.e., matching with respect to the deterministic higher-
order simplification rules. It is theoretically possible to develop and employ a
much stronger subsumption filter in Leo. This is future work. However, a per-
fect extensional higher-order subsumption filter, which would be the ideal case,
is not feasible since extensional higher-order unification is undecidable.

Initialize The specified assumptions and the assertion are pre-clausified, i.e.,
the assumptions become positive unit (pre-)clauses and the assertion be-
comes a negative unit (pre-)clause. Definitions are expanded (with respect
to the specified theories) and the pre-clauses are normalized. Within the
clause normalization process the positive primitive equations are usually re-
placed by respective Leibniz equations. Negative primitive equations are not
expanded but immediately encoded as extensional unification constraints.
Furthermore, identical literals are automatically factorized. The assumption
clauses are passed to USABLE and the assertion clause to SOS.

Step 1 (Choose Lightest) Leo chooses the lightest (wrt. to a clause order-
ing), i.e., topmost, clause from SOS. If this clause is a pre-clause, i.e., not
in proper clause normal form, then Leo applies clause normalization to it
and integrates the resulting proper clauses into SOS. Depending on the flag-
setting forward and/or backward subsumption is applied; see also step 13).

Step 2 (Insert to USABLE) Leo inserts the lightest clause into USABLE while
employing forward and/or backward subsumption depending on LEO’s over-
all flag-setting.

Step 3 (Resolve) The lightest clause is resolved against all clauses in USABLE
and the results are stored in RESOLVED.

Step 4 (Paramodulate) Paramodulation is applied between all clauses in
USABLE and the lightest clause, and the results are stored in PARAMOD. (This
step is currently not activated in Leo; currently Leibniz equality is globally
employed instead of primitive equality.)

Step 5 (Factorize) The lightest clause is factorized and the resulting clauses
are stored in FACTORIZED.

Step 6 (Primitive Substitution) Leo applies the primitive substitution prin-
ciple to the lightest clause. The particular logical connectives to be imi-
tated in this step are specified by a flag. The resulting clauses are stored in
PRIM-SUBST.

2 A flex-flex-unification constraint has topmost free variables in each of the two terms
to be unified. Flex-flex-constraints are always solvable.

37

Step 7 (Extensionality Treatment) The heuristically sorted store EXT con-
tains extensionally interesting clauses (i.e., clauses with unification con-
straints that may have additional pre-unifiers, if the extensionality rules
are taken into account). Leo chooses the topmost clause and applies the
compound extensionality treatment to all extensionally interesting literals.

Step 8 (Continue Unification) The heuristically sorted store CONT contains
continuations of interrupted higher-order pre-unification attempts from the
previous loops (cf. step 10). If the actual unification search depth limit (spec-
ified by a flag, whose value can be dynamically increased during proof at-
tempts) allows for a deeper search in the current loop, then the additional
search for unifiers will be performed. The resulting instantiated clauses are
passed to UNI-CONT and the new continuations are sorted and integrated
into CONT. (This step is currently not activated in Leo)

Step 9 (Collect Results) In this step Leo collects all clauses that have been
generated within the current loop from the stores RESOLVED, PARAMOD,
FACTORIZED, PRIM-SUBST, EXT-MOD, and UNI-CONT, eliminates obvious tau-
tologies, and stores the remaining clauses in PROCESSED.

Step 10 (Pre-Unify) Leo tries to pre-unify the clauses in PROCESSED. Thus, it
applies the pre-unification rules exhaustively, thereby spanning a unification
tree until it reaches the unification search depth limit specified by a special
flag. The unification search depth limit specifies how many subsequent flex-
rigid-branchings may at most occur in each path through the unification
search tree. The pre-unified, i.e., instantiated, clauses are passed to UNIFIED.
The main idea of this step is to filter out all those clauses with syntactically
non-solvable unification constraints (modulo the allowed search depth limit).
But note that there are exceptions, which are determined in steps 11 and 12.
That means that not all syntactically non-unifiable clauses are removed from
the search space as this would, e.g., also remove the extensionally interesting
clauses.

Step 11 (Store Continuations) Each time a pre-unification attempt in step
10 is interrupted by reaching the unification search depth limit, a respective
continuation is created. This object stores the state of the interrupted uni-
fication search process, i.e., it contains the particular unification constraints
as given at the point of interruption together with the remaining literals of
the clause in focus and some information on the interrupted unification pro-
cess. Continuations allow the prover to continue the interrupted unification
process at any later time. The set of all such continuations is integrated in
the sorted store CONT. (This step is not activated yet in Leo.)

Step 12 (Store Extensionally Interesting Clauses) In the pre-unification
process in step 10 Leo analyzes the unification pairs in focus in order to
estimate whether this unification constraint and thus this clause is exten-
sionally interesting, i.e., probably solvable with respect to both extensional-
ity principles. All extensionally interesting clauses are passed to EXT, which
is heuristically sorted. While inserting the clauses into EXT forward and/or
backward subsumption is applied in order to minimize the number of clauses
in this store.

38

Step 13 (Integrate to SOS) In the last step Leo integrates all pre-unified
clauses in UNIFIED into the sorted store SOS. Forward and/or backward sub-
sumption is employed depending on the flag-setting.

6 Visualizing Leo Derivations in Loui

Ωmega’s graphical user interface Loui [24] usually displays Ωmega proof ob-
jects in multiple modalities: a graphical map of the proof tree, a linearized pre-
sentation of the proof nodes with their formulae and justifications, and a term
browser. Display of type information is optional and is determined by a switch
in Loui.

Loui can be used to display proofs of other systems as well. Leo’s con-
nection to Loui supports the graphical presentation of extensional higher-order
resolution derivations and proofs with the gain for the user that the structure of
interactively or automatically created derivations becomes more transparent as
is possible in the linearized display shown in Section 4.

Display of external proofs is supported by Loui via a specific interface lan-
guage. In order to display Leo’s resolution proofs a simple mapping of the inter-
nal proof state in Leo into this interface language is required. Fig. 2 illustrates
the Loui visualization of the automatically generated Leo proof for problem
less-little from Section 5, and Fig. 3 displays part of the respective interface
language representation of this proof.

7 Experiments with Leo

Leo has successfully been applied to different higher-order examples. For ex-
ample, in [4] Leo’s performance on simple examples about sets has been inves-
tigated. One example is the already addressed TPTP problem SET171+3, i.e.,
distributivity of union over intersection. Despite their simplicity such examples
are often non-trivial for automated first-order theorem provers. More details on
this discussion can be found in [9]. Further, proof examples have been investi-
gated in [5].

In [9] a cooperation of Leo with a first-order theorem prover (we used the au-
tomated theorem prover Bliksem [11] since this was already well integrated in the
OMEGA framework) has been proposed and investigated. Thus, Leo has been
slightly extended so that it now constantly accumulates a bag of first-order like
clause. First-order like clauses do not contain any ‘real’ higher-order subterms
(such as a λ-abstraction or embedded equations), and are therefore suitable for
treatment by a first-order ATP or even a propositional logic decision procedure
after appropriate transformation. We use the transformation mapping as also
employed in Tramp [18], which has been previously shown to be sound and is
based on [17]. Essentially, it injectively maps expressions such as P (f(a)) to ex-
pressions such as @1

pred(P, @1
fun(f, a)), where the @ are new first-order operators

describing function and predicate application for particular types and arities.

39

Fig. 2. Loui usually displays Ωmega proof plans and Ωmega natural deduction proofs.
In addition it can be employed to display Leo’s resolution proofs. Here we display the
derivation of clause cl7 from example problem less-little.

40

[...]
insertNode(grounded none "cl3" ["cl3""cl2"]
"([NOT (O O)] ([P (O O)] ([AND (O O O)] ([DC-11438 (O (O I) (O I))]

[C (O I)] [B (O I)]) ([A (O I)] [M I]))))"
"((CNF))" ["cl2"] false)

insertNode(grounded none "cl4" ["cl4""cl2"]
"([P (O O)] ([AND (O O O)] ([A (O I)] [M I]) ([OR (O O O)] ([B (O I)]

[M I]) ([C (O I)] [M I]))))"
"((CNF))" ["cl2"] false)

insertNode(grounded none "cl5" ["cl5""cl4""cl3""cl2"]
"([NOT (O O)] ([= (O O O)] ([P (O O)] ([AND (O O O)] ([A (O I)] [M I])

([OR (O O O)] ([B (O I)] [M I]) ([C (O I)] [M I])))) ([P (O O)]
([AND (O O O)] ([dc2762 (O (O I) (O I))] [C (O I)] [B (O I)])
([A (O I)] [M I])))))"

"((RES 1 1) (RENAMING {(dc2705 --> dc2762)}))" ["cl4""cl3"] false)
insertNode(grounded none "cl6" ["cl6""cl5""cl4""cl3""cl2"]
"([NOT (O O)] ([= (O O O)] ([AND (O O O)] ([A (O I)] [M I]) ([OR (O O O)]

([B (O I)] [M I]) ([C (O I)] [M I]))) ([AND (O O O)] ([dc2762 (O (O I)
(O I))] [C (O I)] [B (O I)]) ([A (O I)] [M I]))))"

"((DEC (1)))" ["cl5"] false)
[...]

Fig. 3. Part of the Loui interface language representation of the Leo proof for problem
less-little as communicated to Loui.

The injectivity of the mapping guarantees soundness, since it allows each proof
step to be mapped back from first-order to higher-order.

Whenever Leo creates a new clause it checks whether this is a first-order
like clause, i.e., whether it is in the domain of the employed transformational
mapping. If this is the case, a copy of it is passed to the store of first-order
like clauses. In each loop of Leo’s search procedure a fast first-order prover
can now be applied to the set of first-order like clauses to find a refutation.
In this case an overall proof has been found. The experiments in [9] show that
this is a very promising approach to combining the benefits of higher-order and
first-order theorem provers. Whereas this cooperative approach can solve the
problem less-little only slightly faster than Leo alone, many examples in [9]
show that there are often significant improvements possible.

OMEGA: prove less-little
Changing to proof plan LESS-LITTLE-10

OMEGA: call-leo-on-node
NODE (NDLINE) Node to prove with LEO: [LESS-LITTLE]
TACTIC (STRING) The tactic to be used
by LEO: [EXT-INPUT-RECURSIVE]fo-atp-cooperation
SUPPORTS (NDLINE-LIST) The support nodes: [()]
TIME-BOUND (INTEGER) Time bound for proof attempt: [100]
THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be
expanded: [(ALL)]
DEFS-LIST (SYMBOL-LIST) Symbols whose definitions will not be
expanded: [(= DEFINED EQUIV)]
INSERT-FLAG (BOOLEAN) A flag indicating whether a partial result
will be automatically inserted.: [()]
Looking for expandable definitions
Initializing LEO....
Applying Clause Normalization....
[...]

41

Start proving ...
Loop: (100sec left)
#1 (SOS 2 USABLE 0 EXT-QUEUE 0 FO-LIKE 4)

(99sec left)
#2 (SOS 1 USABLE 1 EXT-QUEUE 0 FO-LIKE 4)

(98sec left)
[...]
(96sec left)
#9 (SOS 3 USABLE 4 EXT-QUEUE 0 FO-LIKE 12)

[...]
Calling bliksem process 22267 with time resource 50sec .
PARSING BLIKSEM OUTPUT ...
Bliksem has found a saturation.

[...]
(96sec left)
#10 (SOS 10 USABLE 5 EXT-QUEUE 0 FO-LIKE 20)

[...]
(94sec left)
#21 (SOS 39 USABLE 9 EXT-QUEUE 0 FO-LIKE 60)
Calling bliksem process 22454 with time resource 50sec .
bliksem Time Resource in seconds:
PARSING BLIKSEM OUTPUT ...
Bliksem has found a proof.

Bliksem’s time:
; cpu time (non-gc) 0 msec user, 0 msec system
; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 0 msec user, 0 msec system
; real time 174 msec
; space allocation:
; 416 cons cells, 0 symbols, 15,720 other bytes, 8936 static bytes
Input Clauses: 75
clauses generated: 37
(94sec left)
#22 (SOS 53 USABLE 10 EXT-QUEUE 0 FO-LIKE 75)

Total LEO time: 7262
**** proof found (next clause nr: cl323) *****
; cpu time (non-gc) 5,650 msec user, 20 msec system
; cpu time (gc) 490 msec user, 0 msec system
; cpu time (total) 6,140 msec user, 20 msec system
; real time 7,273 msec
; space allocation:
; 5,218,155 cons cells, 1,886 symbols, 82,231,456 other bytes,
; 49536 static bytes

8 Related Work and Conclusion

There are only very few automated theorem provers available for higher-order
logic. Tps [2, 3], which is based on the mating search method, is the oldest and
probably still the strongest prover in this category. The extensionality reasoning
of Tps has recently been significantly improved by Brown in his PhD thesis [10].

Related to the cooperation approach is the work of Hurd [16] which re-
alizes a generic interface between higher-order logic and first-order theorem
provers. It is similar to the solution previously achieved by Tramp [18] in
Ωmega. Both approaches pass essentially first-order clauses to first-order the-
orem provers and then translate their results back into higher-order. More re-
cent related work on the cooperation of Isabelle with the first-order theo-
rem prover Vampire is presented in [19]. Further related work is Otter-λ (see
http://mh215a.cs.sjsu.edu/), which extends first-order logic with λ-notation.

42

Leo has initially been implemented as a demonstrator system for extensional
higher-order resolution in the context of the author’s PhD thesis [4]. The exper-
iments carried out with Leo so far, in particular, its recent combination with
a fast first-order theorem prover, have been very promising, and they motivate
further work in this direction. This is particularly true since interactive proof
assistants based on higher-order logic are recently gaining increasing attention
in formal methods.

During the implementation and later during the experiments many short-
comings of Leo have been identified by the author. These shortcomings are
both of theoretical and of practical nature. Altogether this calls for a proper
reimplementation of Leo. This reimplementation should ideally be independent
of Ωmega in order to provide a lean and easy to install and use automated
higher-order theorem to the community.

References

1. P. Andrews. An Introduction to mathematical logic and Type Theory: To Truth
through Proof. Number 27 in Applied Logic Series. Kluwer, 2002.

2. P. B. Andrews, M. Bishop, and C. E. Brown. System description: TPS: A theorem
proving system for type theory. In Conference on Automated Deduction, pages
164–169, 2000.

3. P.B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS: A
theorem proving system for classical type theory. Journal of Automated Reasoning,
16(3):321–353, 1996.

4. C. Benzmüller. Equality and Extensionality in Higher-Order Theorem Proving.
PhD thesis, Universität des Saarlandes, Germany, 1999.

5. C. Benzmüller. Comparing approaches to resolution based higher-order theorem
proving. Synthese, 133(1-2):203–235, 2002.

6. C. Benzmüller and M. Kohlhase. Extensional higher-order resolution. In Proc. of
CADE-15, number 1421 in LNAI. Springer, 1998.

7. C. Benzmüller and M. Kohlhase. LEO – a higher-order theorem prover. In Proc.
of CADE-15, number 1421 in LNAI. Springer, 1998.

8. C. Benzmüller and V. Sorge. Oants – An open approach at combining Interactive
and Automated Theorem Proving. In Proc. of Calculemus-2000. AK Peters, 2001.

9. C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber. Can a higher-order and
a first-order theorem prover cooperate? In F. Baader and A. Voronkov, editors,
Proceedings of the 11th International Conference on Logic for Programming Arti-
ficial Intelligence and Reasoning (LPAR), volume 3452 of LNAI, pages 415–431.
Springer, 2005.

10. C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Dept. of
Mathematical Sciences, Carnegie Mellon University, USA, 2004.

11. H. de Nivelle. The Bliksem Theorem Prover, Version 1.12. Max-Planck-Institut,
Saarbrücken, Germany, 1999. http://www.mpi-sb.mpg.de/˜bliksem/manual.ps.

12. M. Gordon and T. Melham. Introduction to HOL – A theorem proving environment
for higher order logic. Cambridge University Press, 1993.

13. J. Harrison. The hol light theorem prover.
14. G.P. Huet. Constrained Resolution: A Complete Method for Higher Order Logic.

PhD thesis, Case Western Reserve University, 1972.

43

15. G.P. Huet. A mechanization of type theory. In Donald E. Walker and Lewis Norton,
editors, Proc. of the 3rd International Joint Conference on Artificial Intelligence
(IJCAI73), pages 139–146, 1973.

16. J. Hurd. An LCF-style interface between HOL and first-order logic. In Automated
Deduction — CADE-18, volume 2392 of LNAI, pages 134–138. Springer, 2002.

17. M. Kerber. On the Representation of Mathematical Concepts and their Translation
into First Order Logic. PhD thesis, Universität Kaiserslautern, Germany, 1992.

18. A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduc-
tion Proofs at the Assertion Level. In Proc. of CADE-17, number 1831 in LNAI.
Springer, 2000.

19. J. Meng and L. C. Paulson. Experiments on supporting interactive proof using res-
olution. In Proc. of IJCAR 2004, volume 3097 of LNCS, pages 372–384. Springer,
2004.

20. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Number 2283 in LNCS. Springer, 2002.

21. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T. Henzinger,
editors, Computer-Aided Verification, CAV ’96, number 1102 in LNCS, pages 411–
414, New Brunswick, NJ, 1996. Springer.

22. L. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in LNCS. Springer,
1994.

23. J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, I. Normann, and M. Pollet.
Proof development in OMEGA: The irrationality of square root of 2. In Thirty
Five Years of Automating Mathematics. Kluwer, 2003.

24. J. Siekmann, S. Hess, C. Benzmüller, L. Cheikhrouhou, A. Fiedler, H. Horacek,
M. Kohlhase, K. Konrad, A. Meier, E. Melis, M. Pollet, and V. Sorge. LOUI:
Lovely OMEGA user interface. Formal Aspects of Computing, 11:326–342, 1999.

25. G.L. Steele. Common Lisp: The Language, 2nd edition. Digital Press, Bedford,
Massachusetts, 1990.

44

Combining Proofs of Higher-Order and

First-Order Automated Theorem Provers

Christoph Benzmüller1, Volker Sorge2, Mateja Jamnik3, and Manfred Kerber2

1Fachbereich Informatik, Universität des Saarlandes
66041 Saarbrücken, Germany (www.ags.uni-sb.de/~chris)
2School of Computer Science, The University of Birmingham

Birmingham B15 2TT, England, UK (www.cs.bham.ac.uk/~vxs)
3University of Cambridge Computer Laboratory

Cambridge CB3 0FD, England, UK (www.cl.cam.ac.uk/~mj201)

Abstract. Ωants is an agent-oriented environment for combining infer-
ence systems. A characteristics of the Ωants approach is that a common
proof object is generated by the cooperating systems. This common proof
object can be inspected by verification tools to validate the correctness
of the proof. Ωants makes use of a two layered blackboard architecture,
in which the applicability of inference rules are checked on one (abstract)
layer. The lower layer administrates explicit proof objects in a common
language. In concrete proofs these proof objects can be quite bit, which
can make communication during proof search very inefficient. As a result
we had situations in which most of the resources went into the overhead
of constructing explicit proof objects and communicating between dif-
ferent components. Therefore we have recently developed an alternative
modelling of cooperating systems in Ωants which allows direct com-
munication between related systems during proof search. This has the
consequence that proof objects can no longer be directly constructed and
thus the correctness-validation in this novel approach is in question. In
this paper we present a pragmatic approach how this can rectified.

1 Introduction

Ωants is an agent-oriented environment for combining inference rules and in-
ference systems. Ωants was originally conceived to support interactive theorem
proving but was later extended to a fully automated proving system [23, 8]. A
characteristics of the Ωants approach is that a joint proof object is generated
by the cooperating inference rules and inference systems. This joint proof object
can be inspected by proof verification tools in combination with proof expansion
in order to validate the correctness at a purely logic level. The Ωants black-
board architecture consists of two layers, an abstract upper layer, and a more
detailed lower layer. Applicability criteria for inference rules are modelled at the
upper layer. The upper layer is supported by computations at the lower layer
which models criteria for the instantiation of the parameters of the inference
rules.

45

External systems have been modelled in Ωants as individual inference rules
at the upper layer. With this approach, Ωants has been successfully employed
in past experiments to check the validity of set equations using higher-order
and first-order theorem provers, model generation, and computer algebra [5].
However, this approach was very inefficient for hard examples because of the
communication overhead imposed by the need to translate all steps into a com-
mon proof data structure.

Therefore, we have recently developed an alternative approach: the single in-
ference rule approach of cooperating systems in Ωants which exploits the lower
layer of the blackboard architecture. This approach has been successfully applied
to the combination of automated higher-order and first-order theorem provers.
In particular, it has outperformed state-of-the-art first-order specialist reasoners
(including Vampire 7.0) on 45 examples on sets, relations and functions; see [9].

Unfortunately, using a single inference rule approach, we had to sacrifice
the generation of joint proof objects and correctness validation in this novel
approach. In this paper we present a pragmatic approach to how this can be
rectified.

The paper is structured as follows: In Section 2 we motivate and illustrate
the cooperation between a higher-order theorem prover (we employ Leo [6]) and
a first-order theorem prover (we employ Bliksem [12]). In Section 3 we compare
the two options for modelling cooperative reasoning systems in Ωants: the initial
multiple inference approach and the novel single inference rule approach. In
Section 4 we show how a joint proof object can also be obtained for the latter
modelling by mapping it back to the former. Section 5 concludes the paper.

2 Combining Higher-Order and First-Order ATP

2.1 Motivation

When dealing with problems containing higher-order concepts, such as sets, func-
tions, or relations, today’s state-of-the-art first-order automated theorem provers
(ATPs) still exhibit weaknesses on problems considered relatively simple by hu-
mans (cf. [15]). One reason is that the problem formulations use an encoding
in a first-order set theory, which makes it particularly challenging when trying
to prove theorems from first principles, that is, basic axioms. Therefore, to aid
ATPs in finding proofs, problems are often enriched by hand-picked additional
lemmata, or axioms of the selected set theory are dropped leaving the theory
incomplete. This has recently motivated extensions of state-of-the-art first-order
calculi and systems, as for example presented in [15] for the Saturate system.
The extended Saturate system can solve some problems from the SET domain
in the TPTP [25] which Vampire [22] and E-Setheo’s [24] cannot solve.

While it has already been shown in [6, 2] that many problems of this nature
can be easily proved from first principles using a concise higher-order represen-
tation and the higher-order resolution ATP Leo [6], the combinatorial explosion
inherent in Leo’s calculus prevents the prover from solving a whole range of

46

SET171+3 ∀Xoα, Yoα, Zoα.X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z)
SET611+3 ∀Xoα, Yoα.(X ∩ Y = ∅) ⇔ (X \ Y = X)
SET624+3 ∀Xoα, Yoα, Zoα.Meets(X, Y ∩ Z) ⇔ Meets(X, Y) ∨ Meets(X, Z)
SET646+3 ∀xα, yβ .Subrel(Pair(x, y), (λuα.') × (λvβ .'))
SET670+3 ∀Zoα, Roβα, Xoα, Yoβ.IsRelOn(R,X, Y) ⇒

IsRelOn(RestrictRDom(R, Z), Z, Y)

Table 1. Test Problems on Sets and Relations: Examples

possible problems with one universal strategy. Often higher-order problems re-
quire only relatively few but essential steps of higher-order reasoning, while the
overwhelming part of the reasoning is first-order or even propositional level. This
suggests that Leo’s performance could be improved when combining it with a
first-order ATP to search efficiently for a possible refutation in the subset of
those clauses that are essentially first-order.

The advantages of such a combination are not only that many problems can
still be efficiently shown from first principles in a general purpose approach, but
also that problems can be expressed in a very concise way.

For instance, in [9] we present 45 problems from the SET domain of the
TPTP-v3.0.1, together with their entire formalisation in less than two pages,
which is difficult to achieve within a framework that does not provide λ-abstraction.
We have used this problem set, which is an extension of the problems considered
in [15], to show the effectiveness of our approach (cf. [9]). While many of the
considered problems can be proved by Leo alone with some strategy, the com-
bination of Leo with the first-order ATP Bliksem [12] is not only able to solve
more problems, but also needs only a single strategy to prove them. Several of
our problems are considered very challenging by the first-order community and
five of them (of which Leo can solve four) have a TPTP rating of 1.00, saying
that they cannot be solved by any TPTP prover to date.

Technically, the combination has been realised in the concurrent reasoning
system Ωants [23, 8] which enables the cooperation of hybrid reasoning systems
to construct a common proof object. In our past experiments, Ωants has been
successfully employed to check the validity of set equations using higher-order
and first-order ATPs, model generation, and computer algebra [5]. While this
enabled a cooperation between Leo and a first-order ATP, the proposed solution
could not be classified as a general purpose approach. A major shortcoming was
that all communication of partial results had to be conducted via the common
proof object, which was very inefficient for hard examples. Thus, the solved ex-
amples from set theory were considered too trivial, albeit they were often similar
to those still considered challenging in the TPTP in the first-order context.

In [9] we have presented our novel approach to the cooperation between
Leo and Bliksem inside Ωants by decentralising communication. As has been
documented in [9] this leads not only to a higher overall efficiency but also to a
general purpose approach based on a single strategy in Leo.

47

2.2 Sets, Relations, and Functions: Higher-Order Logic Encoding

We list some examples of the test problems on sets and relations (and functions)
that have been investigated in [9]. These test problems are taken from the TPTP
against which we evaluated our system. The problems are given by the identi-
fiers used in the SET domain of the TPTP, and are formalized in a variant of
Church’s simply typed λ-calculus with prefix polymorphism. In classical type
theory, terms and all their sub-terms are typed. Polymorphism allows the intro-
duction of type variables such that statements can be made for all types. For
instance, in problem SET171 in Table 1, the universally quantified variable Xoα

denotes a mapping from objects of type α to objects of type o. We use Church’s
notation oα, which stands for the functional type α → o. The reader is referred
to [1] for a more detailed introduction. In the remainder, o will denote the type
of truth values, and small Greek letters will denote arbitrary types. Thus, Xoα

(and its η-longform λyα Xy) is actually a characteristic function denoting the
set of elements of type α, for which the predicate associated with X holds. As
further notational convention, we use capital letter variables to denote sets, func-
tions, or relations, while lower case letters denote individuals. Types are usually
only given in the first occurrence of a variable and omitted if inferable from the
context. Table 1 presents some examples of the test problems investigated in [9].

These test problems employ defined concepts that are specified in a knowl-
edge base of hierarchical theories that Leo has access to. Table 2 gives the
concepts necessary for defining the above problems:

−
∈

−
:= λxα, Aoα.[Ax]

∅ := [λxα.⊥]
−
∩

−
:= λAoα, Boα.[λxα.x ∈ A ∧ x ∈ B]

−
∪

−
:= λAoα, Boα.[λxα.x ∈ A ∨ x ∈ B]

−
\
−

:= λAoα, Boα.[λxα.x ∈ A ∨ x /∈ B]
Meets(

−
,
−

) := λAoα, Boα.[∃xα.x ∈ A ∧ x ∈ B]
Pair(

−
,
−

) := λxα, yβ .[λuα, vβ.u = x ∧ v = y]
−
×

−
:= λAoα, Boβ.[λuα, vβ .u ∈ A ∧ v ∈ B]

Subrel(
−

,
−

) := λRoβα, Qoβα.[∀xα, yβ.Rxy ⇒ Qxy]
IsRelOn(

−
,
−

,
−

) := λRoβα, Aoα, Boβ.[∀xα, yβ .Rxy ⇒ x ∈ A ∧ y ∈ B]
RestrictRDom(

−
,
−

) := λRoβα, Aoα.[λxα, yβ .x ∈ A ∧ Rxy]

Table 2. Definitions of Operations on Sets and Relations: Examples

These concepts are defined in terms of λ-expressions and they may contain
other, already specified concepts. For presentation purposes, we use customary
mathematical symbols ∪,∩, etc., for some concepts like union, intersection, etc.,
and we also use infix notation. For instance, the definition of union on sets in
Table 2 can be easily read in its more common mathematical representation
A∪B := {x|x ∈ A∨ x ∈ B}. Before proving a problem, Leo always expands —

48

Assumptions: ∀B, C, x [x ∈ (B ∪ C) ⇔ x ∈ B ∨ x ∈ C] (1)

∀B, C, x [x ∈ (B ∩ C) ⇔ x ∈ B ∧ x ∈ C] (2)

∀B, C [B = C ⇔ B ⊆ C ∧ C ⊆ B] (3)

∀B, C [B ∪ C = C ∪ B] (4)

∀B, C [B ∩ C = C ∩ B] (5)

∀B, C [B ⊆ C ⇔ ∀x x ∈ B ⇒ x ∈ C] (6)

∀B, C [B = C ⇔ ∀x x ∈ B ⇔ x ∈ C] (7)

Proof Goal: ∀B, C, D [B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)] (8)

Table 3. Problem SET171+3: The First-Order TPTP Encoding.

recursively, if necessary — all occurring concepts. This straightforward expansion
to first principles is realised by an automated preprocess in our current approach.

2.3 Sets, Relations, and Functions: First-Order Logic Encoding

Let us consider example SET171+3 in its first-order formulation from the TPTP
(see Table 3). We can observe that the assumptions provide only a partial ax-
iomatisation of naive set theory. On the other hand, the specification introduces
lemmata that are useful for solving the problem. In particular, assumption (7) is
trivially derivable from (3) with (6). Obviously, clausal normalisation of this first-
order problem description yields a much larger and more difficult set of clauses.
Furthermore, definitions of concepts are not directly expanded as in Leo. It
is therefore not surprising that most first-order ATPs still fail to prove this
problem. In fact, very few TPTP provers were successful in proving SET171+3.
Amongst them are Muscadet 2.4. [21], Vampire 7.0, and Saturate. The nat-
ural deduction system Muscadet uses special inference rules for sets and needs
0.2 seconds to prove this problem. Vampire needs 108 seconds. The Saturate

system [15] (which extends Vampire with Boolean extensionality rules that
are a one-to-one correspondence to Leo’s rules for Extensional Higher-Order
Paramodulation [3]) can solve the problem in 2.9 seconds while generating 159
clauses. The significance of such comparisons is clearly limited since different
systems are optimised to a different degree. One noted difference between the
experiments with first-order provers listed above, and the experiments with Leo

and Leo-Bliksem is that first-order systems often use a case tailored problem
representation (e.g., by avoiding some base axioms of the addressed theory),
while Leo and Leo-Bliksem have a harder task of dealing with a general (not
specifically tailored) representation. Thus, the comparison of the performance
of Leo and Leo-Bliksem with first-order systems as done in [9] is unfair: the
higher-order systems attack harder, non-tailored problems. Nevertheless, as we
demonstrated by the performance results in [9] the higher-order systems still
perform better.

49

(1) ∀B,C, D.B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)
↓ clause initialization
↓ def.-expansion, cnf
↓ B, C, D Skolem const.

(2) [(λx.Bx ∨ (Cx ∧ Dx))= (λx.(Bx ∧ Cx) ∨ (Cx ∧ Dx))]F

↓ unification constraint
(3) [(λx.Bx ∨ (Cx ∧ Dx))=?(λx.(Bx ∧ Cx) ∨ (Cx ∧ Dx))]

↓ f-extensionality
↓ x new Skolem constant

(4) [(Bx ∨ (Cx ∧ Dx))=?((Bx ∧ Cx) ∨ (Cx ∧ Dx))]
↓ B-extensionality

(5) [(Bx ∨ (Cx ∧ Dx))⇔((Bx ∧ Cx) ∨ (Cx ∧ Dx))]F

↓ cnf, factor., subsumption
(6) [Bx]F

(7) [Bx]T∨[Cx]T propositional problem!
(8) [Bx]T∨[Dx]T

(9) [Cx]F∨[Dx]F

↓ propositional reasoning
(10) !

Table 4. Problem SET171+3: Solution in Leo

For the experiments with Leo and the cooperation of Leo with the first-order
theorem prover Bliksem, λ-abstraction as well as the extensionality treatment
inherent in Leo’s calculus [4] is used. This enables a theoretically1 Henkin-
complete proof system for set theory. In the above example SET171+3, Leo gen-
erally uses the application of functional extensionality to push extensional unifi-
cation constraints down to base type level, and then eventually applies Boolean
extensionality to generate clauses from them. These are typically much simpler
and often even propositional-like or first-order-like (FO-like, for short), that is,
they do not contain any ‘real’ higher-order subterms (such as a λ-abstraction or
embedded equations), and are therefore suitable for treatment by a first-order
ATP or even a propositional logic decision procedure.

2.4 Solving the Test Problem SET171+3 in Leo

Table 4 illustrates how Leo tackles and solves the test problem SET171+3. First
the resolution process is initialised, that is, the definitions occurring in the input
problem are expanded, that is, completely reduced to first principles. Then the
problem is turned into a negated unit clause. The resulting (not displayed inter-
mediate) clause is not in normal form and therefore Leo first normalizes it with
explicit clause normalisation rules (cnf) to reach some proper initial clauses. In

1 For pragmatic reasons, such as efficiency, most of Leo’s tactics are incomplete. Leo’s
philosophy is to rely on a theoretically complete calculus, but to practically provide
a set of complimentary strategies so that these cover a broad range of theorems.

50

our concrete case, this leads to the unit clause (2). Note that negated prim-
itive equations are generally automatically converted by Leo into unification
constraints. This is why (2) is automatically converted into (3), which is a syn-
tactically not solvable, but is a semantic unification problem. Observe, that we
write [.]T and [.]F for positive and negative literals, respectively. Leo then applies
its goal directed functional and Boolean extensionality rules which replace the
unification constraint (3) by the clauses (4) and (5). Unit clause (5) is again not
normal; normalisation, factorisation and subsumption yields the clauses (6)-(9).
This set is essentially of propositional logic character and trivially refutable. Leo

needs 0.56 seconds for solving the problem and generates a total of 36 clauses.

2.5 Solving the Test Problem SET171+3 in Leo-Bliksem

As illustrated in Table 4, Leo transforms test problem SET171+3 straight-
forwardly into a propositional like subproblem. Here the generated clause set
(7)–(10) can still be efficiently refuted by Leo. Generally, however, the gener-
ated subsets of propositional or first-order like subproblems may quickly become
so big that Leo’s refutation procedure, which is not optimised for these prob-
lem classes, gets stuck. And in Leo’s search space generally some further real
higher-order clauses have to be taken into account. This observation motivates
our cooperative Leo-Bliksem proof search approach: while Leo performs its
proof search as before, it periodically also passes the detected first-order like
clauses (which, of course, include the propositional like clauses) to the first-order
specialist reasoner Bliksem. We note:

– The generated first-order like clauses in Leo are copied into a special bag
which never decreases and usually always increases. That is, the bag of first-
order like clauses dynamically changes and eventually becomes refutable
(such as clauses (7)–(10) in our example).

– Leo’s proof search procedure remains unchanged and Leo still tries to refute
such subproblems itself (as before) in a bigger context.

– In addition, specialist reasoners may now support Leo by showing that the
bag of first-order like subproblems is refutable.

– Each time the bag of first-order like subproblems is increased by Leo, a new
instance of a specialist reasoner is launched (with a resource-bound). This
instance runs in parallel to Leo’s proof search and may eventually signal
success to Leo. If Leo receives such a success signal, it stops its own proof
search and reports that a cooperative proof has been found. Alternatively
(as before) Leo stops proof search when it finds the proof itself.

– Our cooperative approach can easily be fine-grained by separating the bag of
first-order like clauses into even more specialised subclasses, such as propo-
sitional logic, guarded fragment, etc. Different specialist reasoners can then
be employed to attack these clause sets.

– For the higher-order problems investigated in [9] we further observe:
• Some problems are immediately mapped by recursive definition expan-

sion (without extensionality reasoning) and normalisation into first-order
like problems; an example is SET624+3.

51

• Some problems are immediately mapped by recursive definition expan-
sion (without extensionality reasoning) and normalisation into the empty
clause such that proof search does not even start; an example is SET646+3.

• Some problems require several rounds of extensionality processing within
Leo’s set-of-support based proof search procedure before the bag of first-
order like clauses turns into a refutable set of clauses; an example is
SET611+3.

The result of the case study performed in [9] is: The Leo-Bliksem cooper-
ation impressively outperforms both state-of-the art first-order specialists (in-
cluding Vampire 7.0) and the non-cooperative Leo system.

In the next section we describe in more detail how the cooperative proof
search approach between Leo and the first-order prover Bliksem has been mod-
elled in Ωants.

3 Ωants

Ωants was originally conceived to support interactive theorem proving but was
later extended to a fully automated proving system [23, 8]. Its basic idea is to
compose a central proof object by generating, in each proof situation, a ranked
list of potentially applicable inference steps. In this process, all inference rules,
such as calculus rules or tactics, are uniformly viewed with respect to three
sets: premises, conclusions, and additional parameters. The elements of these
three sets are called arguments of the inference rule and they usually depend
on each other. An inference rule is applicable if at least some of its arguments
can be instantiated with respect to the given proof context. The task of the
Ωants architecture is now to determine the applicability of inference rules by
computing instantiations for their arguments.

The architecture consists of two layers. On the lower layer, possible instanti-
ations of the arguments of individual inference rules are computed. In particular,
each inference rule is associated with its own blackboard and concurrent pro-
cesses, one for each argument of the inference rule. The role of every process is
to compute possible instantiations for its designated argument of the inference
rule, and to record these on the blackboard. The computations are carried out
with respect to the given proof context and by exploiting information already
present on the blackboard, that is, argument instantiations computed by other
processes. On the upper layer, the information from the lower layer is used for
computing and heuristically ranking the inference rules that are applicable in
the current proof state. The most promising rule is then applied to the central
proof object and the data on the blackboards is cleared for the next round of
computations.

Ωants employs resource reasoning to guide search.2 This enables the con-
trolled integration (e.g., by specifying time-outs) of full-fledged external reason-

2 Ωants provides facilities to define and modify the processes at run-time. But notice
that we do not use these advanced features in the case study presented in this paper.

52

ing systems such as automated theorem provers, computer algebra systems, or
model generators into the architecture.

3.1 Cooperation via multiple inference rules

The use of the external systems is modelled by inference rules, usually one for
each system. Their corresponding computations are encapsulated in one of the
independent processes in the architecture. For example, an inference rule mod-
elling the standard application Leo has its conclusion argument set to be an
open higher-order (HO) goal.

HO-goal
Leo (LEO-parameters)

A process can then place an open goal on the blackboard, where it is picked
up by a process that applies the Leo prover to it. Any computed proof from the
external system is again written to the blackboard from where it is subsequently
inserted into the proof object when the inference rule is applied. While this setup
enables proof construction by a collaborative effort of diverse reasoning systems,
the cooperation can only be achieved via the central proof object. This means
that all partial results have to be translated back and forth between the syntaxes
of the integrated systems and the language of the proof object. For modelling
the cooperation of Leo with a first-order reasoner we have first experimented
with the following multiple inference rule modelling (see also [5]):

Neg-Conj-of-FO-clauses

HO-goal
Leo-with-partial-result(Leo-parameters)

FO-goal
Bliksem (Bliksem-parameters)

The first rule models a process that picks up higher-order proof problem from
the blackboard, passes it to Leo which starts its proof search, and then returns
the negated conjunction of generated first-order clauses back (e.g. the negated
conjunction of the clauses (7)–(10) in our previous example). For each modified
bag of first-order like clauses in Leo this rule may suggest a novel reduction of
the original higher-order goal to a first-order criterion.

Since there are many types of integrated systems, the language of the proof
object maintained in Ωants — a higher-order language even richer than Leo’s,
together with a natural deduction calculus — is expressive but also cumbersome.
This leads not only to a large communication overhead, but also means that
complex proof objects have to be created, even if the reasoning of all systems
involved is clause-based. Large clause sets need to be transformed into large
single formulae to represent them in the proof object; the support for this in
Ωants to date is inefficient. Consequently, the cooperation between external
systems is typically rather inefficient [5].

53

3.2 Cooperation via a single inference rule

In order to overcome the problem of the communication bottleneck described
above, we devised a new method for the cooperation between a higher-order
and a first-order theorem prover within Ωants. Rather than modelling each
theorem prover as a separate inference rule (and hence needing to translate
the communication via the language of the central proof object), we model the
cooperation between a higher-order (concretely, Leo) and a first-order theorem
prover (in our case study Bliksem) in Ωants as a single inference rule.

HO-goal
Leo-Bliksem (

Leo-partial-proof, FO-clauses, FO-proof, Leo-
parameters, Bliksem-parameters

)

The communication between the two theorem provers is carried out directly
by the parameters of the inference rule and not via the central proof object. This
avoids translating clause sets into single formulae and back.

Concretely, the single inference rule modelling the cooperation between Leo

and a first-order theorem prover needs the following arguments to be applicable:
(1) an open higher-order proof goal, (2) a partial Leo proof, (3) a set of FO-
like clauses in the partial proof, (4) a first-order refutation proof for the set
of FO-like clauses, and (5) and (6) the usual flag-parameters for the theorem
provers Leo and Bliksem. Each of these arguments is computed, that is, its
instantiation is found, by an independent process. The first process finds open
goals in the central proof object and posts them on the blackboard associated
with the new rule. The second process starts an instance of the Leo theorem
prover for each new open goal on the blackboard. Each Leo instance maintains
its own set of FO-like clauses. The third process monitors these clauses, and as
soon as it detects a change in this set, that is, if new FO-like clauses are added by
Leo, it writes the entire set of clauses to the blackboard. Once FO-like clauses
are posted, the fourth process first translates each of the clauses directly into
a corresponding one in the format of the first-order theorem prover, and then
starts the first-order theorem prover on them. Note that writing FO-like clauses
on the blackboard is by far not as time consuming as generating higher-order
proof objects. As soon as either Leo or the first-order prover finds a refutation,
the second process reports Leo’s proof or partial proof to the blackboard, that
is, it instantiates argument (2). Once all four arguments of our inference rule
are instantiated, the rule becomes applicable and its application closes the open
proof goal in the central proof object. That is, the open goal is proved by the
cooperation between Leo and a first-order theorem prover. When computing
applicability of the inference rule, the second and the fourth process concurrently
spawn processes running Leo or a first-order prover on a different set of FO-like
clauses. Thus, when actually applying the inference rule, all these instances of
provers working on the same open subgoal are stopped.

While in the previous approach with multiple inference rules the cooperation
between Leo and Bliksem was modelled at the upper layer of the Ωants ar-
chitecture, our new approach models their cooperation by exploiting the lower

54

layer of the Ωants blackboard architecture. This is not an ad hoc solution,
but rather, it demonstrates Ωants’s flexibility in modelling the integration of
cooperative reasoning systems.

Our approach to the cooperation between a higher-order and a first-order
theorem prover has many advantages. The main one is that the communication
is restricted to the transmission of clauses, and thus it avoids any intermediate
translation into the language of the central proof object. This significantly re-
duces the communication overhead and makes effective proving of more involved
theorems feasible.

4 Constructing a Combined Proof Object

A disadvantage of our approach is that we cannot easily translate and integrate
the two proof objects produced by Leo and Bliksem into the central proof ob-
ject maintained by Ωants. This has been possible in our previous approach with
multiple inference rules. Thus, we developed a simple and pragmatic solution to
the problem:

– The main idea is to replay the proof on the upper level of the Ωants archi-
tecture (using the multiple inference rule modelling) once a proof attempt
was successful (with a single inference rule modelling) on the lower level.

– We can essentially reconstruct all the information from the blackboard that
we need in order to replay the proof. For this remember that the rule Leo-
Bliksem is only applicable if all parameters of the rule are instantiated,
that is, the respective parameter instantiation information is available on
the blackboard for each successful cooperative proof attempt. Respective
instantiation information generated from a successful cooperative proof at-
tempt for our running example SET171+3, for instance, is:

HO-Goal := ∀B, C, D.C ∪ (B ∩ D) = (C ∪ B) ∩ (C ∪ D)

Leo-partial-proof := . . . a HO resolution proof object ∆ . . .

FO-clauses := (7) [Bx]F

(8) [Bx]T∨[Cx]T

(9) [Bx]T∨[Dx]T

(10) [Cx]F∨[Dx]F

FO-proof := . . . a FO resolution proof object Γ . . .

Leo-parameters := . . . the flags chosen for the Leo call . . .

Bliksem-parameters := . . . the flags chosen for the Bliksem call . . .

– For finding joint proofs efficiently in our experiment we called Bliksem in
the fastest mode. In this case the generated FO-proof object is typically very
sparse, i.e. contains only very little information for proof reconstruction and
transformation.

55

– When the above suggestion of a successful joint proof attempt is selected for
application in Ωants, the initially open (sub-)goal ∀B, C, D.C ∪ (B ∩D) =
(C ∪ B) ∩ (C ∪ D) is closed and the new justification of this proof node
becomes ‘Leo-Bliksem’ augmented with the above parameter instantiation
information:

∀B, C, D.C∪(B∩D) = (C∪B)∩ (C∪D)
Leo-Bliksem (above param. inst.)

– Expansion of this node then replaces the (sub-)proof object by the following
(sub-)proof object employing the multiple inference rule modelling of the
cooperative proof attempt:

neg-FO-clauses
Bliksem (modified Bliksem-param. instantiation)

∀B, C, D. . . . = . . .
Leo-with-partial-result (Leo-param. instantiation)

where ‘neg-FO-clauses ’ is computed from the instantiation of the parameter
FO-clauses as

¬(¬(Bx) ∧ (Bx ∨ Cx) ∧ (Bx ∨ Dx) ∧ (¬(Cx) ∨ ¬(Dx))

– The idea is to support verification of this (sub-)proof by subsequent proof
node expansion, i.e., to investigate the contributions of both reasoning sys-
tems separately. For the expansion of Bliksem, a translation of the pre-
viously generated proof into a proper proof-object is not an option if we
called Bliksem in the fastest mode since the delivered first-order proof ob-
ject may be too sparse. Therefore, the expansion of this proof node simply
calls Bliksem again but now within a different mode (determined by the
slightly changed modified Bliksem-param. instantiation) which ensures the
generation of detailed first-order proof objects.

– For the translation of this regenerated, detailed first-order proof object into
an Ωants proof object we employ the Tramp system [18]. This enables us
to verify the (sub-)proof of Bliksem after its translation into an Ωants

proof object.
– Generally, we could also replace the second call to Bliksem by a call to any

other first-order proof system that is supported by Tramp’s generic proof
transformation mechanism (and which is as strong as Bliksem).

5 Conclusion

In this paper we have discussed the difference between two forms of modelling
cooperating proof systems within Ωants: the multiple inference rule approach
and the single inference rule approach. In previous experiments the latter has
been shown as highly efficient and it has outperformed state-of-the-art first-order
specialist reasoners on 45 examples on sets, relations and functions; cf. [9]. The
drawback so far, however, was that no joint proof object could be generated. In

56

this paper we have reported how we have solved this problem by simply mapping
the single inference rule modelling back to the multiple inference rule modelling.

Related to our approach is the Techs system [13], which realises a cooper-
ation between a set of heterogeneous first-order theorem provers. Similarly to
our approach, partial results in Techs are exchanged between the different the-
orem provers in form of clauses. The main difference to the work of Denzinger
et al. (and other related architectures like [14]) is that our system bridges be-
tween higher-order and first-order automated theorem proving. Also, unlike in
Techs, we provide a declarative specification framework for modelling exter-
nal systems as cooperating, concurrent processes that can be (re-)configured at
run-time. Related is also the work of Hurd [16] which realises a generic inter-
face between HOL and first-order theorem provers. It is similar to the solution
previously achieved by Tramp [18] in Omega, which serves as a basis for the
sound integration of ATPs into Ωants. Both approaches pass essentially first-
order clauses to first-order theorem provers and then translate their results back
into HOL resp. Omega. Some further related work on the cooperation of Is-
abelle with Vampire is presented in [19]. The main difference of our work to
the related systems is that while our system calls first-order provers from within
higher-order proof search, this is not the case for [16, 18, 19].

Future work is to investigate how far our approach scales up to more complex
problems and more advanced mathematical theories. In less trivial settings as
discussed in this paper, we will face the problem of selecting and adding relevant
lemmata to avoid immediate reduction to first principles and to appropriately
instantiate set variables. Relevant related work for this setting is Bishop’s ap-
proach to selectively expand definitions as presented in [10] and Brown’s PhD
thesis on set comprehension in Church’s type theory [11].

References

1. P. Andrews. An Introduction to mathematical logic and Type Theory: To Truth
through Proof. Number 27 in Applied Logic Series. Kluwer, 2002.

2. C. Benzmüller. Equality and Extensionality in Higher-Order Theorem Proving.
PhD thesis, Universität des Saarlandes, Germany, 1999.

3. C. Benzmüller. Extensional higher-order paramodulation and RUE-resolution.
Proc. of CADE-16, LNAI 1632, p. 399–413. Springer, 1999.

4. C. Benzmüller. Comparing approaches to resolution based higher-order theorem
proving. Synthese, 133(1-2):203–235, 2002.

5. C. Benzmüller, M. Jamnik, M. Kerber, and V. Sorge. Experiments with an Agent-
Oriented Reasoning System.Proc. of KI 2001,LNAI 2174, p.409--424. Springer, 2001.

6. C. Benzmüller and M. Kohlhase. LEO – a higher-order theorem prover. Proc. of
CADE-15, LNAI 1421. Springer, 1998.

7. C. Benzmüller and V. Sorge. A Blackboard Architecture for Guiding Interactive
Proofs. Proc. of AIMSA’98, LNAI 1480, p. 102–114. Springer, 1998.

8. C. Benzmüller and V. Sorge. Ωants – An open approach at combining Interactive
and Automated Theorem Proving. Proc. of Calculemus-2000. AK Peters, 2001.

9. C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber. Can a Higher-Order and a
First-Order Theorem Prover Cooperate? Proc. LPAR’04, LNAI 3452, Montevideo,
Uruguay. Springer, 2005.

57

10. M. Bishop and P. Andrews. Selectively instantiating definitions. Proc. of CADE-

15, LNAI 1421. Springer, 1998.
11. C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Dept. of

Mathematical Sciences, Carnegie Mellon University, USA, 2004.
12. H. de Nivelle. The Bliksem Theorem Prover, Version 1.12. Max-Planck-Institut,

Saarbrücken, Germany, 1999. http://www.mpi-sb.mpg.de/ bliksem/manual.ps.
13. J. Denzinger and D. Fuchs. Cooperation of Heterogeneous Provers. Proc. IJCAI-

16, p. 10–15. Morgan Kaufmann, 1999.
14. M. Fisher and A. Ireland. Multi-agent proof-planning. CADE-15 Workshop “Using

AI methods in Deduction”, 1998.
15. H. Ganzinger and J. Stuber. Superposition with equivalence reasoning and delayed

clause normal form transformation. Proc. of CADE-19, LNAI 2741. Springer, 2003.
16. J. Hurd. An LCF-style interface between HOL and first-order logic. Automated

Deduction — CADE-18, LNAI 2392, p. 134–138. Springer, 2002.
17. M. Kerber. On the Representation of Mathematical Concepts and their Translation

into First Order Logic. PhD thesis, Universität Kaiserslautern, Germany, 1992.
18. A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduction

Proofs at the Assertion Level. Proc. of CADE-17, LNAI 1831. Springer, 2000.
19. J. Meng and L. C. Paulson. Experiments on supporting interactive proof using

resolution. Proc. of IJCAR 2004, LNCS 3097, p. 372–384. Springer, 2004.
20. R. Nieuwenhuis, Th. Hillenbrand, A. Riazanov, and A. Voronkov. On the evalua-

tion of indexing techniques for theorem proving. Proc. of IJCAR-01, LNAI 2083,
p. 257–271. Springer, 2001.

21. D. Pastre. Muscadet2.3 : A knowledge-based theorem prover based on natural
deduction. Proc. of IJCAR-01, LNAI 2083, p. 685–689. Springer, 2001.

22. A. Riazanov and A. Voronkov. Vampire 1.1 (system description). Proc. of IJCAR-

01, LNAI 2083, p. 376–380. Springer, 2001.
23. V. Sorge. OANTS: A Blackboard Architecture for the Integration of Reasoning Tech-

niques into Proof Planning. PhD thesis, Universität des Saarlandes, Germany, 2001.
24. G. Stenz and A. Wolf. E-SETHEO: An Automated3 Theorem Prover – System

Abstract. Proc. of the TABLEAUX’2000, LNAI 1847, p. 436–440. Springer, 2000.
25. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1.

Journal of Automated Reasoning, 21(2):177–203, 1998.

58

Benchmarks for Higher-Order Automated

Reasoning

Chad E. Brown

Universität des Saarlandes, Saarbrücken, Germany, cebrown@ags.uni-sb.de

For a higher-order system to be successful it should support users performing
tasks both large and small. Large tasks include interactive construction of large
theories, including storing definitions, theorems and proofs. Small tasks include
using automation to fill in small gaps in proofs. Consider the following theorem:

(C) If f is an n-tuple of complex numbers and fi = 0, then the product f1 · · · fn

of the n-tuple is 0.

In order to even state this theorem, one must first have already defined the
complex numbers, n-tuples of complex numbers and multiplication of such n-
tuples. If one defines the complex numbers using pairs of reals, defines the reals
using Dedekind cuts, and so on, then it is unrealistic to expect a system to
automatically prove this theorem. On the other hand, suppose we include the
following as a hypothesis:

(A) Any n-tuple of complex numbers has product 0 iff there exists some j
between 1 and n such that fj = 0.

Proving the first from the second (i.e., [A ⊃ C]) is a minor exercise in logic
and is precisely the sort of gap automation should be able to fill. Such problems
are not trivial, however, since an automated system might consider any number
of irrelevant possibilities during proof search. This is especially true once one
begins expanding definitions.

The example above comes from Jutting’s translation of Landau’s Grundlagen
der Analysis [6] into Automath [5]. This formalization was recovered and restored
by Wiedijk [7]. We are now in the process of porting the definitions and theorems
from the Automath signature into Church’s Type Theory, a form of higher-order
logic based on simple type theory [2, 4]. However, we are not translating the
Automath proof objects to Church’s Type Theory. Consequently, one obtains
thousands of unproven theorems such as C.

For each such theorem C, one can attempt to prove C in isolation (possi-
bly making use of axioms such as description, choice, extensionality or infinity).
For most theorems this is unrealistic since the gap between the axioms and the
theorem is simply too wide. On the other hand, one can take all axioms and
previously proven theorems A1, . . .Am and try to prove C follows from the con-
junction of A1, . . .Am. This is generally unrealistic for two reasons. Firstly, the
formula becomes too large for automated search once m becomes large. Secondly,
if some Ai contains type variables, then one must find a way to instantiate these

59

type variables during the search for a proof. A third alternative is the most real-
istic. We provide precisely the relevant axioms and previously proven theorems,
with the correct type variable instantiations, and try to prove C follows. In gen-
eral, of course, we cannot know which of the Ai’s are relevant. However, for the
Grundlagen theorems, we can extract this information from the Automath proof
terms. Using this information, we obtain thousands of theorems of the form

[A′

i1
∧ · · · ∧ A′

ik
] ⊃ C

where A′

i1
is Ai1 with types instantiated appropriately.

Most such theorems correspond to a step given by a single line in the Au-
tomath code. For this reason, one can expect most of the theorems to have rea-
sonably short proofs. On the other hand, Automath has a stronger type system
than simple type theory, so one step in Automath may correspond to many steps
in the simply typed version. (Intuitively, what was type checking in Automath
becomes deduction in Church’s type theory.)

This corpus of theorems can be used to empirically test the automated fa-
cilities of a higher-order reasoning system. The hope is that such a corpus can
provide reasonable, practical benchmarks for judging the effectiveness and effi-
ciency of systems and procedures. We report on the initial results of applying
the theorem prover Tps [1, 3].

References

1. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning,
and Hongwei Xi. TPS: A theorem proving system for classical type theory. Journal
of Automated Reasoning, 16:321–353, 1996.

2. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To

Truth Through Proof. Kluwer Academic Publishers, second edition, 2002.
3. Chad E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, De-

partment of Mathematical Sciences, Carnegie Mellon University, 2004.
4. Alonzo Church. A Formulation of the Simple Theory of Types. Journal of Symbolic

Logic, 5:56–68, 1940.
5. L. S. Jutting. Checking Landau’s ”Grundlagen” in the AUTOMATH system. PhD

thesis, Eindhoven Univ., Math. Centre, Amsterdam, 1979.
6. E. Landau. Grundlagen der Analysis. Leizig, 1930.
7. Freek Wiedijk. A new implementation of Automath. J. Autom. Reasoning, 29(3-

4):365–387, 2002.

60

Co-Synthesis of New Complex Selection
Algorithms and their Human Comprehensible

XML Documentation

Jutta Eusterbrock

JEusterbrock@seamless-solutions.de

Abstract. In this paper, an approach for program and algorithm syn-
thesis within a higher-order framework is presented that allows us to
generate new algorithm structures together with readable documentation
which enable users to conveniently inspect the results of this synthesis
process. The synthesis approach is based on feature graphs as a higher-
order data type for specifying synthesis types like proof terms, theorems
and document types. The document synthesis method uses constructive
reasoning about a user-defined knowledge base to synthesise documents
from metaobjects which are composed of diagrams,text, and references
to articles, theorems and algorithms. The data format used for reasoning
is a variant of XML syntax and thus enables the organisation of compre-
hensive knowledge in XML repositories and the conversion of document
terms into LATEX, PDF or XHTML documents which can be displayed
by browsers.
This framework has been applied for the automated synthesis of several
new selection algorithms and their documentation. As one new result,
an algorithm that proves selecting the 4th element of 24 elements needs
at most 34 comparisons was synthesised using 50 seconds CPU time on
an AMD Athlon 3200. The correctness of the synthesised algorithm was
manually checked. It improves the known upper bounds for the specific
selection problems. The running time for synthesis is several orders of
magnitude more efficient than comparative approaches.

1 Introduction

The idea of automatically discovering solutions to mathematical conjectures or
proving the non-existence of solutions which are beyond human comprehension
is intriguing. In recent years, computers have been used for a number of famous
algorithmic problems to facilitate analysis based upon a detailed problem specific
formalisation. For instance, C. Lam proved that a projective plane of order 10
does not exist [Lam91]. As the “proof” took several years of computer search
(the equivalent of 2000 hours on a Cray-1), it is considered to be the most time-
intensive computer assisted single proof. Recently, G. Gonthier, a mathematician
who works at Microsoft Research in Cambridge, England, used the CoQ system
(cf. [Dev05]) to verify the computer supported proof of the famous Four Color

61

Theorem, which was originally proven in 1976 by Appel and Haken who used
computer programs to check a very large number of cases.

However, for a mathematician it is unsatisfying to know that there exists
a solution or no solution for a problem, because thousands, hundreds of thou-
sands or millions of states have been explored by a theorem prover whose rules
have been verified, and at the same time, not be able to comprehend the te-
dious machine-generated proofs and not be able to draw conclusions from the
automated proof.

In previous work [Eus92b] on automated algorithm synthesis, we designed
and implemented a metalevel methodology and system to assist algorithm syn-
thesis and the proof of lower complexity bounds. The system evaluated the search
process and derived new knowledge which was abstracted and added to a dy-
namically growing knowledge base. The system was applied to assist the proof
of a number-theoretic conjecture for the selection problem. It was possible to
prove the values for very small n within a few minutes on a Sparc Workstation.
Surprisingly, the system synthesised an algorithm which constructed a counter
example to a set of rules which should be verified by the system [Eus92a]. As
a side effect, an isolated counter-example for a published lower bound for the
selection problem was constructed. The computation took several days and the
machine generated proofs were cumbersome because the nested proof graphs
are hard to comprehend. However, treating proofs as graphs enables various
forms for generating explanations. In [EN96], a visualisation component was
implemented in order to assist the exploration of huge graphs. Techniques like
zooming, organising of graphs on various hierarchy levels, folding and unfolding
techniques enabled the interactive exploration of large graphs. However, it is
assumed that presenting algorithms by documents which are similar to scien-
tific or textbook descriptions, making use of different formats and establishing
links to published results is cognitively more appropriate for proof presentation
than uniform means such as visualisation techniques. Meanwile, XML-based data
formats have emerged as a standard for data encoding and exchange. XML doc-
uments can be comparatively easily converted into web pages, LATEX or PDF
document files which facilitate the display of natural language, graphics, math-
ematical symbols and references in an appropriate form.

In this paper, it is illustrated how XML based documentation for automati-
cally synthesised algorithms and programs can be generated from specifications
and proof terms and further processed by XML tools is analysed. Synthesised
theorems and programs should be presented at the right level of granularity such
that experts can check the automatically synthesised programs in the same way
as they verify a proof in a publication. The key to a solution is abstraction.
It is achieved by a higher-order formalisation of abstract synthesis objects and
document components and a higher-order approach towards automated synthe-
sis which raises the level of abstraction (cf. [Kre93]). A method is devised that
transforms program specifications and synthesised algorithms into documents
which include graphics, text, and references. The method is based upon gen-
eral correspondences between synthesis types and document types. User-defined

62

context-specific rules as how to decompose the proof graph, when to generate
lemmata and what kind of additional visual information to present at various
stages can be provided. The method has been applied to automatically synthe-
sise documents for new complex selection algorithms which were automatically
synthesised.

The paper is organised as follows. In section 2, the selection problem is in-
troduced. Section 3 gives an overview of the synthesis framework. In section 4,
the synthesis types and the building blocks of the metatheory for the encod-
ing of mathematical knowledge are defined. The document synthesis method
is exlained in section 5. Section 6 summarises some experimental results. Sec-
tion 7 concludes this paper. Appendix A contains the automatically synthesised
document for the automatically constructed new selection algorithm.

2 The Selection Problem

The selection problem is the problem of finding the i-th largest element, given a
set of n distinct unordered numbers, 1 < i < n. The special case i = !n/2" is the
median problem. The worst-case, minimum number of comparisons is denoted
by Vi(n). The problem goes back to Rev. C. L. Dodgson’s (aka Lewis Carroll)
essay on how prizes were awarded unfairly in tennis tournaments (see Knuth
[8:5.33]). In the classic book The Art of Computer Programming, Volume 2,
Sorting and Searching [Knu73a], D. Knuth introduces the problem and states
the combinatorial bounds for n ≤ 10. In [Eus85], the present author constructed
the formula Hi(n)

Hi(n) = n− i +
i−1∑

l=1

(!lg(
n− i + 2
i− l + 3

)"+ 2). (1)

It was shown in [Eus85] that the numbers Hi(n) unify the published results
for the worst-case behaviour of selection-algorithms as follows. For admissible
combinations of i, n the numbers Hi(n):

– match the exact numbers Vi(n) for i = 1, 2, 3 [Kis64,Knu73b,Aig82];
– are equal to or less than the lower bounds [Kis64,Yao74,FG79,Aig82,MP82,BJ85];
– are equal or greater than the upper bounds

[Kis64,HS69,BFP+73,FR75,SPP76,Yap76,Aig82,RH84]

known at that time. Furthermore, using the numbers Hi(n), novel combinatorial
algorithms for small values of i, n were constructed which prove the upper bounds
for small values of i, n:

Vi(n) ≤ Hi(n), iff i ≤ 4, n ≤ 14 and i ≤ 5, n ≤ 12. (2)

The approximate behaviour for the medians is given by the formula below

Hn/2(n) ≈ 2.5n− 3!lg(n + 4)"+ 5 (3)
63

The author stated the hypothesis Vi(n) = Hi(n) for all i, n. For all known upper
and lower bounds either Vi(n) ≥ Li(n) or Vi(n) ≤ Ui(n) with one exception
which will be described later on. The hypothetical formula for the median coin-
cides with the conjecture of Yao and the conjecture of Paterson Vn/2 ≈ 2.4094n.
In [Eus92b] we designed a system in order to assist the refinement of rules. Us-
ing this system, it was possible to prove the values for very small n within a
few minutes on a Sun Workstation. Surprisingly the system synthesised an al-
gorithm which proves V3(22) < H3(22) and thus constructed a counter example
to a set of rules which should be verified by the system [Eus92a]. The compu-
tation took several days. Computerised searches for the selection problem were
subsequently performed by [GKP96] and [Oks05] which use alpha-beta search, a
transposition table and some optimisations. Oksanen’s system constructs deci-
sion graphs which in summary suggest Vi(n) ≤ Hi(n), iff i ≤ 6, n ≤ 14. However,
it is also claimed that V5(12) ≥ 19 = H5(12)−1 while in [Eus85] an algorithm is
presented that proves V5(12) ≤ 18 and thus contradicts the automatically proven
statement. The constructed decision graphs presented in [Oks05] are too large
to comprehend and in the case i = 7, n = 14 consist of more than 600 nodes.

The process for constructing algorithms or lower bounds for selection prob-
lems is similar to minimum-comparison sorting. M. Peczarski has devised a
system and analysed the optimal lower bounds S(n) for sorting n elements,
n = 13, 14, 22 based on an algorithm for counting the linear extensions of partial
orders. The proof S(22) > 70 took 1740 hours on a computer with a 650 MHz
processor (cf. [Pec04]).

3 The Higher-order Synthesis Framework

In this paper, a reformalisation and reimplementation of our knowledge-based
synthesis framework, called SEAMLESS (cf. [Eus95]) is analysed. The synthesis
system consists of verified generic methods which take a specification as in-
put and generate metalevel proofs by metalevel reasoning about domain-specific
knowledge which may be interpreted as programs. The synthesis system evalu-
ates the search processes, generalises the case solutions which result from success-
ful and failed proof attempts and stores them for further reuse in the knowledge
base. A documentation synthesis component has been added. The document syn-
thesis component transforms specifications, derived theorems and synthesised
proofs into XML documents including graphical visualisations, references and
text. The XML documents can be converted by freely available tools into human-
readable documents in multiple formats such as XHTML, LATEX or PDF. The
resulting system structure is shown in Figure 1.

In order to achieve an integrated formal framework for the logic-based co-
synthesis of proofs and their documentation, principles of a higher-order logic of
program synthesis are applied (cf. [Kre93]). The core for the integration of the
different types of knowledge and the correct design of the synthesis methods is a
metatheory or, in other terms, an ontology. Types and higher-order predicates to
represent the structure of algorithm design knowledge fragments and properties

64

Fig. 1. Scenario for Knowledge-based Synthesis

or relationships between them have been defined. Figure 2 lists the major types
of the SEAMLESS framework.

Basic types Bool, Integer, Constants, Vars, String
Object logic Atom, Clause, Algebraic Expression, Constraint
Synthesis types Precondition, Postcondition, Program, Proof

Fig. 2. Types for Program Synthesis

In this paper, the notation of [Kre93] is adopted and used in a semi-formal
way. A definition New Object Type≡ Composition of Defined Object Types defines
a new object in terms of already existing object types. Meta theorems are written
in the form Goal ⇐ Subgoal1 ∧ . . . ∧ Subgoalr or they are stated as facts.

The Floyd-Hoare logic [Hoa69] is used for specifying the semantics of imper-
ative programs and to associate logical specifications with programs. In Floyd-
Hoare’s logic, triples of the form {Pre}Prog{Post} state that if program Prog
starts in an input state satisfying Pre then if and when Prog halts, it does so in
a state satisfying Post. Programs are sequences of statements. Hoare provided
a set of logical rules in order to reason about the correctness of computer pro-
grams. It is well-known that the Floyd-Hoare rules and axioms can be embedded
in higher order logic and become derived rules. In the SEAMLESS framework,
a statement is a variable assignment, procedure or conditional. Loop statements
together with their specifications can be added to the knowledge base, however,
their automatic synthesis is currently not supported as it is based on non-trivial

65

mathematical induction. Consequently, the key conceptual building elements
of the SEAMLESS theory include the abstractions precondition, postcondition,
proofs which may be interpreted as programs, and, moreover, range constraints
for a cost function as part of the postcondition. The metatheory is defined in
terms of generic predicates and formal axioms for them which provide correctness
axioms for the suitable domain theories. For example, the correctness axiom for
the higher-order predicate Know states that a proof for the validity of a Hoare
triple is known.

Know(Pre, Post, Prog, True) ≡ * {Pre}Prog{Post}

Domain-specific design knowledge can be provided by definitions for the
open generic higher-order predicates, if the correctness axioms are satisfied.
The SEAMLESS knowledge base of the system entails theorems which are re-
lations among truth values, specifications and programs. They are stated as
higher-order theorems, once types for the corresponding abstractions and the
semantics of the higher-order predicates have been defined. In this application
scenario, the knowledge bases contain published domain specific theorems about
the complexity of selection problems, as summarised in section 2, and various
related algorithms encoded as arguments of the higher-order predicate Know.
The knowledge base of the synthesis system also comprises theorems whose proof
is only given by a bibliographic reference to the corresponding document.

Generic synthesis methods have been derived from the generic predicates
as metatheorems. The proofs-as-programs paradigm is adapted to the Hoare
logic for the purpose of extending it to synthesising imperative programs. A
synthesis method is a set of rules including metavariables for programs which
are instantiated while proving the synthesis task. A very basic synthesis strategy
is to retrieve solutions from the knowledge base which is specified below.

Synthesis(Pre, Prog, Post, Bool) ⇐ Know(Pre, Prog, Post, Bool)

Experience has shown that theorems as they are published in the literature
are often not directly applicable for solving a problem specification. Equivalences,
generalisations, and reductions are considered to establish semantic relations
between specifications and the theorems in the literature to obtain proofs. These
relations can be modelled by corresponding higher-order predicates.

4 Graphterms as a Higher-order Datastructure and XML

The extensible Markup Language (XML) has emerged as a quasi-standard for
knowledge exchange, document processing and Web applications. XML is a met-
alanguage used to create generalised markup languages. XML annotations facili-
tate the retrieval of document fragments based upon their semantic annotations.
The focus in this paper is on a more convenient and efficient data structure than
arbitrary terms for the organisation of the knowledge fragments. The data struc-
tures are optimised in order

66

– to facilitate the automatic synthesis of human comprehensible XML-based
documents;

– to elicit the interplay between design knowledge - which has been published
in scientific documents and Web resources - and the corresponding encoding
as theorem in the knowledge base of a reasoning system;

– to tackle the huge search complexities.

Linear (serial) term representations, named graphterms, were devised as a data
structure for the encoding of labelled DAGs and feature graphs [Eus97]. Graph-
terms (cf. [Eus01,Eus97]) are used as the core data structure to encode formalised
knowledge fragments in SEAMLESS.

Definition 1 Suppose that there are given an infinite set of variables, a set of
features, and a set of constants. From features, constants attribute variables, and
variables, terms are constructed, if features are seen equivalently as binary pred-
icates that must be interpreted as functional relations. Let f be a feature symbol,
X a variable. A feature graphterm is an expression f(X, Graphtermlist), where
Graphtermlist is either the empty list [], or denotes a list of constants, variables
and feature graphterms.

To ensure that graphterms are directed acyclic graphs, further axioms constrain
the valid terms. A graphterm algebra, that is term rewriting operations that
implement graph operations and canonical forms for classes of isomorphic objects
was constructed (cf. [Eus97]). Composed types can be defined using feature
graphs and the objects of a type are instantiated feature graphs. The following
assertion defines a type Spec

Spec([Id = No], [Pre([], [Pre]), Post([], [Post])]) ⇐
Conjunction of Atom(Pre) ∧ Conjunction of Atom(Post).

Each attribute variable of a feature graph may be instantiated by a thuslist of
attributes. In the examples above, specifications are assigned the attribute iden-
tifier. Attributes don’t change the logical semantics of the terms, however, they
may be used to design more efficient synthesis methods. It is possible to attach
hash values to a graphterm by means of attributes. Objects may be substituted
by references to them. An algorithm reference can be an automatically generated
counter, e.g., Alg12345. Then it refers to an automatically generated object in
the knowledge base or it refers to published algorithms, e.g., Kislitsyn,Aigner
which were constructed outside the synthesis system. The use of references fa-
cilitates sharing of terms. It decreases the size of the knowledge base and makes
relationships more obvious. The encoding of knowledge is demonstrated by the
higher-order formula 4.

Know([], P re([], [poset]), P rog([Id = id,Refid = Kislitsyn], []),
Post([], [Select(i, poset), Bound(r..r)), T rue) ⇐

i = 2 ∧ Forest(poset) ∧ CostK(poset) = r. (4)
67

The advantage of using graphterms for encoding higher-order formulas is
that feature graphterms directly correspond to XML Document Type Defini-
tions (DTDs) and the instantiated ground terms are syntactic variants of XML
(cf. [Eus01]). This facilitates the storing and maintenance of structured design
knowledge fragments in XML repositories or XML databases, their retrieval
based upon semantic annotations, and at the same time enables formal reason-
ing about them.

5 Higher-order XML-based Document Synthesis

To an increasing degree widely used XML Document Type Definitions like Doc-
Book are being used for the structuring and mark-up of software documentation
and scientific publications. Common document structuring elements are, for ex-
ample, figure, graphics, theorem, proof or enumeration. These XML documents
then can be transformed into different target formats like LATEX, XHTML or
PDF and provided with a professional layout using freely available tools. Docu-
ment synthesis is a process that automatically generates a complete structured
document. In this section, how to synthesise documents, given a program speci-
fication and its proof will be examined.

In order to enable constructive synthesis of documentation, a subset of the
tbook DTD is used to formalise the types of the theory for document syn-
thesis. The tbook DTD was chosen because it is an XML file format that is
suitable for scientific texts, but it is also as simple and small as possible, uses
similar names to LATEX and it accepts MathML’s presentation and contents
markup. The tbook tools for XML authoring (cf. [Bro05]) may be used to
transform the XML document into XHTML, DocBook or LATEX documents.
The tbook document types are used in the SEAMLESS knowledge base to
model document structure. Type definitions are encoded by non-ground facts
using feature graphs as knowledge representation format. The simplified doc-
ument type is sketched in Figure 3. Automatic document synthesis is imple-

Document ≡ Sequence of Header and Body
Body ≡ Sequence of Theorems or Lemmata and their Proofs
Theorem, Lemma ≡ Sequence of Statements or Enumeration of Items
Proof ≡ Sequence of Statements or Enumeration of Items
Item, Statement ≡ Natural language sentence, Figure, Reference or Algebraic expression

Fig. 3. Simplified Document Type

mented by the generic method Doc synthesis which when invoked by a goal
⇐ Doc synthesis([spec,proof],docterm), given a pair [spec,proof], causes the in-
stantiation of the metavariable docterm by a document term that describes
the document structure. Scripts are provided that convert document terms of
type document into the corresponding XML syntax. The resulting documents

68

can be processed by the tbook tools. The synthesised method is formalised by
higher-order predicates which relate programming types and document types. A
method which creates the basic document structure is outlined in Figure 4 and
need to be augmented by the specifications for the methods Doc syn theorem,
Doc syn proof , Doc syn lemmata:

– Doc syn theorem synthesises theorem content from formal specifications.
– Doc syn proof generates the proof content and a set of proof cases which

shall be treated as lemmata.
– Doc syn lemmata generates the presentation for the proof cases.

Doc syn([spec, proof], doc)⇐ Doc header(header)∧
Doc body([spec, proof], body)∧
doc = Document(att, [header, body]).

Doc body([spec, proof], body)⇐ Doc theorem(spec, theo)∧
Doc proof(proof, doc proof, subcases)∧
Doc syn lemmata(subCases, seq lem proof))∧
body = Body(att, [theo, doc proof, seq lem proof].

Fig. 4. Skeleton of the document synthesis method

The above synthesis skeleton prescribes the main structure of the document to be
synthesised. Specifications are mapped into theorems and programs into proofs.
However, the content of these elements needs to be determined in more detail.
It requires the partition of the specifications and their proofs into manageable
parts, each part should be presented adequately, avoiding low-level details, but
compiling all the information which is necessary for the comprehension of a proof
part and required to keep the coherence between the parts. Each of the 3 methods
Doc syn theorem, Doc syn proof, Doc syn lemmata is realised as a divide-and-
conquer strategy. The specifications of the generic methods consist of metarules
which define how to decompose the program synthesis fragments and how to
compose the document fragments. Synthesis involves various decisions which
are based on context-specific knowledge:

– how to decompose the program into subprograms which are represented as
one major step;

– when to use graph visualisations or textual explanations for proof parts;
– which parts of the proof graph to split and to treat separately as lemmata.

The knowledge base of the document synthesiser can be augmented by heuristic
layout knowledge, e.g., “acceptable” sizes for decision trees. The knowledge base
entails parameterised text templates which are associated with corresponding
objects of the program synthesis theory. The graph visualisation tool graphviz
[Res05] is called on demand to generate graph layouts in the desired format.

69

6 Experimental Results

A previous version of SEAMLESS included generic methods for synthesis and
machine learning which were devised independently of the data structure used
for knowledge encoding. Domain specific knowledge was provided through an in-
termediate component as definitions for open generic predicates. The system was
used to prove V3(22) ≤ 28 which constructed a counter example for a published
theorem. Although the time for constructing the algorithm that has verified
V3(22) ≤ 28 was not exactly measured, the computation had taken several days
on a Sun Solaris workstation.

The system has been partially reimplemented by reusing the formally correct
generic methods, however, changing the implementation of the data structures
and the knowledge representation format. The knowledge representation schema
and graph-based data structure which have been devised in this paper have been
used to structure and implement the specialised domain knowledge about the
selection problem. Indexing techniques for graphs have been introduced to tackle
the huge search complexities structure. The results of these changes are

1. a radical improvement of the search complexities;
2. more abstract well-defined metalevel proofs with a higher degree of reuse

which is reflected by references and links to objects and theorems;
3. a clearer distinction between informal or formal knowledge which has been

derived outside of the system and automatically derived knowledge.

This implementation was used to re-synthesise algorithms for small n and it
could be automatically proven that Vi(n) ≤ Hi(n), 1 ≤ i ≤ 6, 1 ≤ n ≤ 14.
In addition, the implementation was used to automatically synthesise various
new complex algorithms which prove V4(21) ≤ 30, V4(23) ≤ 33, V4(24) ≤ 34,
V4(25) ≤ 35 and V4(26) ≤ 26 and confirm the number-theoretic hypothesis for
the selection problem.

The re-implementation was experimentally analysed on an Athlon 3200 64
bit computer with 1 GB memory and on a 1.3 GHZ Intel Centrino laptop with
512 MB memory. In this experimental application scenario, Yap Prolog turned
out to be the fastest Prolog compared against Sicstus, GNU, B and SWI Prolog.
In Figure 6 some complexity indicators for automated synthesis are collected: 1)
a small example whose solution is described in the classic book by Knuth; 2) a
more complex example; 3) the previously discovered selection algorithm which
took days and now can be handled within seconds; 4) much more complex prob-
lems whose solutions improve the known upper bounds and confirm the stated
hypothesis. The test environment was as follows: a) Centrino + Yap Prolog, b)
Centrino + SWI Prolog, c) Athlon 3200 + Yap Prolog, d) Athlon 3200 + SWI
Prolog. Some experimental results are summarised in Figure 5. The CPU time
is measured in seconds. During the synthesis process, for each case solution, a
canonical form is computed that represents the solution up to isomorphism. The
abstracted case solutions can be reused and adapted. The number of generated
case solutions for isomorphism classes is given in the last column of the table. A
missing entry means that a solution couldn’t be constructed within a couple of

70

hours. It should be noted that these indicators are snapshots of an implementa-
tion in progress. Each minor modification may alter the search space. This can
decrease or increase the complexities to solve a problem drastically.

Spec a b c d #examined isomorphism classes
V4(7) ≤ 10 0.026 0.05 0.014 0.01 68
V3(22) ≤ 28 1.87 8.6 0.84 2.93 3,062
V4(14) ≤ 21 9.0 56.0 3.3 18.1 12,122
V4(21) ≤ 30 52.0 996.4 19.3 321.2 61,859
V4(23) ≤ 33 288.9 16,239.7 107.1 5,210.2 277,178
V4(24) ≤ 34 136.8 6,163.3 50.4 1,951.6 127,572
V4(25) ≤ 35 390.4 – 146.5 13,034.3 362,458
V4(26) ≤ 36 – – 525.1 – 1,048,665

Fig. 5. Complexity indicators for correct search

In all experimental analysed cases, it can be experimentally verified that
reuse of derived knowledge from previous proof searches when solving new prob-
lems improves the search complexities by up to 25%. Although the system is
able to examine around 1,500,000 isomorphic states in less than one half hour
and store them in 1 GB memory, the complexities of the selection problem fairly
soon exceed the capabilities of the system. The experiments also showed that
when using the computers to full capacity, odd runtime errors occur, e.g., unin-
stantiated variables, which cannot attributed to programming errors.

The reuse and knowledge-based synthesis approach generates proof graphs
whose size has been decreased enormously compared to the uniform approaches.
However, taking the constructed selection algorithms, in most of the more com-
plex cases, the sizes of the generated decision graphs are still unsatisfying, be-
cause they cannot be manually checked with reasonable effort.

The generic synthesis method is based upon a 3-valued logic. Heuristic know-
ledge marked with the truth value Maybe can be provided. In order to decrease
the sizes of the proof graphs various incorrect lower bounds were experimentally
added to the knowledge base. The simplest form of an incorrect lower bound
is a depth restriction. The incorrect lower bounds restrict the search space.
Employing these heuristics, an unsuccesful search may yield the result Maybe.
Using heuristic search a solution for V4(24) ≤ 34 could be constructed within 6.5
secs, having examined 13695 isomorphism classes and having used Yap Prolog
on the AMD Athlon 3200. The size of this proof graph was also substantially
decreased.

The generated graph is still too large to be easily comprehensible, therefore
it is embedded in a system-generated documentation which provides a mathe-
matically skilled reader background information about the proofs, such as cases
which can be reduced to problems known from the literature, or are solved using
the dedicated lemmata. The automatically synthesised documentation of this
automatically synthesised algorithm is presented in appendix A.

71

A major advantage of combining higher-order program synthesis and doc-
ument synthesis is that the generated proof terms describe programs at the
algorithmic abstraction level. There is no need to raise the level of abstraction
or to integrate a planning module into the document synthesis component. The
synthesised document is a direct mapping from specifications and proofterms. An
improved knowledge base of the system directly causes an improved documen-
tation. Comprehensibility depends on the size of the automatically synthesised
proof graphs. For small i, n the automated co-synthesis of algorithms and their
documentation achieves human-comprehensible documents. For complex prob-
lems, synthesis of proof terms of reasonable sizes is an experimental endeavour.

7 Conclusions and Related Work

In [Kre93], it has been stated “We believe that a formalization of the metatheory
of programming is one of the most important steps towards the development of
program synthesisers which are flexible and reliable and whose derivations are
both formally correct and comprehensible for human programmers.” As a step
towards this objective, this paper has experimentally analysed the interplay be-
tween mathematical documents and knowledge-based algorithm synthesis based
upon a metatheory for structuring problem solving knowledge. Structuring ele-
ments are identified to formalise algorithm design knowledge which is implicit in
scientific documents and include abstractions like pre- and postconditions based
upon the Floyd-Hoare program logics. Types, higher-order predicates and syn-
thesis methods have been defined. The resulting framework is more fine-grained
than related approaches for program synthesis which are based upon higher-
order logic or proof planning [Kre93,IS04,RicCA]. The SEAMLESS framework
also aims at the formalisation of heuristic problem solving strategies and resource
restrictions. The framework devised has been applied to structure comprehensive
knowledge relating to the selection problem and encode it for use in a knowledge
base. The knowledge base has been used for the synthesis of complexity bounded
algorithms using generic methods that were previously devised. Extended graph-
terms are used as the core data structure for knowledge encoding. They provide
the key for the efficiency of the implementation as they support various optimi-
sation techniques. The huge search complexities are tackled by a combination
of indexing techniques, isomorphism abstraction, machine learning and knowl-
edge reuse through references. It was possible to synthesise several new complex
selection algorithms which improve known bounds and confirm our hypothesis.

Based upon the higher-order synthesis framework, a method that synthe-
sises human-comprehensible XML-based documents from specifications and con-
structed proofs has been devised and implemented. The synthesised documents
include diagrams and references to reused knowledge. The method has been ap-
plied for the automatic synthesis of documentation for automatically synthesised
algorithms. It allows logic-based synthesis of documents on a higher abstraction
level than a number of current low-level XML-based approaches which aim at the
exchange or presentation of arbitrary mathematical documents, Website synthe-

72

sis or program documentation and merely exploit the correspondences between
XML data and logical terms, e.g., [BDHG,LR03,SR01]. The presented framework
distinguishes itself from related approaches (cf. [Pec04,GKP96,Oks05]) in which
computer have been used for the complexity analysis of unsolved mathematical
problems. The results synthesised by SEAMLESS are constructive, comprehen-
sible and can be manually checked for correctness, provided that the sizes of the
generated proof graphs are reasonable. In one case, it was possible to synthe-
sise a new complex algorithm of reasonable length, and, thus the synthesised
documentation is comprehensible (cf. Appendix A).

Our future work will include experimental work on automated abstraction
to decrease the size of the generated algorithms and to get more abstract ex-
planations for series of single proof steps or comprehensive decision trees. The
objective is to discover a few rules which describe new correct algorithms for
infinitely many n.

References

[Aig82] M. Aigner. Selecting the top three elements. Discrete Applied Mathematics,
4:247–267, 1982.

[BDHG] Dietmar A. Seipel, Bernd D. Heumesser and Ulrich Güntzer. An expert
system for the flexible processing of XML-based mathematical knowledge in
a Prolog-environment.

[BFP+73] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds
for selection. J. Comp. Syst. Sci., 7:448–461, 1973.

[BJ85] S.W. Bent and J.W. John. Finding the median requires 2n comparisons. In
Proc. 17th ACM Symposium Theory of Computing, pages 213–216, 1985.

[Bro05] Torsten Bronger. The tbook system for XML authoring.
http://tbookdtd.sourceforge.net, 25.9.2005.

[Dev05] Keith Devlin. Last doubts removed about the proof of the four color theorem.
http://www.maa.org/devlin/devlin 01 05.html, January 2005.

[EN96] J. Eusterbrock and M. Nicolaides. The visualization of constructive proofs
by compositional graph layout: A world-wide web interface. Proc. CADE
Visual Reasoning Workshop, Rutgers University, 1996.

[Eus85] J. Eusterbrock. Ein rekursiver Ansatz zur Bestimmung der Anzahl von
Vergleichen bei kombinatorischen Selektionsproblemen. Diplomarbeit, Uni-
versität Dortmund, 1985.

[Eus92a] J. Eusterbrock. Errata to “Selecting the top three elements” by M. Aigner:
A Result of a computer assisted proof search. Discrete Applied Mathematics,
41:131–137, 1992.

[Eus92b] J. Eusterbrock. Wissensbasierte Verfahren zur Synthese mathematischer
Beweise: Eine kombinatorische Anwendung, volume 10 of DISKI, 1992.

[Eus95] J. Eusterbrock. SEAMLESS: Knowledge based evolutionary system synthe-
sis. ERCIM News, 23, October 1995.

[Eus97] J. Eusterbrock. Canonical term representations of isomorphic transitive
DAGs for efficient knowledge-based reasoning. In Proceedings of the In-
ternational KRUSE Symposium, Knowledge Retrieval, Use and Storage for
Efficiency, pages 235–249, 1997.

73

[Eus01] J. Eusterbrock. Knowledge mediation in the world-wide web based upon
labelled dags with attached constraints. Electronic Transactions on Artificial
Intelligence, 5:”http://www.ida.liu.se/ext/epa/ej/etai/2001/D”, 2001.

[FG79] F. Fussenegger and H.N. Gabow. A counting approach to lower bounds for
selection problems. J. Assoc. Comput. Mach., 26:227–238, 1979.

[FR75] R.W. Floyd and R.L. Rivest. Expected time bounds for selection. Comm.
ACM, 18:165–172, 1975.

[GKP96] William Gasarch, Wayne Kelly, and William Pugh. Finding the ith largest
of n for small i,n. SIGACT News, 27(2):88–96, 1996.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. CACM,
12(10):576–581, 1969.

[HS69] A. Hadian and M. Sobel. Selecting the t-th largest using binary errorless
comparisons. In P. Erdös, A. Renyi, and V.T. Sos, editors, Combinatorial
Theory and its Applications II, pages 585–600. North Holland, 1969.

[IS04] A. Ireland and J. Stark. Combining proof plans with partial order planning
for imperative program synthesis. Journal of Automated Software Engineer-
ing, Accepted for publication, 2004.

[Kis64] S. S. Kislitsyn. On the selection of the k-th element of an ordered set by
pairwise comparisons. Sib. Mat. Z., 5:557–564, 1964.

[Knu73a] D.E. Knuth. Fundamental algorithms, volume 1 of The Art of Computer
Programming. Addison Wesley, Reading, MA, 1973.

[Knu73b] D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro-
gramming. Addison Wesley, Reading, MA, 1973.

[Kre93] Chr. Kreitz. Metasynthesis - deriving programs that develop programs. Ha-
bilitationsschrift, Technische Hochschule Darmstadt, 1992.

[Lam91] Clement Lam. The search for a finite projective plane of order 10. American
Mathematical Monthly, 98:305–318, 1991.

[LR03] S. Leung and D. Robertson. Automated website synthesis.
http://www.ukuug.org/events/linux2003/papers/leung.pdf, 2003.

[MP82] J.I. Munro and P.V. Poblete. A lower bound for determining the median.
Technical report, University of Waterloo Research Report CS-82-21, 1982.

[Oks05] Kenneth Oksanen. Selecting the ith largest of n elements.
http://www.cs.hut.fi/ cessu/selection/, 2005.

[Pec04] Marcin Peczarski. New results in minimum comparison sorting. Algorith-
mica, 40:133–145, 2004.

[Res05] AT&T Research. Graphviz - graph visualization software.
http://www.graphviz.org/, 25.9.2005.

[RH84] P.V. Ramanan and L. Hyafil. New algorithms for selection. J. of Alg.,
1:557–578, 1984.

[RicCA] C.S Richardson, J.D. Proof planning and program synthesis: a survey. In
Logic-Based Program Synthesis: State-of-the-Art & Future Trends, AAAI
2002 Spring Symposium, March 25-27, 2002, Stanford University, CA.

[SPP76] A. Schönhage, M. Paterson, and N. Pippenger. Finding the median. J.
Comp. System Sci., 13:184–199, 1976.

[SR01] Johann Schumann and Peter Robinson. [] or success is not
enough: Current technology and future directions in proof presentation.
http://www.cs.bham.ac.uk/ mmk/events/ijcar01-future/, 2001.

[Yao74] F.F. Yao. On lower bounds for selection problems. Technical report, TR-121,
MIT, Project Mac, Cambridge, Mass., 1974.

[Yap76] C.K. Yap. New upper bounds for selection. Comm. ACM, 19:501–508, 1976.

74

A Automatically Synthesised Documentation1

Select(4,24)

c©Jutta Eusterbrock

theorem 1 V4(24) ≤ 34

Proof. Let KEYS be a totally ordered set, |KEY S| = 24. The 4 -th largest element of
KEYS is computed by Algorithm 1. The computation takes in the worst-case at most
34 comparisons.

algorithm 1

1. Partition the set KEYS into disjoint subsets |K1| = 16, |K2| = 8. Determine the
maxima of K1,K2 by setting-up balanced tournaments. The resulting poset is iso-
morphic to the poset as shown in Figure 6. For setting-up the balanced tournaments
22 comparisons are needed.

 a1

 a9 a5 a3 a2

 a13 a11 a10 a7 a6 a4

 a15 a14 a12

 a16

 a8

 a17

 a21 a19 a18

 a23 a22 a20

 a24

Fig. 6. Balanced Tournaments of Set Partition

1This is an automatically composed documentation of a new, automatically
synthesised algorithm Select(4, 24) with the worst-case complexity V4(24) ≤ 34.
Based on the proof structure derived during the synthesis, the system selected,
instantiated, and composed appropriate text templates to generate the explanatory
text and document structure. The graphs were visualised by the graphviz system. The
proof was checked for correctness by the present author.

75

2. Perform the comparisons in accordance with the decision graph in Figure 7. The
nodes in the decision graph represent:
(a) Comparisons X : Y , shown as circles. The left child node represents the case

X > Y and the right one the case X < Y .
(b) Subgraph place holders, shown by references to a diamond which correspond

to solutions which can be obtained by instantiating theorems and algorithms
known from published literature. The cases 1, 27, 48, 49, 739, 743, 744, 873,
874, 7772, 7773, 7823, 7824, 7839, 7840 are instances of published theorems.

(c) Place holders for calls to simplification functions, especially isomorphism func-
tions, which are denoted by boxes. There are two type of function calls. Firstly,
solutions for the simplified subcases are represented by a subgraph which is then
referenced. This concerns case 7844. Secondly, in some situations more detailed
explanations for the simplified subcases, e.g, lemmata, have been generated. In
the given decision graph, the cases 876 and 7775 are handled separately.

 a9-a17

 a17-a5

 a3-a19

 a17-a3 a13-a3 a3-a21

7844

1

 a13-a3 a13-a5 a9-a5

kislitsyn

 [5, 40.0] 27

 a9-a3

 [4, 12.0] 48 49

 [4, 12.0] [3, 18.0]

739

 a9-a5 a9-a3 876

 [4, 20.0] 743 744

 [4, 20.0] [4, 20.0]

873 874

 [5, 16.0] [3, 18.0]

 a3-a5 a5-a21

 a17-a3 7775 a17-a5 a1-a21

7772 7773

 [4, 26.0] [4, 22.0]

7823 7824 7839 7840

 [4, 18.0] [4, 12.0] [4, 26.0] [4, 20.0]

Fig. 7. Decision Tree

3. Generate solutions for specific cases:
– Case 876 is described as follows. Let P be the poset as visualised in Figure 8. It

needs to be proven V3(P) ≤ 8. The specification is up-to-isomorphism handled
by Lemma 1.

– Case 7775 is described as follows. Let P be the poset as visualised in Figure 9. It
needs to be proven V3(P) ≤ 8. The specification is up-to-isomorphism handled
by Lemma 2.

76

 a5

 a6 a7 a9

 a8 a10 a11 a17

 a3

 a4

 a12 a18 a19 a21

 a2

 a20 a22 a23

 a24

Fig. 8. Poset P

 a5

 a3 a6 a7

 a4 a8

 a17

 a18 a9

 a10 a11 a13

 a2

 a12 a14 a15

 a16

Fig. 9. Poset P

lemma 1 Let P be a poset as visualised in Figure 10. The 3-rd largest element of P
can be computed by at most 8 comparisons.

Proof. algorithm 2

1. Compare a9 and a3.
(a) a9 > a3. a9 is greater than the 3-rd largest element and is reduced. The result-

ing poset P satisfies the precondition of the algorithm [Kis64]. Hence, selecting
the 2-nd largest element takes at most f(5,14.0)=7 comparisons.

(b) a9 < a3. a3 is greater than the 3-rd largest element and is reduced. The result-
ing poset P satisfies the precondition of the algorithm [Kis64]. Hence, selecting
the 2-nd largest element takes at most f(3,10.0)=5 comparisons.

77

 a9

 a10 a11 a5

 a12 a17 a6 a7

 a3

 a4

 a18 a19 a21 a8

 a2

 a20 a22 a23

 a24

Fig. 10. Poset P

lemma 2 Let P be a poset as visualised in Figure 11. The 3-rd largest element of P is
computed by at most 8 comparisons.

 a5

 a3 a6 a7

 a4 a8

 a2 a17

 a18 a9

 a10 a11 a13

 a12 a14 a15

 a16

Fig. 11. Poset P

Proof. algorithm 3

1. Compare a5 and a17.
(a) a5 > a17. a5 is greater than the 3-rd largest element and is reduced. The result-

ing poset P satisfies the precondition of the algorithm [Kis64, kislitsyn]. Hence,
selecting the 2-nd largest element takes at most f(5,10.0)=7 comparisons.

(b) a5 < a17. a17 is greater than the 3-rd largest element and is reduced. The
resulting poset P satisfies the precondition of the algorithm [Kis64]. Hence,
selecting the 2-nd largest element takes at most f(4,18.0)=7 comparisons.

78

Mixing Finite Success and Finite Failure

in an Automated Prover

Alwen Tiu1, Gopalan Nadathur2, and Dale Miller3

1 INRIA Lorraine/LORIA
2 Digital Technology Center and Dept of CS, University of Minnesota

3 INRIA & LIX, École Polytechnique

Abstract. The operational semantics and typing judgements of mod-
ern programming and specification languages are often defined using re-
lations and proof systems. In simple settings, logic programming lan-
guages can be used to provide rather direct and natural interpreters for
such operational semantics. More complex features of specifications such
as names and their bindings, proof rules with negative premises, and the
exhaustive enumeration of state spaces, all pose significant challenges
to conventional logic programming systems. In this paper, we describe
a simple architecture for the implementation of deduction systems that
allows a specification to interleave between finite success and finite fail-
ure. The implementation techniques for this prover are largely common
ones from higher-order logic programming, i.e., logic variables, (higher-
order pattern) unification, backtracking (using stream-based computa-
tion), and abstract syntax based on simply typed λ-terms. We present a
particular instance of this prover’s architecture and its prototype imple-
mentation, Level 0/1, based on the dual interpretation of (finite) success
and finite failure in proof search. We show how Level 0/1 provides a high-
level and declarative implementation of model checking and bisimulation
checking for the (finite) π-calculus.

1 Introduction

The operational semantics and typing judgements of modern programming and
specification languages are often defined using relations and proof systems, e.g.,
in the style of Plotkin’s structural operational semantics. In simple settings,
higher-order logic programming languages, such as λProlog and Twelf, can be
used to provide rather direct and natural interpreters for operational seman-
tics. However, such logic programming languages can provide little more than
animation of semantic descriptions: in particular, reasoning about specified lan-
guages has to be done outside the system. For instance, checking bisimulation
in process calculi needs analyzing all the transition paths a process can poten-
tially go through. To add to the complication, modern language specifications
often make use of complex features such as variable bindings and the notion
of names (as in the π-calculus [MPW92]), which interferes in a non-trivial way
with case analyses. These case analyses cannot be done directly inside the logic

79

programming system, not in a purely logical way at least, even though they are
simply enumerations of answer substitutions. In this paper, we describe an ex-
tension to logic programming with logically sound features which allow us to do
some modest automated reasoning about specifications of operational semantics.
This extension is more conceptual than technical, that is, the implementation of
the extended logic programming language uses only implementation techniques
that are common to logic programming, i.e., logic variables, higher-order pattern
unification, backtracking (using stream-based computation) and abstract syntax
based on typed λ-calculus.

The implementation described in this paper is based on the logic FOλ∆∇

[MT03], which is a logic based on a subset of Church’s Simple Theory of Types
but extended with fixed points and the ∇ quantifier. In FOλ∆∇ quantification
over propositions is not allowed but quantifiers can otherwises range over vari-
ables of higher-types. Thus the terms of the logic can be simply typed terms,
which can be used to encode the λ-tree syntax of encoded objects in an opera-
tional semantics specification. This style of encoding is a variant of higher-order
abstract syntax in which meta-level λ-abstractions are used to encode object-
level variable binding. The quantifier ∇ is first introduced in [MT03] to help
encode the notion of “generic judgment” that occurs commonly when reasoning
with λ-tree syntax.

The logical extension to allow fixed points is done through a proof theoretical
notion of definitions [SH93,Eri91,Gir92,Stä94,MM00]. In a logic with definitions,
an atomic proposition may be defined by another formula (which may contain
the atomic proposition itself). Proof search for a defined atomic formula is done
by unfolding the definition of the formula. A provable formula like ∀X.pX ⊃ qX ,
where p and q are some defined predicates, expresses the fact that for every term
t for which there is a successful computation (proof) of pt, there is a computation
(proof) of qt. Towards establishing the truth of this formula, if the computation
tree associated with p is finite, we can effectively enumerate all its computation
paths and check the provability of qt for each path. Note that if the computation
tree for p is empty (pt is not provable for any t) then ∀X.pX ⊃ qX is (vacuously)
true. In other words, failure in proof search for pX entails success in proof search
for pX ⊃ qX . The analogy with negation-as-failure in logic programming is
obvious: if we take qX to be ⊥ (false), then provability of pX ⊃ ⊥ corresponds to
success in proof search for not(pX) in logic programming. This relation between
negation-as-failure in logic programming and negation in logic with definitions
has been observed in [HSH91,Gir92]. In the implementation of FOλ∆∇, the
above observation leads to a neutral view on proof search: If proof search for a
goal A returns a non-empty set of answer substitutions, then we have found a
proof of A. On the other hand, if proof search for A returns an empty answer set,
then we have found a proof for ¬A. Answer substitutions can thus be interpreted
in a dual way depending on the context of proof search; see Section 3 for more
details.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the logic FOλ∆∇. Section 3 describes an implementation of a fragment of

80

FOλ∆∇, the Level-0/1 prover, which is based on a dual interpretation of fail-
ure/success in proof search. Section 4 discusses the treatment of variables in the
Level-0/1 prover, in particular, it discusses the issues concerning the interaction
between eigenvariables and logic variables. Section 5 specifically contrasts the
expressiveness of Level-0/1 over what is available in λProlog. Section 6 gives a
specification of the operational semantics for the π-calculus and shows how Level-
0/1 can turn that specification naturally into a checker for (open) bisimulation.
Section 7 provides a specification of modal logic for the π-calculus, which the
Level-0/1 prover can use to do model checking for that process calculus. These
two specifications involving the π-calculus illustrate the use of the ∇-quantifier
to help capture various restrictions of names in the π-calculus. Section 8 dis-
cusses the components of proof search implementation and outlines a general
implementation architecture for FOλ∆∇. Section 9 discusses future work. An
extended version of this paper is available on the web, containing more exam-
ples and more detailed comparison with logic programming.

2 Overview of the logic FOλ∆∇

The logic FOλ∆∇ [MT03] (pronounced “fold-nabla”) is presented using a se-
quent calculus that is an extension of Gentzen’s system LJ [Gen69] for intuition-
istic logic. The first extension to LJ is to allow terms to be simply typed λ-terms
and to allow quantification to be over all types not involving the predicate type
(in Church’s notation [Chu40], the types of quantified variables do not contain
o). A sequent is an expression of the form B1, . . . , Bn − B0 where B0, . . . , Bn

are formulas and the elongated turnstile − is the sequent arrow. To the left of
the turnstile is a multiset: thus repeated occurrences of a formula are allowed. If
the formulas B0, . . . , Bn contain free variables, they are considered universally
quantified outside the sequent, in the sense that if the above sequent is prov-
able then every instance of it is also provable. In proof theoretical terms, such
free variables are called eigenvariables. Eigenvariable can be used to encode the
dynamics of abstraction in the operational semantics of various languages. How-
ever, for reasoning about certain uses of abstraction, notably the notion of name
restriction in π-calculus, eigenvariables do not capture faithfully the intended
meaning of such abstractions. To address this problem, in the logic FOλ∆∇ se-
quents are extended with a new notion of “local scope” for proof-level bound
variables (see [MT03] for motivations and examples). In particular, sequents in
FOλ∆∇ are of the form

Σ ; σ1 %B1, . . . ,σn %Bn − σ0 %B0

where Σ is a global signature, i.e., the set of eigenvariables whose scope is over
the whole sequent, and σi is a local signature, i.e., a list of variables scoped over
Bi. We shall consider sequents to be binding structures in the sense that the
signatures, both the global and local ones, are abstractions over their respective
scopes. The variables in Σ and σi will admit α-conversion by systematically
changing the names of variables in signatures as well as those in their scope,

81

Σ, σ ! t : γ Σ ; σ & B[t/x], Γ − C

Σ ; σ & ∀γx.B, Γ − C
∀L

Σ, h ; Γ − σ & B[(h σ)/x]

Σ ; Γ − σ & ∀x.B
∀R

Σ, h ; σ & B[(h σ)/x], Γ − C

Σ ; σ & ∃x.B,Γ − C
∃L

Σ, σ ! t : γ Σ ; Γ − σ & B[t/x]

Σ ; Γ − σ & ∃γx.B
∃R

Σ ; (σ, y) & B[y/x], Γ − C

Σ ; σ & ∇x B, Γ − C
∇L

Σ ; Γ − (σ, y) & B[y/x]

Σ ; Γ − σ & ∇x B
∇R

Fig. 1. The introduction rules for quantifiers in FOλ∆∇.

following the usual convention of the λ-calculus. The meaning of eigenvariables
is as before, only that now instantiation of eigenvariables has to be capture-
avoiding, with respect to the local signatures. The variables in local signatures
act as locally scoped generic constants, that is, they do not vary in proofs since
they will not be instantiated. The expression σ %B is called a generic judgment
or simply a judgment. We use script letters A, B, etc., to denote judgments. We
write simply B instead of σ %B if the signature σ is empty.

The logical constants of FOλ∆∇ are ∀γ (universal quantifier), ∃γ (existen-
tial quantifier), ∇γ (nabla quantification), ∧ (conjunction), ∨ (disjunction), ⊃
(implication),) (true) and ⊥ (false). The subscript for the three quantifiers is
the type of the variable they are intended to bind: in particular, γ can range
over any type not containing the predicate type. Usually this type subscript is
suppressed. The inference rules for the three quantifiers of FOλ∆∇ are given in
Figure 1. The introduction rules for propositional connectives are straightfor-
ward generalization of LJ: in particular, local signatures are distributed over the
subformulas of the main formula (reading the rules bottom-up). The complete
set of rules for FOλ∆∇ is given in Figure 10 at the end of this paper.

During the search for proofs (reading rules bottom up), the right-introduction
rule for ∀ and the left-introduction rule for ∃ place new variables into the global
signature: the left and right introduction rules for ∇ place new variables into the
local signature. In the ∀R and ∃L rules, raising [Mil92] is used when replacing
the bound variable x, which can range over the variables in both the global
signature and the local signature σ, with the variable h that can only range
over variables in the global signature: so as not to miss substitution terms, the
variable x is replaced by the term (h x1 . . . xn), which we shall write simply as
(hσ), where σ is the list x1, . . . , xn (h must not be free in the lower sequent of
these rules). In ∀L and ∃R, the term t can have free variables from both Σ and
σ. This is presented in the rule by the typing judgment Σ,σ * t : γ. The ∇L
and ∇R rules have the proviso that y is not free in ∇x B.

Besides these introduction rules for logical constants, FOλ∆∇ additionally
allows the introduction of atomic judgments, that is, judgments of the form
σ %A where A is an atomic formula. To each atomic judgment, A, we associate
a judgment B called the definition of A. The introduction rule for the judgment
A is in effect done by replacing A with B during proof search. This notion of

82

definitions is an extension of work by Schroeder-Heister [SH93], Eriksson [Eri91],
Girard [Gir92], Stärk [Stä94] and McDowell and Miller [MM00] and allows for
modest reasoning about the fixed points of definitions.

Definition 1. A definition clause is written ∀x̄[p t̄
"
= B], where p is a predicate

constant, every free variable of the formula B is also free in at least one term
in the list t̄ of terms, and all variables free in p t̄ are contained in the list x̄ of
variables. The atomic formula p t̄ is called the head of the clause, and the formula

B is called the body. The symbol
"
= is used simply to indicate a definitional

clause: it is not a logical connective.

Let ∀γ1
x1 . . .∀γn

xn.H
"
= B be a definition clause. Let y1, . . . , ym be a list of

variables of types α1, . . . ,αm, respectively. The raised definition clause of H with
respect to the signature {y1 : α1, . . . , ym : αm} is defined as

∀h1 . . . ∀hn.ȳ %Hθ
"
= ȳ %Bθ

where θ is the substitution [(h1 ȳ)/x1, . . . , (hn ȳ)/xn] and hi is of type α1 →
. . . → αm → γi. A definition is a set of definition clauses together with their
raised clauses.

The introduction rules for a defined judgment are displayed below. When
applying the introduction rules, we shall omit the outer quantifiers in a definition
clause and assume implicitly that the free variables in the definition clause are
distinct from other variables in the sequent.

{Σθ ; Bθ,Γθ − Cθ | θ ∈ CSU(A,H) for some clause H
"
= B}

Σ ; A,Γ − C defL

Σ ; Γ − Bθ
Σ ; Γ − A def R, where H

"
= B is a definition clause and Hθ = A

In the above rules, we apply substitutions to judgments. The result of applying
a substitution θ to a generic judgment x1, . . . , xn % B, written as (x1, . . . , xn %
B)θ, is y1, . . . , yn % B′, if (λx1 . . .λxn.B)θ is equal (modulo λ-conversion) to
λy1 . . .λyn.B′. If Γ is a multiset of generic judgments, then Γθ is the multiset
{Jθ | J ∈ Γ}. In the defL rule, we use the notion of complete set of unifiers
(CSU) [Hue75]. We denote by CSU(A,H) a complete set of unifiers for the pair
(A,H), that is, for any unifier θ of A and H, there is a unifier ρ ∈ CSU(A,H)
such that θ = ρ ◦ θ′ for some substitution θ′. Since we allow higher-order terms
in definitions, in certain cases there are no finite CSU’s for a given unification
problem. Thus, in the fully general case, defL may have an infinite number of
premises [MM00]. In all the applications of defL in this paper, however, the
terms involved in unification are those of higher-order patterns [Mil91,Nip93],
that is, terms in which variables are applied only to distinct bound variables.
Since higher-order pattern unification is decidable and unary (i.e., the most
general unifiers exist if the unification is solvable), the set CSU(A,H) in this

83

case can be treated as being either empty or containing a single substitution
which is the most general unifier. In this restricted setting, defL will have a
finite number of premises (assuming as we shall that definitions are based on
the raising of only a finite number of clauses). The signature Σθ in defL denotes
the signature obtained from Σ by removing the variables in the domain of θ
and adding the variables in the range of θ. In the defL rule, reading the rule
bottom-up, eigenvariables can be instantiated in the premise, while in the def R

rule, eigenvariables are not instantiated. The set that is the premise of the defL
rule means that that rule instance has a premise for every member of that set:
if that set is empty, then the premise is considered proved.

One might find the following analogy with logic programming helpful: if a
definition is viewed as a logic program, then the def R rule captures backchaining
and the defL rule corresponds to case analysis on all possible ways an atomic
judgment could be proved. The latter is a distinguishing feature between the
implementation of FOλ∆∇ discussed in Section 3 and logic programming. For
instance, given the definition

{pa
"
=), pb

"
=), qa

"
=), qb

"
=), qc

"
=)},

one can prove ∀x.px ⊃ qx: for all successful “computation” of p, there is a
successful computation for q. Notice that by encoding logic programs as defini-
tions, one can effectively encode negation-as-failure in logic programming using
defL [HSH91], e.g., for the above program (definition), the goal not(pc) in logic
programming is encoded as the formula pc ⊃ ⊥.

Two properties of FOλ∆∇ are particularly important to note here. First, if
a certain stratification of predicates within definitions is made (so that there
is no circularity in defining predicates through negations) then cut-elimination
and consistency can be proved [MT05,Tiu04]. Second, many inference rules are
known to be invertible, in the sense that they can always be applied without
the need for backtracking. Those rules include defL, ∇L, ∇R, ∃L, ∀R, the right
introduction rules for ∧ and ⊃, and the left introduction rules for ∧ and ∨
[Tiu04]. The invertibility of these rules motivates the choice of the fragment of
FOλ∆∇ on which the Level-0/1 prover works.

3 Mixing success and failure in a prover

We now give an overview of an implementation of proof search for a fragment
of FOλ∆∇. This implementation, called Level 0/1 prover, is based on the dual
interpretation of finite success and finite failure in proof search. In particular,
the finite failure in proving a goal ∃x.G should give us a proof of ¬(∃x.G) and
vice versa. We experiment with a simple class of formulas which exhibits this
duality. We first assume that all predicate symbols are classified as belonging to
either level-0 or level-1 (via some mapping of predicates to {0, 1}). Next consider

84

the following classes of formulas:

Level 0: G :=) | ⊥ | A | G ∧ G | G ∨ G | ∃x.G | ∇x.G
Level 1: D :=) | ⊥ | A | D ∧ D | D ∨ D | ∃x.D | ∇x.D | ∀x.D | G ⊃ D
atomic: A := p t1 . . . tn

Here, atomic formulas A in level 0 formulas must have predicates that have been
assigned to level 0. Atomic formulas in level 1 formulas can have predicates of

either level 0 and 1. Each definition clause pt̄
"
= B must be stratified, i.e., if p

is a level-0 predicate then B should belong to the class level-0, otherwise if p
is a level-1 predicate then B can be a level-0 or level-1 formula. In the current
implementation, stratification checking and type checking are not implemented,
so that we can experiment with a wider range of definitions than those for which
the meta-theory is fully developed.

Notice that in the Level-1 formula, the use of implication is restricted to the
form G ⊃ D where G is a Level-0 formula. Therefore, nested implication like
(A ⊃ B) ⊃ C is not allowed. The Level-0/1 prover actually consists of two sepa-
rate subprovers, one for each class of formulas. Implementation of proof search for
level-0 formula follows the standard logic-programming implementation for Horn
clauses: it is actually the subset of λProlog based on Horn clauses but allowing
also ∇ quantification in the body of clauses. In this prover, existential quantifiers
are instantiated with logic variables, ∇-quantifiers are instantiated with scoped
(local) constants (which have to be distinguished from eigenvariables), and def R
is implemented via backchaining. For level-1 formulas, the non-standard case is
when the goal is an implication, e.g., G ⊃ D. Proof search strategy for this case
derives from the following observation: the left-introduction rules for level-0 for-
mulas are all invertible rules, and hence can always be applied first. Proof search
for an implicational goal G ⊃ D therefore proceeds as follows:

Step 1 Run the level-0 prover with the goal G, treating any level-1 eigenvari-
ables as level-0 logic variables.

Step 2 Collect all answer substitutions produced by Step 1 into a lazy stream
of substitutions and for each substitution θ in this stream, proceed with
proving Gθ. For example, if Step 1 fails, then this stream is empty and this
step succeeds immediately.

In Step 1, we impose a restriction: the formula G must not contain any occur-
rences of level-1 logic variables. If this restriction is violated, a runtime exception
is returned and proof search is aborted. We shall return to this technical restric-
tion in Section 4. This restriction on the occurrence of logic variable has not
posed a problem for a number of applications, e.g., checking bisimulation and
satisfiability of modal logic formulas for the π-calculus.

We claim the following soundness theorem for the provers architecture above:
If Level-0/1 is given a definition and a goal formula and it successfully claims
to have a proof of that goal (that is, the system terminates without a runtime
error), then that goal follows from the definition also in the FOλ∆∇ logic.

85

Concrete syntax The concrete syntax for Level 0/1 prover follows the syntax of
λProlog. The concrete syntax for logical connectives are as follows:

) true ⊥ false
∧ & (ampersand) or , (comma) ∨ ; (semi-colon)
∀ pi ∃ sigma
∇ nabla ⊃ =>

The λ-abstraction is represented in the concrete syntax using an infix back-
slash, with the body of a λ-abstraction is goes as far to the right as possible,
consistent with the existing parentheses: for example, λxλf.fx can be written
as (x\f\ f x). The order of precedence for the connectives is as follows (in
decreasing order): ∧, ∨, ⊃, {∀, ∃,∇}. Follow the convention started by Church
[Chu40], the bound variable associated to a quantifier is actually a λ-abstraction:
for example, the logical expression ∀x[p(x) ⊃ q(x)]∧ p(a) can be encoded as the
(pi x\ p x => q x) & (p a). Non-logical constants, such as ‘not’ (negation-
as-failure) and ‘!’ (Prolog cut), are not implemented, while we do allow the
non-logical constant print for printing terms. Finally, we note that the percent
sign % starts a comment line.

The symbol
"
= separating the head and the body of a definition clause is writ-

ten as ‘:=’ in the concrete syntax. For example, the familiar ‘append’ predicate
for lists can be represented as the following definition.

append nil L L.

append (cons X L1) L2 (cons X L3) := append L1 L2 L3.

As in λProlog, we use ‘.’ (dot) to indicate the end of a formula. Identifiers
starting with a capital letter denote variables and those starting with lower-case
letter denote constants. Variables in a definition clause are implicitly quantified
outside the clause (the scope of such quantification is over the clause, so there
is no accidental mixing of variables across different clauses). A definition clause
with the body ‘true’ is abbreviated with the ‘true’ removed, e.g., the first clause
of append above is actually an abbreviation of append nil L L := true.

4 Eigenvariables, logic variables and ∇

The three quantifiers, ∀, ∃ and ∇, give rise to three kinds of variables dur-
ing proof search: eigenvariables, logic variables and “variables” generated by ∇.
Their characteristics are as follows: logic variables are genuine variables, in that
they can be instantiated during proof search. Eigenvariables are subject to in-
stantiation only in proving negative goals, while in positive goals they are treated
as scoped constants. Variables generated by ∇ are never instantiated and are
usually represented by λ-abstractions. Eigenvariables and logic variables share
similar data structures, and explicit raising is used to encode their dependency
on ∇-variables. The interaction between eigenvariables and logic variables is

86

more subtle. Consider the case where both eigenvariables and logic variables are
present in a negative goal, for example, consider proving the goal

∀x.∃y.(px ∧ py ∧ x = y ⊃ ⊥),

where p is defined as {pa
"
=), pb

"
=), pc

"
=)}. In proof search for this formula,

we are asked to produce for each x, a y such that x and y are distinct. This is no
longer a unification problem in the usual sense, since we seek to cause a failure
in unification, instead of success. This type of problem is generally referred to as
complement problems or disunification [LC89], and its solution is not unique in
general, even for the first-order case, e.g., in the above disunification problem, if
x is instantiated to a then y can be instantiated with either b or c. In the higher-
order case [MP03] the problem is considerably more difficult, and, hence, in the
current implementation, we disallow occurrences of logic variables in negative
goals.

In Figure 2, we show a sample session in Level 0/1 prover which highlights
the differences between eigenvariables, logic variables, and ∇-variables. The uni-
fication problem in the first two goals can be seen as the unification problem
λx.x = λx.(Mx). Notice that there is no difference between ∀ and ∇ if the goal
is level-0 (i.e., there is no implication in the goal). A non-level 0 goal is given in
the third example. Here the unification fails (hence the goal succeeds) because
x is bound in the scope of where M is bound. It is similar to the unification
problem λx.x = λx.M. Here substitution must be capture-avoiding, therefore
M cannot be instantiated with x. However, if we switch the order of quantifier
or using application-term (as in (fx) in the fourth goal) the unification succeeds.
In the last goal, we are trying to prove implicational goal with logic variables,
and the system returns an exception.

5 Comparison with λProlog

Setting aside the ∇ quantifier, one might think that the proof search behavior for
∀ and ⊃ connectives in FOλ∆∇ can be approximated in λProlog with negation-
as-failure. As we outline below, only in some weak settings can λProlog naturally
capture the deduction intended in FOλ∆∇.

The ⊃ connective, for instance, might be defined in λProlog as

imp A B :- not(A, not(B)).

If proof search for A terminates with failure, then the goal imp A B succeeds.
Otherwise, for each answer substitution for A, if B fails then the whole goal fail,
otherwise the not(B) fails and hence imp A B succeeds. For ground terms A and B
(thus, containing no eigenvariables), this coincides with the operational reading
of A => B in Level 0/1 prover. The story is not so simple, however, if there are
occurrences of eigenvariables in A or B.

One can sort of see intuitively why the inclusion of eigenvariables in A or B
would cause problem: the eigenvariables in λProlog play a single role as scoped

87

?- nabla x\ x = (M x).

Yes
M = x1\x1
Find another? [y/n] y
No.

?- pi x\ x = (M x).
Yes
M = x1\x1

Find another? [y/n] y
No.
?- pi M\ nabla x\ x = M => false.

Yes
Find another? [y/n] y
No.

?- pi f\ nabla x\ x = f x => print "unification succeeded".
unification succeeded
Yes

?- nabla x\ pi y\ x = y => print "unification succeeded".
unification succeeded
Yes

?- nabla x\ x = (M x) => false.
Error: non-pure term found in implicational goal.

Fig. 2. A session in Level 0/1 prover.

constant, while in Level 0/1 they have dual roles, as constants and as variables
to be instantiated. However, there is one trick to deal with this, that is, suppose
we are to prove ∀x.Ax ⊃ Bx, instead of the straightforward encoding of ∀ as pi,
we may use sigma instead:

sigma x\ not (A x, not (B x)).

Here the execution of the goal forces the instantiation of the (supposed to be)
‘eigenvariable’. The real problem appears when eigenvariables may assume two
roles at the same time. Consider the goal

∀x∀y.x = a ⊃ y = b

where a and b are constants. Assuming nothing about the domain of quantifi-
cation, this goal is not provable. Now, the possible encodings into λProlog is to
use either sigma or pi to encode the quantifier. Using the former, we get

sigma x\ sigma y\ not (x = a, not(y = b)).

This goal is provable, hence it is not the right encoding. If instead we use pi to
encode ∀, we get

pi x\ pi y\ not (x = a, not (y = b)).

88

This goal also succeeds, since x here will become an eigenvariable and hence it
is not unifiable with a. Of course, one cannot rule out other more complicated
encodings, e.g., treating ∀ as pi in one place and as sigma in others, but it
is doubtful that there will be an encoding scheme which can be generalized to
arbitrary cases.

6 Example: the π-calculus and bisimulation

An implementation of one-step transitions and strong bisimulation for the π-
calculus [MPW92] are given in this section. More details on the adequacy of the
encodings presented in this section can be found in [TM04,Tiu04]. We consider
only finite π-calculus, that is, the fragment of π-calculus without recursion or
replication. The syntax of processes is defined as follows

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|Q | P + Q.

We use the notation P, Q, R, S and T to denote processes. Names are denoted
by lower case letters, e.g., a, b, c, d, x, y, z. The occurrence of y in the process
x(y).P and (y)P is a binding occurrence, with P as its scope. The set of free
names in P is denoted by fn(P), the set of bound names is denoted by bn(P). We
write n(P) for the set fn(P) ∪ bn(P). We consider processes to be syntactically
equivalent up to renaming of bound names. The operator + denotes the choice
operator: a process P +Q can behave either like P or Q. The operator | denotes
parallel composition: the process P |Q consists of subprocesses P and Q running
in parallel. The process [x = y]P behaves like P if x is equal to y. The process
x(y).P can input a name through x, which is then bound to y. The process
x̄y.P can output the name y through the channel x. Communication takes place
between two processes running in parallel through the exchanges of messages
(names) on the same channel (another name). The restriction operator (), e.g.,
in (x)P , restricts the scope of the name x to P .

One-step transition in the π-calculus is denoted by P
α

−−→ Q, where P and Q
are processes and α is an action. The kinds of actions are the silent action τ ,
the free input action xy, the free output action x̄y, the bound input action x(y)
and the bound output action x̄(y). Since we are working with the late transition
semantics [MPW92], we shall not be concerned with the free input action. The
name y in x(y) and x̄(y) is a binding occurrence. Just like we did with processes,
we use fn(α), bn(α) and n(α) to denote free names, bound names, and names in
α. An action with a binding occurrences of a name is a bound action, otherwise
it is a free action.

We encode the syntax of process expressions using λ-tree syntax as follows.
We shall require three primitive syntactic categories: n for names, p for processes,
and a for actions, and the constructors corresponding to the operators in π-
calculus. The translation from π-calculus processes and transition judgments to
λ-tree syntax is given in Figure 3. Figure 4 shows some example processes in λ-
tree syntax. The definition clauses corresponding to the operational semantics of

89

z : p in : n → (n → p) → p out, match : n → n → p → p

plus : p → p → p par : p → p → p taup : p → p

nu : (n → p) → p tau : a up : n → n → a

dn : n → n → a one : p → a → p → o onep : p → (n → a) → (n → p) → o

[[0]] = z [[[x = y]P]] = match x y [[P]]
[[x̄y.P]] = out x y [[P]] [[x(y).P]] = in x λy.[[P]]
[[P + Q]] = plus [[P]] [[Q]] [[P|Q]] = par [[P]] [[Q]]
[[τ.P]] = taup [[P]] [[(x)P]] = nu λx.[[P]]

[[P
τ

−−→ Q]] = one [[P]] tau [[Q]] [[P
x̄y

−−→ Q]] = one [[P]] (up x y) [[Q]]

[[P
x(y)
−−→ Q]] = onep [[P]] (dn x) (λy[[Q]]) [[P

x̄(y)
−−→ Q]] = onep [[P]] (up x) (λy[[Q]])

Fig. 3. Encoding the π-calculus syntax with λ-tree syntax.

example 0 (nu x\ match x a (taup z)).
example 1 (par (in x y\z) (out x a z)).

example 2 (in x u\ (plus (taup (taup z)) (taup z))).
example 3 (in x u\ (plus (taup (taup z))

(plus (taup z) (taup (match u y (taup z)))))).

example 4 (taup z).
example 5 (nu x\ (par (in x y\z) (out x a z))).
example 6 (in x u\ nu y\ ((plus (taup (taup z))

(plus (taup z) (taup (match u y (taup z))))))).

Fig. 4. Several examples processes written in Level-0/1 syntax.

π-calculus are given in Figure 5. The original specification of the late semantics
of π-calculus can be found in [MPW92]. We note that various side conditions on
names and their scopes in the inference rules in the original specification are not
present in the encoding in Figure 5 since these are handled directly by the use
of λ-tree syntax and the FOλ∆∇ logic.

We consider some simple examples involving one-step transitions, using the
example processes in Figure 4. We can, for instance, check whether a process is
stuck, i.e., no transition is possible from the given process. Consider example 0
in Figure 4 which corresponds to the process (x)[x = a]τ.0. This process clearly
cannot make any transition since the name x has to be distinct with respect to
the free names in the process. This is specified as follows

?- example 0 P, (pi A\pi Q\ one P A Q => false),

(pi A\pi Q\ onep P A Q => false).
Yes

Recall that we distinguish between bound-action transition and free-action tran-
sition, and hence there are two kinds of transitions to be verified.

90

onep (in X M) (dn X) M. % bound input

one (out X Y P) (up X Y) P. % free output
one (taup P) tau P. % tau
one (match X X P) A Q := one P A Q. % match prefix

onep (match X X P) A M := onep P A M.
one (plus P Q) A R := one P A R. % sum
one (plus P Q) A R := one Q A R.

onep (plus P Q) A M := onep P A M.
onep (plus P Q) A M := onep Q A M.
one (par P Q) A (par P1 Q) := one P A P1. % par

one (par P Q) A (par P Q1) := one Q A Q1.
onep (par P Q) A (x\par (M x) Q) := onep P A M.
onep (par P Q) A (x\par P (N x)) := onep Q A N.

% restriction
one (nu x\P x) A (nu x\Q x) := nabla x\ one (P x) A (Q x).
onep (nu x\P x) A (y\ nu x\Q x y) := nabla x\ onep (P x) A (y\ Q x y).

% open
onep (nu y\M y) (up X) N := nabla y\ one (M y) (up X y) (N y).
% close

one (par P Q) tau (nu y\ par (M y) (N y)) :=
sigma X\ onep P (dn X) M & onep Q (up X) N.

one (par P Q) tau (nu y\ par (M y) (N y)) :=

sigma X\ onep P (up X) M & onep Q (dn X) N.
% comm
one (par P Q) tau (par R T) := sigma X\ sigma Y\ sigma M\

onep P (dn X) M & one Q (up X Y) T & (R = (M Y)).
one (par P Q) tau (par R T) := sigma X\ sigma Y\ sigma M\

onep Q (dn X) M & one P (up X Y) R & (T = (M Y)).

Fig. 5. Definition of one-step transitions of finite late π-calculus

bisim P Q :=
(pi A\ pi P1\ one P A P1 => sigma Q1\ one Q A Q1 & bisim P1 Q1) &

(pi X\ pi M\ onep P (dn X) M => sigma N\ onep Q (dn X) N &
pi w\ bisim (M w) (N w)) &

(pi X\ pi M\ onep P (up X) M => sigma N\ onep Q (up X) N &

nabla w\ bisim (M w) (N w)) &
(pi A\ pi Q1\ one Q A Q1 => sigma P1\ one P A P1 & bisim Q1 P1) &
(pi X\ pi N\ onep Q (dn X) N => sigma M\ onep P (dn X) M &

pi w\ bisim (N w) (M w)) &
(pi X\ pi N\ onep Q (up X) N => sigma M\ onep P (up X) M &

nabla w\ bisim (N w) (M w)).

Fig. 6. Definition of open bisimulation

91

We now consider a notion of equivalence between processes, called bisimu-
lation. It is formally defined as follows: a relation R is a bisimulation, if it is a
symmetric relation such that for every (P, Q) ∈ R,

1. if P
α

−−→ P′ and α is a free action, then there is Q′ such that Q
α

−−→ Q′ and
(P′, Q′) ∈ R,

2. if P
x(z)
−−→ P′ and z /∈ n(P, Q) then there is Q′ such that Q

x(z)
−−→ Q′ and for every

name y, (P′[y/z], Q′[y/z]) ∈ R,

3. if P
x̄(z)
−−→ P′ and z /∈ n(P, Q) then there is Q′ such that Q

x̄(z)
−−→ Q′ and (P′, Q′) ∈

R.

Two processes P and Q are strongly bisimilar if there is a bisimulation R such that
(P, Q) ∈ R. The above definition is also called late bisimulation in the literature.

Consider the definition of the bisim predicate Figure 6 that is inspired by
the above definition. Notice that the difference between bound-input and bound-
output actions is captured by the use of ∀ and ∇ quantifiers. This definition
provides a sound encoding of late bisimulation, meaning that if bisim P Q is
provable then P and Q are late-bisimilar. This encoding turns out to sound
and complete for open bisimulation [San96], a finer bisimulation relation than
late bisimulation (see [TM04] for details of the encoding and adequacy results).
The following example, taken from [San96], illustrates the incompleteness with
respect to late bisimulation.

P = x(u).(τ.τ.0 + τ.0), Q = x(u).(τ.τ.0 + τ.0 + τ.[u = y]τ.0).

This example fails because to prove their bisimilarity, one needs to do case
analysis on the input name u above, i.e., whether it is equal to y or not, and
since our current prover implements intuitionistic logic, this case split based on
the excluded middle is not available. However, if we restrict the scope of y so
that it appears inside the scope of u, then [u = y] is trivially false. In this case,
the processes would be x(u).(τ.τ.0+ τ.0) and x(u).(y)(τ.τ.0+ τ.0+ τ.[u = y]τ.0),
which correspond to example 3 and 6 in Figure 4. They can be proved bisimilar.

?- example 2 P, example 6 Q, bisim P Q.
Yes

One should compare the above declarative specification and its implementation
of symbolic bisimulation checking with that found in, say, [BN96].

7 Example: modal logics for π-calculus

We now consider the modal logics for π-calculus introduced in [MPW93]. In order
not to confuse meta-level (FOλ∆∇) formulas (or connectives) with the formulas
(connectives) of modal logics under consideration, we shall refer to the latter
as object formulas (respectively, object connectives). We shall work only with
object formulas which are in negation normal form, i.e., negation appears only

92

top : o′, bot : o′, and : o′ → o′ → o′, or : o′ → o′ → o′

boxMatch : n → n → o′ → o′, diaMatch : n → n → o′ → o′,
boxAct : a → o′ → o′, diaAct : a → o′ → o′,
boxInL : n → (n → o′) → o′, diaInL : n → (n → o′) → o′

boxOut : n → (n → o′) → o′, diaOut : n → (n → o′) → o′

sat : p → o′ → o.

[[true]] = top [[false]] = bot
[[A ∧ B]] = and [[A]] [[B]] [[A ∨ B]] = or [[A]] [[B]]
[[[x = y]A]] = boxMatch x y [[A]] [[〈x = y〉A]] = diaMatch x y [[A]]
[[〈α〉A]] = diaAct α [[A]] [[[α]A]] = boxAct α [[A]]
[[〈x(y)〉LA]] = diaInL x (λy[[A]]) [[[x(y)]LA]] = boxInL x (λy[[A]])
[[〈x̄(y)〉A]] = diaOut x (λy[[A]]) [[[x̄(y)]A]] = boxOut x (λy[[A]])
[[P |= A]] = sat [[P]] [[A]]

Fig. 7. Translation from modal formula to λ-tree syntax.

at the level of atomic object formulas. As a consequence, we introduce explicitly
each dual pair of the object connectives. Note that since the only atomic object
formulas are either true or false, we will not need negation as a connective (since
¬true ≡ false and ¬false ≡ true). The syntax of the object formulas is given by

A ::= true | false | A ∧ A | A ∨ A | [x = z]A | 〈x = z〉A
| 〈α〉A | [α]A | 〈x̄(y)〉A | [x̄(y)]A | 〈x(y)〉LA | [x(y)]LA

Here, α denotes a free action, i.e., it is either τ or x̄y. The modalities [x(y)]L

and 〈x(y)〉L are the late bound-input modalities, and 〈x̄(y)〉 and [x̄(y)] are the
bound output modalities. There are other variants of input and output modal-
ities considered in [MPW93] which we do not represent here. For the complete
encoding of the modal logics, we refer the interested readers to [Tiu05]. In each
of the formulas (and their dual ‘boxed’-formulas) 〈x̄(y)〉A and 〈x(y)〉LA, the oc-
currence of y in parentheses is a binding occurrence whose scope is A. Object
formulas are considered equivalent up to renaming of bound variables. We shall
be concerned with checking whether a process P satisfies a given modal formula
A. This satisfiability judgment is written as P |= A. The translation from modal
formulas and judgments to λ-tree syntax is given in Figure 7.

The satisfiability relation for the modal logic is encoded as the definition
clauses in Figure 8. For the original specification, we refer the interested readers
to [MPW93]. The definition in Figure 8 is not complete, in the sense that there
are true assertion of the modal logic which are not provable using this definition
alone. For instance, the modal judgment

x(y).x(z).0 |= 〈x(y)〉L〈x(z)〉L(〈x = z〉true ∨ [x = z]false)

which basically says that two names are either equal or not equal, is valid, but
its encoding in FOλ∆∇ is not provable since the meta logic is intuitionistic. A
complete encoding of the modal logic is given in [Tiu05] by explicitly introducing
axioms for the excluded-middle on name equality, namely, ∀x∀y[x = y ∨ x /= y].

93

sat P top.
sat P (and A B) := sat P A, sat P B.

sat P (or A B) := sat P A; sat P B.
sat P (boxMatch X Y A) := (X = Y) => sat P A.
sat P (diaMatch X Y A) := (X = Y), sat P A.

sat P (boxAct X A) := pi P1\ one P X P1 => sat P1 A.
sat P (diaAct X A) := sigma P1\ one P X P1, sat P1 A.
sat P (boxOut X A) := pi Q\ onep P (up X) Q => nabla y\ sat (Q y) (A y).

sat P (diaOut X A) := sigma Q\ onep P (up X) Q, nabla y\ sat (Q y)(A y).
sat P (boxInL X A) := pi Q\ onep P (dn X) Q => sigma y\ sat (Q y) (A y).
sat P (diaInL X A) := sigma Q\ onep P (dn X) Q, pi y\ sat (Q y) (A y).

Fig. 8. Specification of a modal logic for π-calculus.

The definition in Figure 8 serves also as a model checker for π-calculus. For
instance, consider the processes 2 and 6 given by in Figure 4. We have seen that
the two processes are bisimilar. A characterization theorem given in [MPW93]
states that (late) bisimilar processes satisfy the same set of modal formulas. We
consider a particular case here. The modal formula

〈x(y)〉L(〈τ〉〈τ〉true ∨ 〈τ〉true)

naturally corresponds to the process 2. In the concrete syntax, this formula is
written as follows

assert (diaInL x (y\ or (diaAct tau (diaAct tau top))
(diaAct tau top))).

We show that both processes 2 and 6 satisfy this formula.

?- assert A, example 2 P, example 6 Q, sat P A, sat Q A.
Yes

8 Components of proof search implementation

Implementation of proof search for FOλ∆∇ is based on a few simple key com-
ponents: λ-tree syntax, i.e., data structures for representing objects containing
binding, higher-order pattern unification, and stream-based computation. The
first two are implemented using the suspension calculus [NW98], an explicit
substitution notation that allows computations over λ-terms to be realized flex-
ibly and efficiently; further details of the implementation used may be found in
[NL05]. We explain the last component briefly. We use streams to store answer
substitutions, which are computed lazily, i.e., only when they are queried. The
data type for stream in the ML language is shown in Figure 9. Here the type
ustream is a polymorphic stream. The element of a stream is represented as the
data type cell, which can be a delayed cell or a forced cell. A delayed cell stores

94

an unevaluated expression, and its evaluation is triggered by the call to the func-
tion getcell. A forced cell is an element which is already a value. Elements of
a stream are initially created as delayed cells. Note that since an element of a
stream can also be a (cell of) stream, we can encode different computation paths
using streams of streams. This feature is used, in a particular case, to encode
the notion of backtracking in logic programming.

datatype ’a cell = delayedcell of unit -> ’a | forcedcell of ’a
type ’a elm = ’a cell

datatype ’a ustream = empty | ustream of ’a * (’a ustream elm ref)
fun getcell(t as ref(delayedcell t’)) =

let val v = t’() in (t := (forcedcell v); v) end

| getcell(ref (forcedcell v)) = v
fun mkcell t = ref(delayedcell t)

Fig. 9. The stream datatype in ML.

A stream of substitutions for a given goal stores all answer substitutions for
the goal. In logic programming, such answer substitutions can be queried one
by one by users. Often we are interested in properties that hold for all answer
substitutions. For instance, in bisimulation checking for transition systems, as
we have seen in the π-calculus example, one needs to enumerate all possible
successors of a process and check bisimilarity for each successor. In some other
examples, information on failed proof search attempts could be of interest as
well, e.g., generating counter-model in model checking. This motivates the choice
of implementation architecture for FOλ∆∇: various fragments of FOλ∆∇ are
implemented as (specialized) automated provers which interact with one another.
For the current implementation, interaction between provers are restricted to
exchanging streams of answer substitutions. A particular arrangement of the
interaction between provers that we found quite useful is what we call a ∀∃-
interaction. In its simplest form, this consists of two provers, as exemplified
in the Level-0/1 prover. Recall that in Level-0/1 prover, a proof search session
consists of Level-1 calling the Level-0 prover, extracting all answer substitutions,
and for each answer substitutions, repeating the calling cycle until the goals are
proved. At the implementation level, one can generalize the provers beyond two
levels using the same implementation architecture. For instance, one can imagine
implementing a “Level-2 prover” which extracts answers from a Level-1 prover
and perform some computations on them. Using the example of π-calculus, a
Level-2 prover would, for instance, allow for proving goals like “P and Q are not
bisimilar”. This would be implemented by simply calling Level-1 on this goal
and declare a success if Level-1 fails.

95

9 Future work

The current prover implements a fairly restricted fragment of the logic FOλ∆∇.
We consider extending it to richer fragments to include features like, among
others, induction and co-induction proof rules (see, e.g.,[Tiu04]) and arbitrary
stratified definition (i.e., to allow more nesting of implications in goals). Of
course, with induction and co-induction proofs, there is in general no complete
automated proof search. We are considering implementing a circular proof search
to automatically generates the (co)inductive invariants. Works along this line has
been studied in, e.g., [SD03]. This extended feature would allow us, for example,
to reason about bisimulation of non-terminating processes. Another possible
extension is inspired by an on going work on giving a game semantics for proof
search, based on the duality of success and failure in proof search. Our particular
proof search strategy for Level-0/1 prover turns out to correspond to certain ∀∃-
and ∃∀-strategies in the game semantics in [MS05]. The game semantics studied
there also applies to richer fragments of logics. It would be interesting to see if
these richer fragments can be implemented as well using a similar architecture
as in Level-0/1 prover.

We also plan to use more advance techniques to improve the current im-
plementation such as using tabling to store and reuse subproofs. The use of
tabled deduction in higher-order logic programming has been studied in [Pie03].
It seems that the techniques studied there are applicable to our implementation,
to the Level-0 prover at least, since it is a subset of λProlog. Another possi-
ble extension would be a more flexible restriction on the occurrence of logic
variables. The current prover cannot yet handle the case where there is a case
analysis involving both eigenvariables and logic variables. Study on a notion of
higher-order pattern disunification [MP03] would be needed to attack this prob-
lem at a general level. However, we are still exploring examples and applications
which would justify this additional complication to proof search. We also plan
to study more examples on encoding process calculi and the related notions of
bisimulations.

Acknowledgements. Support has been obtained for this work from the following
sources: from INRIA through the “Equipes Associées” Slimmer, from the ACI
grants GEOCAL and Rossignol and from the NSF Grant CCR-0429572 that also
includes support for Slimmer.

References

[BN96] Michele Boreale and Rocco De Nicola. A symbolic semantics for the π-
calculus. Information and Computation, 126(1):34–52, April 1996.

[Chu40] Alonzo Church. A formulation of the simple theory of types. J. of Symbolic
Logic, 5:56–68, 1940.

[Eri91] Lars-Henrik Eriksson. A finitary version of the calculus of partial induc-
tive definitions. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister,
editors, Proc. of the Second International Workshop on Extensions to Logic
Programming, volume 596 of LNAI, pages 89–134. Springer-Verlag, 1991.

96

Σ ; σ & B, Γ − σ & B
init

Σ ; ∆ − B Σ ; B, Γ − C

Σ ; ∆, Γ − C
cut

Σ ; σ & B, σ & C, Γ − D

Σ ; σ & B ∧ C, Γ − D
∧L

Σ ; Γ − σ & B Σ ; Γ − σ & C

Σ ; Γ − σ & B ∧ C
∧R

Σ ; σ & B, Γ − D Σ ; σ & C, Γ − D

Σ ; σ & B ∨ C, Γ − D
∨L

Σ ; Γ − σ & B

Σ ; Γ − σ & B ∨ C
∨R

Σ ; σ & ⊥, Γ − B
⊥L

Σ ; Γ − σ & C

Σ ; Γ − σ & B ∨ C
∨R

Σ ; Γ − σ & B Σ ; σ & C, Γ − D

Σ ; σ & B ⊃ C, Γ − D
⊃ L

Σ ; σ & B, Γ − σ & C

Σ ; Γ − σ & B ⊃ C
⊃ R

Σ, σ ! t : γ Σ ; σ & B[t/x], Γ − C

Σ ; σ & ∀γx.B, Γ − C
∀L

Σ, h ; Γ − σ & B[(h σ)/x]

Σ ; Γ − σ & ∀x.B
∀R

Σ, h ; σ & B[(h σ)/x], Γ − C

Σ ; σ & ∃x.B,Γ − C
∃L

Σ, σ ! t : γ Σ ; Γ − σ & B[t/x]

Σ ; Γ − σ & ∃γx.B
∃R

Σ ; (σ, y) & B[y/x], Γ − C

Σ ; σ & ∇x B, Γ − C
∇L

Σ ; Γ − (σ, y) & B[y/x]

Σ ; Γ − σ & ∇x B
∇R

Σ ; B,B, Γ − C

Σ ; B, Γ − C
cL

Σ ; Γ − C

Σ ; B, Γ − C
wL

Σ ; Γ − σ & -
-R

Fig. 10. The core rules of FOλ∆∇.

[Gen69] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, ed-
itor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland
Publishing Co., Amsterdam, 1969.

[Gir92] Jean-Yves Girard. A fixpoint theorem in linear logic. Email to the lin-
ear@cs.stanford.edu mailing list, February 1992.

[HSH91] Lars Hallnäs and Peter Schroeder-Heister. A proof-theoretic approach to
logic programming. II. Programs as definitions. Journal of Logic and Com-
putation, 1(5):635–660, October 1991.

[Hue75] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Com-
puter Science, 1:27–57, 1975.

[LC89] Pierre Lescanne and Hubert Comon. Equational problems and disunification.
Journal of Symbolic Computation, 3 and 4:371–426, 1989.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. Journal of Logic and Computation,
1(4):497–536, 1991.

[Mil92] Dale Miller. Unification under a mixed prefix. J. of Symbolic Computation,
14(4):321–358, 1992.

[MM00] Raymond McDowell and Dale Miller. Cut-elimination for a logic with defi-
nitions and induction. Theoretical Computer Science, 232:91–119, 2000.

[MP03] Alberto Momigliano and Frank Pfenning. Higher-order pattern complement
and the strict λ-calculus. ACM Trans. Comput. Logic, 4(4):493–529, 2003.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, Part II. Information and Computation, pages 41–77, 1992.

97

[MPW93] Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile
processes. Theoretical Computer Science, 114(1):149–171, 1993.

[MS05] Dale Miller and Alexis Saurin. A game semantics for proof search: Prelim-
inary results. In Proceedings of the Mathematical Foundations of Program-
ming Semantics (MFPS), 2005.

[MT03] Dale Miller and Alwen Tiu. A proof theory for generic judgments: An ex-
tended abstract. In LICS 2003, pages 118–127. IEEE, June 2003.

[MT05] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM
Transactions on Computational Logic, 6(4), October 2005.

[Nip93] Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi,
editor, LICS93, pages 64–74. IEEE, June 1993.

[NL05] Gopalan Nadathur and Natalie Linnell. Practical higher-order pattern uni-
fication with on-the-fly raising. In ICLP 2005: 21st International Logic Pro-
gramming Conference, volume 3668 of LNCS, pages 371–386, Sitges, Spain,
October 2005. Springer.

[NW98] Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A
generalization of environments. Theoretical Computer Science, 198(1-2):49–
98, 1998.

[Pie03] Brigitte Pientka. Tabled Higher-Order Logic Programming. PhD thesis,
Carnegie Mellon University, December 2003.

[San96] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Infor-
matica, 33(1):69–97, 1996.

[SD03] Christoph Sprenger and Mads Dam. On the structure of inductive reason-
ing: Circular and tree-shaped proofs in the µ-calculus. In A.D. Gordon, edi-
tor, Proceedings, Foundations of Software Science and Computational Struc-
tures (FOSSACS), Warsaw, Poland, volume 2620 of LNCS, pages 425–440.
Springer-Verlag, 2003.

[SH93] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,
Eighth Annual Symposium on Logic in Computer Science, pages 222–232.
IEEE Computer Society Press, June 1993.

[Stä94] R. F. Stärk. Cut-property and negation as failure. International Journal of
Foundations of Computer Science, 5(2):129–164, 1994.

[Tiu04] Alwen Tiu. A Logical Framework for Reasoning about Logical Specifications.
PhD thesis, Pennsylvania State University, May 2004.

[Tiu05] Alwen Tiu. Model checking for π-calculus using proof search. In Mart́ın
Abadi and Luca de Alfaro, editors, CONCUR, volume 3653 of Lecture Notes
in Computer Science, pages 36–50. Springer, 2005.

[TM04] Alwen Tiu and Dale Miller. A proof search specification of the π-calculus.
In 3rd Workshop on the Foundations of Global Ubiquitous Computing, 2004.

98

Otter-lambda

Michael Beeson1

San José State University, San José, Calif.
beeson@cs.sjsu.edu,

www.cs.sjsu.edu/faculty/beeson

Abstract. Otter-lambda is a theorem-prover based on an untyped logic
with lambda calculus, called Lambda Logic. Otter-lambda is built on Ot-
ter, so it uses resolution proof search, supplemented by demodulation and
paramodulation for equality reasoning, but it also uses a new algorithm,
lambda unification, for instantiating variables for functions or predicates.
The underlying logic of Otter-lambda is lambda logic, an untyped logic
combining lambda calculus and first-order logic. The use of lambda unifi-
cation allows Otter-lambda to prove some theorems usually thought of as
“higher-order”. There are theoretical questions about lambda logic and
its relation to first-order and higher-order logic, and theoretical questions
about lambda unification and its relation to higher-order unification,
but the demonstration will focus on the practical capabilities of Otter-
lambda. Specifically, several proofs in algebra and number theory will be
discussed, with special focus on the use of Otter-lambda in connection
with mathematical induction. Otter-lambda has had some successes in
this area, since lambda logic can state the general induction schema (with
a variable for a predicate), and lambda unification can sometimes find
the appropriate instance(s) of induction for a particular problem, even
when nested multiple inductions are required. Once that it is done, the
full resources of Otter are available to carry out the base case and the in-
duction step, with lambda-unification still available if another induction
is needed. Some examples are carried out directly from Peano’s axioms,
such as the commutativity of multiplication. Some involve algebra, for
example, there are no nilpotents in an integral domain. Others are carried
out with the aid of external simplification by MathXpert, for example,
a proof by induction on n of Bernoulli’s inequality 1 + nx ≤ (1 + x)n if
x > −1.

99

100

Tps: A Theorem Proving System for Church’s

Type Theory

Chad E. Brown

Universität des Saarlandes, Saarbrücken, Germany, cebrown@ags.uni-sb.de

Tps [1, 2] is a theorem proving system providing support for automated and
interactive proving in fragments of Church’s Type Theory [3, 5]. Tps has been
developed by Peter Andrews and several of his students at Carnegie Mellon
University. Tps users can interactively construct natural deduction proofs of
theorems in Church’s Type Theory. Users can also ask Tps to prove theorems
automatically using a variety of modes. (A mode is a collection of flag settings.)
Depending on the mode, the search procedure will attempt to find a proof in
elementary type theory or extensional type theory, with various restrictions on
the search space [4]. Proofs found automatically by Tps are translated to nat-
ural deduction proofs. Users can also interactively construct part of a natural
deduction proof, then ask Tps to automatically fill in certain gaps.

References

1. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning,
and Hongwei Xi. TPS: A theorem proving system for classical type theory. Journal

of Automated Reasoning, 16:321–353, 1996.
2. Peter B. Andrews, Matthew Bishop, and Chad E. Brown. System description:

TPS: A theorem proving system for type theory. In McAllester [6], pages 164–169.
3. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To

Truth Through Proof. Kluwer Academic Publishers, second edition, 2002.
4. Chad E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, De-

partment of Mathematical Sciences, Carnegie Mellon University, 2004.
5. Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5:56–68, 1940.
6. David McAllester, editor. Proceedings of the 17th International Conference on Au-

tomated Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, Pitts-
burgh, PA, USA, 2000. Springer-Verlag.

101

102

System Description: The Metis Proof Tactic

Joe Hurd!

Computing Laboratory
University of Oxford,

joe.hurd@comlab.ox.ac.uk

The Metis proof tactic for the HOL4 theorem prover [1] proves higher order
logic goals using a first order proof calculus. It is implemented in Standard ML,
supporting a tight integration with the rest of the HOL4 theorem prover, and is
required to respond within a few seconds to be useful during interactive proof.

The steps of its operation are as follows:

1. The initial higher order logic goal is negated and converted by proof to
conjunctive normal form. Definitional conjunctive normal form is used to
avoid exponential blow-up (occasionally encountered in practice).

2. A suitable logical interface (m, t) is selected, consisting of a mapping m from
higher order logic formulas to first order clauses, and also a translation t that
lifts first order refutations to higher order logic proofs [2]. The conjuncts are
mapped to first order logic clauses.

3. A refutation of the clauses is found, where the search is performed using the
ordered paramodulation calculus [3].

4. The first order refutation is lifted to a higher order logic proof of the nor-
malized goal, completing the proof of the initial goal.

The Metis proof tactic is effective on many classes of higher order logic goal,
particularly those that require a combination of deductive and equality reason-
ing. It automatically selects an interface for the goal, first trying a fast one that
discards type information, and then a more robust one that includes type in-
formation in the first order clauses. A syntactic check detects whether the goal
contains higher order features such as quantification over functions, and if so
an interface is selected that maps higher order logic function application to a
first order function symbol (i.e., f(x) is mapped to app(f, x)). This automatic
interface selection makes Metis more efficient and also gives it a wider cover-
age than might be expected of a first order proof tactic. As an indication of its
popularity, the string METIS TAC occurs 1,822 times in the 243,636 lines of the
HOL4 sources, and work is ongoing to port it to other higher order logic theorem
provers.

References

1. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL (A theorem-
proving environment for higher order logic). Cambridge University Press, 1993.

! Supported by a Junior Research Fellowship at Magdalen College, Oxford.

103

2 Joe Hurd

2. Joe Hurd. An LCF-style interface between HOL and first-order logic. In Andrei
Voronkov, editor, Proceedings of the 18th International Conference on Automated
Deduction (CADE-18), volume 2392 of Lecture Notes in Artificial Intelligence, pages
134–138, Copenhagen, Denmark, July 2002. Springer.

3. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 7, pages 371–443. Elsevier Science, 2001.

104

First Order Proof for Higher Order Logic
Theorem Provers (abstract)

Joe Hurd!

Computing Laboratory
University of Oxford,

joe.hurd@comlab.ox.ac.uk

Interactive theorem provers are useful for modelling computer systems and
then verifying properties of them by constructing a formal proof that the proper-
ties logically follow from the definition of the system. The expressivity of higher
order logic makes it easy to model systems in a natural way, and there are many
interactive theorem provers based on higher order logic, including HOL4 [4], Is-
abelle [12] and PVS [10]. In these theorem provers the system properties to be
formally verified are statements of higher order logic, which are presented to the
user as goals. The user proves goals by manually selecting tactics that reduce
goals to simpler subgoals, until eventually the subgoals are simple enough that
tactics can completely prove them. In general the initial goals corresponding
to system properties require some higher order reasoning to prove them (typ-
ically an induction), but many subgoals require only first order reasoning and
are efficiently proved by a standard first order calculus. Using first order provers
to support interactive proof in higher order logic theorem provers has been a
productive line of research, and the following is a chronological list of such com-
binations: FAUST in HOL [9]; SEDUCT in LAMBDA [3]; MESON in HOL [5];
3TAP in KIV [1]; blast in Isabelle [11]; Gandalf in HOL [6]; and Bliksem in
Coq [2].

There are two barriers to combining first order provers with interactive higher
order theorem provers. The first is the incompatibility of the different logics: a
method is required to convert a higher order logic goal to a set of first order
clauses, and then to lift a refutation of the clauses to a higher order logic proof.
Using the idea of an LCF kernel for first order refutations it is possible to make
this logical interface into a module, allowing several different interfaces between
first and higher order logic to co-exist [7]. The choice of interface to apply to a
particular higher order logic goal depends on both the syntactic structure of the
goal and which other interfaces have been tried.

The second barrier is an engineering one: the specifics of how to link up
the first order prover and extract the information necessary to reconstruct the
refutation and translate it to a higher order logic proof. The LCF kernel design of
the logical interface makes it simple to convert refutations to a form in which they
can be automatically translated to higher order logic proofs, and thus supports
experimentation with a full range of first order calculi. Experiments have shown
that resolution is more effective than model elimination for higher order logic

! Supported by a Junior Research Fellowship at Magdalen College, Oxford.

1

2 Joe Hurd

goals [8], and a calculus with specific rules for equality is also important for this
application.

All the above ideas are implemented in the Metis proof tactic in the HOL4
theorem prover, which is separately presented as a system description.

References

1. Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel, Wolfgang
Reif, Gerhard Schellhorn, and Peter H. Schmitt. Integration of automated and
interactive theorem proving. In W. Bibel and P. Schmitt, editors, Automated
Deduction: A Basis for Applications, volume II, chapter 4, pages 97–116. Kluwer,
1998.

2. Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction
in type theory using resolution. In David A. McAllester, editor, Proceedings of the
17th International Conference on Automated Deduction (CADE-17), volume 1831
of Lecture Notes in Computer Science, pages 148–163, Pittsburgh, PA, USA, June
2000. Springer.

3. H. Busch. First-order automation for higher-order-logic theorem proving. In Tom
Melham and Juanito Camilleri, editors, Higher Order Logic Theorem Proving and
Its Applications, 7th International Workshop, volume 859 of Lecture Notes in Com-
puter Science, Valletta, Malta, September 1994. Springer.

4. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL (A theorem-
proving environment for higher order logic). Cambridge University Press, 1993.

5. John Harrison. Optimizing proof search in model elimination. In Michael A.
McRobbie and John K. Slaney, editors, 13th International Conference on Auto-
mated Deduction (CADE-13), volume 1104 of Lecture Notes in Artificial Intelli-
gence, pages 313–327, New Brunswick, NJ, USA, July 1996. Springer.

6. Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin, and Laurent Théry, editors, Theorem Proving in
Higher Order Logics, 12th International Conference, TPHOLs ’99, volume 1690 of
Lecture Notes in Computer Science, pages 311–321, Nice, France, September 1999.
Springer.

7. Joe Hurd. An LCF-style interface between HOL and first-order logic. In Andrei
Voronkov, editor, Proceedings of the 18th International Conference on Automated
Deduction (CADE-18), volume 2392 of Lecture Notes in Artificial Intelligence,
pages 134–138, Copenhagen, Denmark, July 2002. Springer.

8. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In
Myla Archer, Ben Di Vito, and César Muñoz, editors, Design and Application
of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in
NASA Technical Reports, pages 56–68, September 2003.

9. R. Kumar, T. Kropf, and K. Schneider. Integrating a first-order automatic prover
in the HOL environment. In Myla Archer, Jeffrey J. Joyce, Karl N. Levitt, and
Phillip J. Windley, editors, Proceedings of the 1991 International Workshop on the
HOL Theorem Proving System and its Applications (HOL ’91), August 1991, pages
170–176, Davis, CA, USA, 1992. IEEE Computer Society Press.

10. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Sys-
tem Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
September 1999.

2

First Order Proof for Higher Order Logic Theorem Provers (abstract) 3

11. L. C. Paulson. A generic tableau prover and its integration with Isabelle. Journal
of Universal Computer Science, 5(3), March 1999.

12. Lawrence C. Paulson. Isabelle: A generic theorem prover. Lecture Notes in Com-
puter Science, 828:xvii + 321, 1994.

3

4

Implicit Typing in Lambda Logic

Michael Beeson1

San José State University, San José, Calif.
beeson@cs.sjsu.edu,

www.cs.sjsu.edu/faculty/beeson

Abstract. Otter-lambda is a theorem-prover based on an untyped logic
with lambda calculus, called Lambda Logic. Otter-lambda is built on
Otter, so it uses resolution proof search, supplemented by demodulation
and paramodulation for equality reasoning, but it also uses a new al-
gorithm, lambda unification, for instantiating variables for functions or
predicates. The basic idea of a typed interpretation of a proof is to “type”
the function and predicate symbols by specifying the legal types of their
arguments and return values. The idea of “implicit typing” is that if the
axioms can be typed in this way then the consequences should be ty-
pable too. This is not true in general if unrestricted lambda unification
is allowed, but for a restricted form of “type-safe” lambda unification it
is true. The main theorem of the paper shows that the ability to type
proofs if the axioms can be typed works for the rules of inference used
by Otter-lambda, if type-safe lambda unification is used, and if demod-
ulation and paramodulation from or into variables are not allowed. All
the interesting proofs obtained with Otter-lambda, except those explic-
itly involving untypable constructions such as fixed-points, are covered
by this theorem.

1 Introduction: the no-nilpotents example

We begin with an example. Consider the problem of proving that there are no
nilpotent elements in an integral domain. To explain the problem: an integral
domain is a ring R in which xy = 0 implies x = 0 or y = 0, i.e. there are no zero
divisors. A element c of R is called nilpotent if for some positive integer n, cn

(i.e., c multiplied by itself n times) is zero. Informally, one proves by induction
on n that cn is not zero. The equation defining exponentiation is xs(n) = x ∗ xn.
If c and cn are both nonzero, then the integral domain axiom implies that cn+1

is also nonzero. It is a very simple proof, but it is interesting because it involves
two types of objects, ring elements and natural numbers, and the proof involves
a mix of the algebraic axioms and the number-theoretical axioms (mathematical
induction). Since the proof is so simple, we can consider the issues raised by
having two types of objects without being distracted by a complicated proof.

How are we to formalize this theorem in first order logic? The traditional way
would be to have two unary predicates R(x) and N (x), whose meaning would
be ”x is a member of the ring R” and ”x is a natural number”, respectively.
Then the ring axioms would be “relativized to R”, which means that instead

5

II

of saying x + 0 = 0, we would say R(x) → x + 0 = 0, or in clausal form,
−R(x)|x + 0 = 0. (The vertical bar means “or”, and the minus sign means
“not”.) Similarly, the axiom of induction would be relativized to N . The axiom
of induction is usually formulated using a symbol s for the successor function, or
“next-integer” function. For example, s(4) = 5. The specific instance of induction
we need for this proof can be expressed by the two (unrelativized) clauses

xo $= 0 | xg(x) = 0 | xn = 0.

xo $= 0 | xs(g(x)) $= 0 | xn = 0.

To see that this corresponds to induction, think of g(x) as a constant (on which
x is not allowed to depend). Then the middle literal of the first clause is xc = 0.
That is the induction hypothesis. The middle literal of the second clause is
xs(c) $= 0. That is the negated conclusion of the induction step. We have used o
instead of 0 for the natural number zero, which might not be the same as the
ring element 0.

A traditional course in logic would teach you that to formalize this problem,
you need to relativize all the axioms using R and N . Just to be explicit, the
relativized versions of the induction axioms would be

−R(x) | − N (n) | xo $= 0 | xg(x,n) = 0 | xn = 0.

−R(x) | − N (n) | xo $= 0 | xs(g(x,n)) $= 0 | xn = 0.

−R(x) | − N (n) | N (g(n, x)).

and we would need additional axioms such as these:

−R(x) | − N (n) | R(xn).
−R(x) | − R(y) | R(x + y).
−R(x) | − R(y) | R(x ∗ y).
−R(x) | x + 0 = 0.

and so on for the other ring axioms.

2 Implicit typing in first order logic

Now here is the question: when formalizing this problem, do we need to relativize
the induction axioms and the ring axioms using R(x) and N (x), or not? Exper-
imentally, if we put the unrelativized axioms into Otter (Otter-λ is not needed,
since we have explicitly given the prover the required instance of induction), we
do find a proof. What does this proof actually prove? Certainly it shows that in
any integral domain whose underlying set is the natural numbers, there are no
nilpotents, since in that case all the variables range over the same set, and no
question of typing arises. We can prove informally that any countable integral
domain is isomorphic to one whose underlying set is the natural numbers. But
this is not the theorem that we set out to prove, so it may appear that we must
use R(x), N (x), and relativization to formalize this problem.

6

III

That is, however, not so. The method of “implicit typing” shows that under
certain circumstances we can dispense with unary predicates such as R and N .
One assigns a type to each predicate, function symbol, and constant symbol,
telling what the sort of each argument is, and the sort of the value (in case of
a function; predicates have Boolean value). Specifically each argument position
of each function or predicate symbol is assigned a sort and the symbol is also
assigned a “value type” or “return type”. For example, in this problem the ring
operations + and ∗ have the type of functions taking two R arguments and
producing an R value, which we might express as type(R, +(R, R)). If we use
N for the sort of natural numbers then we need to use a different symbol for
addition on natural numbers, say type(N, plus(N, N)), and we need to use a
different symbol for 0 in the ring and zero in N . The Skolem symbol g in the
induction axiom has the type specification type(N, g(R)). The exponentiation
function has the type specification type(R, RN)).

Constants are considered as 0-ary function symbols, so they get assigned
types, for example type(R, 0) and type(N, o). We call a formula or term correctly
typed if it is built up consistently with these type assignments. Note that variables
are not typed; e.g. x + y is correctly typed no matter what variables x and y
are. Types as we discuss them here are not quite the same as types in most
programming languages, where variables are declared to have a certain type.
Here, when a variable occurs in a formula, it inherits a type from the term in
which it occurs, and if it occurs again in the same clause, it must have the same
type at the other occcurence for the clause to be considered correctly typed. Once
all the function symbols, constants, and predicate symbols have been assigned
types, one can check (manually) whether the clauses supplied in an input file are
correctly typed.

Then one observes that if the rules of inference preserve the typing, and if
the axioms are correctly typed, and the prover finds a proof, then every step
of the proof can be correctly typed. That means that it could be converted
into a proof that used unary predicates for the sorts. Hence, if it assists the
proof-finding process to omit these unary predicates, it is all right to do so.
This technique was introduced long ago in [4], but McCune says it was already
folklore at that time. It implies that the proof Otter finds using an input file
without relativization actually is a valid proof of the theorem, rather than just
of the special case where the ring elements are the natural numbers.

“Implicit typing” is the name of this technique, in which unary predicates
whose function would be to establish typing are omitted. There are two ways to
use implicit typing. First, we could just omit the unary predicates, let a theorem-
proving program find a proof, and afterwards verify by hand (or by a computer
program) that the proof is indeed well-typed. Second, we could verify that the
axioms are well-typed, and prove that the inference rules used in the prover
lead from correctly typed clauses to correctly typed clauses. Let us explore this
second alternative. In order to state and prove a theorem, we first give some
definitions:

7

IV

Definition 1. A type specification is an expression of the form type(R, f(U, V)),
where R, U , and V are “type symbols”. Any first-order terms not containing vari-
ables may be used as type symbols. Here ‘type’ must occur literally, and f can
be any symbol. The number of arguments of f , here shown as two, can be any
number, including zero.

The type R is called the value type of f . The symbol f is called the symbol
of the type specification, and the number of arguments of f is the arity.

Definition 2. A typing of a term is an assignment of types to the variables
occurring in the term and to each subterm of the term. A typing of a literal is
similar, but the formula itself must get value type bool. A typing of a clause is
an assignment that simultaneously types all the literals of the clause. A typing
of a term (or literal or clause or set of clauses) t is correct with respect to a list
of type specifications S provided that

(i) each occurrence of a variable in t is assigned the same type.
(ii) each subterm r of t is typed according to a type specification in S. That

is, if r is f(u, v) and f(u, v),u, and v are assigned types a, b, and c respectively,
then there is a type specification in S of the form type(a, f(b, c)).

(iii) each occurrence of each subterm r of t in t has the same value type.

In the definition, nothing prevents S from having more than one type speci-
fication for the same function symbol and arity. Condition (iii) is needed in such
a case.

The phrase, correctly typed term t, is short for “term t and a correct typing
of t with respect to some list of type specifications given by the context”.

Remark. We do not allow type specifications to contain variables, but of
course at the meta-level we can refer to a “typing of the form i(U, U).” That
covers any specific typing such as i(N, N), etc. For first-order theories, usually
constant terms will suffice for naming the types (which are then usually called
sorts rather than types, as in “multi-sorted logic”).

The simplest theorem on implicit typing concerns the inference rule of (bi-
nary) resolution.1

Theorem 1. Suppose each function symbol and constant occurring in a theory
T is assigned a unique type specification, in such a way that all the axioms
of T are correctly typed (with respect to this list of type specifications). Then
conclusions reached from T by binary resolution (using first-order unification)
are also correctly typed.

Remark . This theorem is perhaps implicit in [4]. We give it here mainly to
prepare the way for extensions to lambda logic in the next section.
Proof. Suppose that literal P (r) resolves with literal −P (t), where r and t are
terms; then there is a substitution σ such that rσ = tσ, the unifying substitution.
1 In the following theorem, we assume (as is customary with resolution) that after a

theory has been brought to clausal form, the variables in distinct clauses are renamed
so that no variable occurs in more than one clause.

8

V

Here P stands for any atomic formula and t and r might stand for several terms if
P has more than one argument position. Since P (r) and P (t) are correctly typed
by hypothesis, r and t must have the same value type (if they are not variables).
The result of the resolution will be a disjunction of literals Qσ|Sσ, where Q and
S are the remaining (unresolved) literals in the clauses that originally contained
P (r) and −P (t), respectively. Now Q and S are correctly typed by hypothesis,
so we just need to show that applying the substitution σ to a correctly typed
term or literal will produce a correctly typed term or literal. This will be true
by induction on the complexity of terms, provided that substitution σ assigns
to each variable x in its domain, a term q whose value type is the same as the
value type of x in the clause in which x occurs. In first-order unification (but not
in lambda unification) variables get assigned a value in unification only when
the variable occurs as an argument, either of a parent term or a parent literal.
That is, a variable cannot occur in the position of a literal. Thus when we are
unifying f(x, u) and f(q, v), x will get assigned to q, and the type of x and the
value type of q must be the same since they are both in the first argument place
of f . That completes the proof.

Does this theorem apply to the no-nilpotents example? We have to be careful
about the type specification of the equality symbol. If we specify type(bool, =
(R, R)), then we cannot use the same equality symbol in the axioms for the
natural numbers, for example s(x) $= 0 and x = y|s(x) $= s(y). However, Otter
treats any symbol beginning with EQ as an equality; = is a synonym for EQ, but
one can also use, for example EQ2. Therefore, if we want to apply the theorem,
we need to use two different equality symbols. Of course, we could just use =
throughout and verify afterwards that the proof can be correctly typed, as = is
never used in the same clause for equality between natural numbers and equality
between ring elements; but if we want to be assured in advance that any proof
Otter will find will be correctly typable, then we need to use different equality
symbols. If we do so, then the theorem does apply.

There are, of course, more inference rules than just binary resolution. Even in
this example, the proof uses demodulation. The theorem above can be extended
to include the additional rules of inference factoring, paramodulation, and de-
modulation. For those not familiar with those rules we review their definitions.
Factoring permits the derivation of a new clause by unifying two literals in the
same clause that have the same sign, and applying the resulting substitution
to the entire clause. Paramodulation is the following: suppose we have already
deduced t = q (or q = t) and P [z := r], and unification of t and r produces a sub-
stitution σ such that tσ = rσ; then we can deduce P [z := qσ]. Paramodulation
from variables is the case in which t is a variable. Paramodulation into a variable
is the case in which r is a variable. Demodulation is similar to paramodulation,
except that (i) unlike paramodulation, it is unidirectional (i.e., the hypothesis
must be t = q, not q = t), (ii) it is applied only under certain circumstances and
using formulas designated in an input file as “demodulators”. From the point of
view of soundness proofs, it is a special case of paramodulation.

9

VI

Theorem 2. Suppose each function symbol and constant occurring in a theory
T is assigned a unique type specification, in such a way that all the axioms of
T are correctly typed (with respect to this list of type specifications). The type
specifications of equality symbols must have the form type(bool, = (X, X)) for
some type X. Then conclusions reached from T by binary resolution, hyperres-
olution, factoring, demodulation, and paramodulation (using first-order unifica-
tion in applying these rules) are also correctly typed, provided demodulation and
paramodulation are not applied to or from variables.

Proof. Conclusions reached by hyperresolution can also be reached by binary
resolution, so that part of the theorem follows from the previous theorem. The
results on factoring, paramodulation and demodulation follow from the fact that
applying a substitution produced by unification preserves correct typings. The
lemma that we need is that if p and r unify, then they have the same value type.
If neither is a variable, this follows from the assumption that the axioms of T
are correctly typed. (If one is a variable, this need not be the case.)

Suppose, for example, that r = s is to be used as a demodulator on term
t. The demodulator is applied by unifying r with a certain subterm p of t. Let
σ be the substitution that performs this unification, so pσ = rσ. Then p and
r, since they unify, have the same value type, and hence p, pσ, and rσ all have
the same value type. The type specification of equality must have the form
type(bool, = (X, X)) for some type X; so r and s have the same value type,
so rσ and sσ have the same value type. Hence sσ and pσ also have the same
value type, and hence the result of replacing p in t by sσ (the result of the
demodulation) is a correctly typed term.

Example. This example will show that one cannot allow “overloading”, or
multiple type specifications for the same symbol, and still use implicit typing
with guaranteed correctness. For example, suppose we want to use x + y both
for natural numbers and for integers. Thinking of integers, we write the axiom
x + (−x) = 0, and thinking of natural numbers we write 1 + x $= 0, Resolving
these clauses, we find a contradiction upon taking x = 1.

Example. This example, taken from Euclidean geometry, shows that the the-
orem cannot be extended to paramodulation from variables. In this example,
EQpt stands for equality between points, EQline stands for equality between
lines, I(a, b) stands for point a incident to line b, and p1(u) and p2(u) are two
distinct points on line u. The types here are boolean, point, and line. Axioms
(1) and (2) are correctly typed:

EQpt(x, y)|I(x, line(x, y)). (1)
EQline(line(p1(u), p2(u)), u). (2)

Paramodulating from the first clause of (1) into (2), we unify x with line(p1(u), p2(u)),
and thus derive

EQline(y, u)|I(line(p1(u), p2(u)), line(line(p1(u), p2(u)), y)). (3)

This conclusion is incorrectly typed since y is a point and u is a line.
10

VII

Example. This simpler example illuminates the situation with regard to paramod-
ulation from variables. Consider the three unit clauses x = a, P (b), and −P (c).
These clauses lead to a contradiction using paramodulation from the variable
x and binary resolution. But without paramodulation from variables, no con-
tradiction can be derived. This shows that we have lost first-order refutation
completeness, already in the first order case, as the price of implicit typing. But
this is good: if equality is between objects of type A and P is a predicate on ob-
jects of type B, then these clauses are not contradictory. This loss of first-order
completeness already occurs in the first-order case, and is not a phenomenon
special to lambda logic. Question: “but if b and c have the same type, then
shouldn’t the contradiction be found?” Answer: ‘b’ and ‘c’ are constants in an
untyped language, so they do not have types. Contradictions, like all proofs, are
syntactic and involve the symbols. What the example shows is that, if many-
sorted models are considered, there are models of this theory, even though the
theory has no first-order models; and the theorem shows that the inference rules
in question are sound for multi-sorted models.

3 Lambda logic and lambda unification

Lambda logic is the logical system one obtains by adding lambda calculus to first
order logic. This system is formulated, and some fundamental metatheorems are
proved, in [1]. The appropriate generalization of unification to lambda logic
is this notion: two terms are said to be lambda unified by substitution σ if
tσ = sσ is provable in lambda logic. An algorithm for producing lambda unifying
substitutions, called lambda unification, is used in the theorem prover Otter-λ,
which is based on lambda logic rather than first-order logic, but is built on
the well-known first-order prover Otter [3]. In Otter-λ, lambda unification is
used, instead of only first-order unification, in the inference rules of resolution,
factoring, paramodulation, and demodulation.

We do not regard this work as a “combination of first-order logic and higher-
order logic”. Lambda logic is not higher-order, it is untyped. Lambda unification
is not higher-order unification, it is unification in (untyped) lambda logic. While
there probably are interesting connections to typed logics, some of the questions
about those relationships are open at present, and out of the scope of this paper.
Similarly, while there are projects aimed at combining first-order provers and
higher-order provers, that approach is quite different from ours. Otter-lambda
is a single, integrated prover, not a combination of a first-order prover and a
higher-order prover. There is just one database of deduced clauses on which
inferences are performed; there is no need to pass data between provers. Whether
other provers can find proofs for the examples that Otter-lambda can find proofs
for, we do not know and cannot report on. This paper is solely about lambda
logic, lambda unification, and Otter-lambda. This subject offers quite enough
complications for one paper.

In Otter-λ input files, we write lambda(x, t) for λx. t, and we write Ap(x, y)
for x applied to y, which is often abbreviated in technical papers to x(y) or

11

VIII

even xy. In this paper, Ap will always be written explicitly, but we use both
lambda(x, t) and λx. t.

Our main objective in this section is to define the lambda unification algo-
rithm. As we define it here, this is a non-deterministic algorithm: it can return,
in general, many different unifying substitutions for two given input terms. As
implemented in Otter-lambda, it returns just one unifier, making some specific
choice at each non-deterministic choice point. As for ordinary unification, the
input is two terms t and s (this time terms of lambda logic) and the output,
if the algorithm succeeds, is a substitution σ such that tσ = sσ is provable in
lambda logic.

We first give the relatively simple clauses in the definition. These have to do
with first-order unification, alpha-conversion, and beta-reduction.

The rule related to first-order unification just says that we try that first;
for example Ap(x, y) unifies with Ap(a, b) directly in a first-order way. However,
the usual recursive calls in first-order unification now become recursive calls to
lambda unification. In other words: to unify f(t1, . . . , tn with g(s1, . . . , sm), this
clause does not apply unless f = g and n = m; in that case we do the following:

for i = 1 to n {
τ = unify(ti, si);
if (τ = failure)

return failure;
σ = σ ◦ τ; }

return σ
Here the call to unify is a recursive call to the algorithm being defined.

The rule related to alpha-conversion says that, if we want to unify lambda(z, t)
with lambda(x, s), let τ be the substitution z := x and then unify tτ with s, re-
jecting any substitution that assigns a value depending on x.2 If this unification
succeeds with substitution σ, return σ.

The rule related to beta-reduction says that, to unify Ap(lambda(z, s), q)
with t, we first beta-reduce and then unify. That is, we unify s[z := q] with t
and return the result.

Lambda unification’s most interesting instructions tell how to unify Ap(x, w)
with a term t, where t may contain the variable x, and t does not have main
symbol Ap. Note that the occurs check of first-order unification does not apply
in this case. The term w, however, may not contain x. In this case lambda
unification is given by the following non-deterministic algorithm:

1. Pick a masking subterm q of t. That means a subterm q such that every
occurrence of x in t is contained in some occurrence of q in t. (So q “masks” the
occurrences of x; if there are no occurrences of x in t, then q can be any subterm
of t, but see the next step.)

2 Care is called for in this clause, as illustrated by the following example: Unify
lambda(x, y) with lambda(x, f(x)). The “solution” y = f(x) is wrong, since substi-
tuting y = f(x) in lambda(x, y) gives lambda(z, f(x)), because the bound variable
is renamed to avoid capture.

12

IX

2. Call lambda unification to unify w with q. Let σ be the resulting substitution.
If this unification fails, or assigns any value other than a variable to x, return
failure. If it assigns a variable to x, say x := y reverse the assignment to y := x
so that x remains unassigned.
3. If qσ occurs more than once in tσ, then pick a set S of its occurrences. If q
contains x then S must be the set of all occurrences of qσ in t. Let z be a fresh
variable and let r be the result of substituting z in tσ for each occurrence of qσ
in the set S.
4. Append the substitution x := λz. r to σ and return the result.

There are two sources of non-determinism in the above, namely in steps 1 and
3. These steps are made deterministic in Otter-λ as follows: in step 1, if x occurs
in t, we pick the largest masking subterm q that occurs as a second argument of
Ap.3 If x occurs in t, but no masking subterm occurs as a second argument of
Ap, we pick the smallest masking subterm. If x does not occur in t, we pick a
constant that occurs in t; if there is none, we fail. In step 3, if q does not contain
x, then an important application of this choice is to proofs by mathematical
induction, where the choice of q corresponds to choosing a constant n, replacing
some of the occurrences of n by a variable, and deciding to prove the theorem by
induction on that variable. Therefore the choice of S is determined by heuristics
that prove useful in this case. In the future we hope to implement a version
of lambda unification that returns multiple unifiers by trying different sets S
in step 3. Our proofs in this paper apply to the full non-deterministic lambda
unification, as well as to any deterministic versions, unless otherwise specified.

Example. Lambda unification can lead to untypable proofs, for example those
needed to produce fixed points in lambda calculus. As an example, if we unify
Ap(x, y) with f(Ap(x, y)), the masking subterm q is x itself; w is y so σ is y := x;
wσ is x and tσ is Ap(x, x). Thus we get the following result:4

x := lambda(z, f(Ap(z, z))) y := x

Type restrictions will be violated if we have specified the typing:

type(B, Ap(i(A, B), A)). type(B, f(B)).

Variable x has type i(A, B), and variable y has type A, so the unification of x
and y violates type restrictions, since i(A, B) is not the same type as A.

Definition 3. We say that a particular lambda unification (of Ap(X, w) with
t) is type-safe (with respect to some explicit or implicit typings) if the masking
subterm q selected by lambda unification has the same type (with respect to those

3 The point of this choice is that, if we want the proof to be implicitly typable, then
q should be chosen to have the same type as w, and w is a second argument of Ap.

4 The symbol i does not have to be “defined” here; type assignments can be arbitrary
terms. But intuitively, i(A,B) could be thought of as the type of functions from type
A to type B.

13

X

typings) as the term w, and q is a proper subterm of t (unless the two argu-
ments of Ap have the same type). We also require that the value type assigned
to Ap(X, w) is the same as the value type assigned to t.

The example preceding the definition illustrates a lambda unification that is not
type-safe for any reasonable typing. The masking subterm is x; type safety would
require x to be assigned the same type as y. But x occurs as a first argument
of Ap and y as a second argument of Ap. Therefore the type specification of Ap
would have to be of the form type(V, Ap(U, U)); but normally Ap will have a
type specification of the form type(B, Ap(i(A, B), A)).

Remark. A discussion of the relationship, if any, between lambda unification
and the higher-type unification algorithms already in the literature is beyond the
scope of this paper. The algorithms apply to different systems and have different
definitions. Similarly, the exact relationship between lambda logic and various
sytems of higher-order logic, if there is any, is beyond the scope of this paper (or
any paper of this length).

4 Implicit typing in lambda logic

If we consider the no-nilpotents example in lambda logic, we can state the axiom
of mathematical induction in full generality, and Otter-lambda can use lambda
unification to find the specific instance of induction that is required. (See the
examples on the Otter-lambda website.) The proof, obtained without relativiz-
ing to unary predicates, is correctly typable. This is not an accident: there are
theorems about implicit typing that guarantee it.

We first give an example to show that the situation is not as straightforward
as in first-order logic. If we use the axioms of group theory in lambda logic,
must we relativize them to a unary predicate G(x)? As we have seen above,
that is not necessary when doing first-order inference. We could, for example,
put in some axioms about natural numbers, and not relativize them to a unary
predicate N (x), and as long as our axioms are correctly typed, our proofs will
be correctly typed too. There is, however, reason to worry about this when we
move to lambda logic.

In lambda calculus, every term has a fixed point. That is, for every term F we
can find a term q such that Ap(F, q) = q. Another form of the fixed point theorem
says that for each term H, we can find a term f such that Ap(f, x) = H(f, x).
Applying this to the special case when H(f, x) = c ∗ Ap(f, x), where c is a
constant and ∗ is the group multiplication, we get Ap(f, x) = c ∗ Ap(f, x). It
follows from the axioms of group theory that c is the group identity. On the
other hand, in lambda logic it is given as an axiom that there exist two distinct
objects, say c and d, and since each of d and c must equal the group identity,
this leads to a contradiction. Looked at model-theoretically, this means it is
impossible, given a lambda model M , to define a binary operation on M and an
identity element of M that make M into a group.

Since these axioms are contradictory in lambda logic, what is the value of a
proof of a theorem from these axioms? One might think that there is none, and

14

XI

that to be able to trust an automatically produced proof from these axioms I
would need to check it independently, or reformulate the axioms by relativizing
the group axioms to a unary predicate G. The point of this paper is that there
are good theoretical reasons why I do not need to do that. Even though there
exists a derivation of a contradiction in lambda logic from these axioms, it is not
a well-typed derivation, and since the axioms are well-typed, the theorems in
this paper guarantee that deduced conclusions will also be well-typed. In other
words, if we attempt to prove that every element is equal to c, we will put in
the negated goal x $= c, but if we use only “type-safe” lambda unification, as
defined below, we will not be able to construct the fixed point needed to derive a
contradiction. If, however, we use unrestricted lambda unification, we can derive
it. If we put in the (negation of) the untyped fixed-point equation itself, then
we can also prove that (even with type-safe lambda unification), but we need a
non-well typed axiom in the input file.

First, let us consider how to type the relevant axioms. Writing G for the type
of group elements, 1 for the group identity, and i(G, G) for the type of maps from
G to G, we would have the following type specifications:

type(G, 1).
type(G, ∗(G, G)).
type(G, Ap(i(G, G), G).
type(i(G, G), lambda(G, G)).

In general, of course, we want type(i(X, Y), lambda(X, Y)), but the special case
shown is enough in this example. According to these type specifications, the
axioms are correctly typable, and when Otter-λ produces a proof, the proof
turns out to also be correctly typable. This is not an accident, as we will see.

In defining type specifications for lambda logic, the following technicality
comes up: Normally in predicate logic we tacitly assume that different symbols
are used for function symbols and predicate symbols. Thus P (P (c)) would not be
considered a well-formed formula. In lambda logic we do wish to be able to define
propositional functions, as well as functions whose values are other objects, so we
allow Ap both as a predicate symbol and a function symbol. However, except for
Ap, we follow the usual convention that predicate symbols and function symbols
use distinct alphabets. This is the reason for clauses (4) and (5) in the following
definition.

Definition 4. A list of type specifications S is called coherent if
(1) for each (predicate or function) symbol f (except possibly Ap and lambda)
and arity n, it contains at most one type specification of symbol f and arity n;
the value type of a predicate symbol must be Prop and of a function symbol, must
not be Prop.
(2) type(i(X, Y), lambda(X, Y)) belongs to S if and only if

type(Y, Ap(i(X, Y), X)) belongs to S.
(3) all type specifications with symbol Ap have the form type(V, Ap(i(U, V), U)),
for the same type U , which is called the “ground type” of S.

15

XII

(4) all type specifications with symbol lambda have the form
type(i(U, V), lambda(U, V)),5 where U is the ground type of S.

(5) There are at most two type specifications in S with symbol Ap; if there are
two, then exactly one must have value type Prop.

Conditions (2) and (3) guarantee that beta-reduction carries correctly typed
terms to correctly typed terms. One might wish for a less restrictive condition in
(4) and (5), allowing functions of functions, or functions of functions of functions,
etc. But this is the condition for which we can prove theorems at the present
time, and it covers a number of interesting examples in algebra and number
theory.

If S is a coherent list S of type specifications, it makes sense to speak of “the
type assigned to a term t by S”, if there is at least one type specification in S
for the main symbol and arity of t. Namely, unless the main symbol of t is Ap,
only one specification in S can apply, and if the main symbol of t is Ap, then we
apply the specification that does not have value type Prop. Similarly, it makes
sense to speak of “the type assigned to an atomic formula by S”. When the main
symbol of t is Ap, we can speak of “the type assigned to t as a term” or “the
type assigned to t as a formula”, using the specification that does not or does
have Prop for its value type.

Theorem 3. Let S be a coherent list of type specifications. Let s and t be two
correctly typed terms or two correctly typed atomic formulas with respect to S.
Let σ be a substitution produced by successful type-safe lambda unification of s
and t. Then sσ and tσ are correctly typed, and S assigns the same type to s, t,
and sσ.

Example. Let s be Ap(X, w) and t be a+b. We can unify s and t by the substitu-
tion σ given by X := lambda(x, x + b) and w := a. If type(0, Ap(i(0, 0), 0)) and
type(0, +(0, 0)) then these are correctly typed terms and the types of sσ and a+b
are both 0. It may be that Ap also has a type specification type(Prop, Ap(i(0, P rop), 0)),
used when the first argument of Ap defines a propositional function. However,
this additional type specification will not lead to mis-typed unifications, since
the two type specifications of Ap are coherent.
Proof. We proceed by induction on the length of the computation by lambda
unification of the substitution σ.

(i) Suppose s is a term f(r, q) (or with more arguments to f), and either
f is not Ap, or r is neither a variable nor a lambda term. Then t also as the
form f(R, Q) for some R and Q, and σ is the result of unifying r with R to
get rτ = Rτ and then unifying qτ with Qτ , producing substitution ρ so that
σ = τ ◦ ρ. By the induction hypothesis, rτ is correctly typed and gets the same
type as r and Rτ ; again by the induction hypothesis, qτρ and Qτρ are correctly
typed and get the same type as q. Then sσ = f(rσ, qσ) = f(rτρ, qτρ) is also
correctly typed.
5 Intuitively, this says that if z has type X and t has type Y then lambda(z, t) has

type i(X,Y), the type of functions from X to Y .
16

XIII

(ii) The argument in (i) also applies if s is Ap(r, q) and t is Ap(R, Q) and
lambda unification succeeds by unifying these terms as if they were first-order
terms.

(iii) If s is a constant then sσ is s and there is nothing to prove.
(iv) If s is a variable, what must be proved is that t and s have the same value

type. A variable must occur as an argument of some term (or atom) and hence
the situation really is that we are unifying P (s, . . .) with some term q, where P
is either a function symbol or a predicate symbol. If P is not Ap, then q must
have the form P (t, . . .), and t and s occur in corresponding argument positions
(not necessarily the first as shown). Since these terms or atoms P (t, . . .) and
P (s, . . .) are correctly typed, and S is coherent, t and s do have the same types.
The case when P is Ap will be treated below.

(v) Suppose s is Ap(r, q), where r = lambda(z, p), and z does occur in p.
Then s beta-reduces to p[z := q], and lambda unification is called recursively to
unify p[z := q] with t. By induction hypothesis, t, tσ, p[z := q], and p[z := q]σ are
well-typed and are assigned the same value type, which must be the value type,
say V , of p. Since S is coherent, the type assigned to lambda(z, p) is i(U, V),
where U is the “ground type”, the type of the second arg of Ap. The type of q is
U since q occurs as the second arg of Ap in the well-typed term s. The type of
s, which is Ap(r, q), is V . We must show that sσ is well-typed and assigned the
value type V . Now sσ is Ap(rσ, qσ). It suffices to show that qσ has type U and
rσ has type i(U, V). We first show that the type of qσ is U . Since z has type
U in lambda(z, p), qσ occurs in the same argument positions in p[z := q]σ as z
does in p, and since z does occur at least once in p, and p[z := q]σ is well-typed,
qσ must have the same type as z, namely U . Next we will show that rσ has
type i(U, V). We have rσ = lambda(z, p)σ = lambda(z, pσ) (since the bound
variable z is not in the domain of σ). We have pσ[z := qσ] = p[z := q]σ] and the
type of the latter term is V as shown above. The type of A[z := B] is the type
of A, and moreover A[z := B] is well-typed provided A and B are well-typed
and z gets the same type as B. That observation applies here with A = pσ and
B = qσ, since the type of z is U and the type of qσ is U . Therefore the type
of pσ is the same as the type of pσ[z := qσ], which is the same as p[z := q]σ,
which has type the same as p[z := q], which we showed above to be V . Since
rσ = lambda(z, pσ), and z has type U , rσ has type i(U, V), which was what had
to be proved.

(vi) There are two cases not yet treated: when s is Ap(X, w), and when
s is a variable X occurring in the context Ap(X, w). We will treat these cases
simultaneously. As described in the previous section, the algorithm will (1) select
a masking subterm qσ of tσ (2) unify w and q with result σ (failing if this fails),
(3) create a new variable z, and substitute z for some or all occurrences of qσ
in tσ, obtaining r, and (4) produce the unifying substitution σ together with
X := lambda(z, r).

Assume that t is a correctly typed term. Then every occurrence of q in t
has the same type, by the definition of correctly typed. Since by hypothesis
this is type-safe lambda unification, q and w have the same type, call it U .

17

XIV

Since q unifies with w, by the induction hypothesis qσ and wσ are correctly
typed and get the same types as q and w, respectively, namely U . If Ap(X, w)
has type Prop, then the type of s and that of t are the same by hypothesis.
Otherwise, both occur as arguments of some function or predicate symbol P , in
corresponding argument positions, and hence, by the coherence of S, they are
assigned the same (value) type V . Then X has the type i(U, V). We now assign
the fresh variable z the type U ; then r is also correctly typed, and gets the same
type V as s and t, since it is obtained by substituting z for some occurrences
of qσ in tσ. For this last conclusion we need to use the fact that q is a proper
subterm of t, by the definition of type-safe unification; hence r is not a variable,
so the value type of r is well-defined, since S is coherent. Since S is coherent,
there is a type specification in S of the form type(i(U, V), lambda(U, V)). Thus
the term lambda(z, r) can be correctly typed with type i(U, V), the same type
as X. Hence Xσ has the same type as X, and sσ has the same type as s. That
completes the proof of the theorem.

Theorem 4 (Implicit Typing for Lambda Logic). Let A be a set of clauses,
and let S be a coherent set of type specifications such that each clause in A
is correctly typable with respect to S. Then all conclusions derived from A by
binary resolution, hyperresolution, factoring, paramodulation, and demodulation
(including beta-reduction), using type-safe lambda unification in these rules of
inference, are correctly typable with respect to S, provided paramodulation from or
into variables are not allowed, and paramodulation into or from terms Ap(X, w)
with X a variable is not allowed, and demodulators similarly are not allowed to
have variables or Ap(X, w) terms on the left.

Remark. The second restriction on paramodulation is necessary, as shown by the
following example. Suppose Ap has a type specification type(Prop, Ap(i, 0, P rop), 0)).
Without the restriction, we could paramodulate from x + 0 = x into Ap(X, x),
unifying x+0 with Ap(X, x) as in the example after Theorem 3, with the substi-
tution X := lambda(x, x + 0). The conclusion of the paramodulation inference
would be x. That is a mistyped conclusion, since x does not have the type Prop,
although Ap does have value type Prop.
Proof. Note that a typing assigns type symbols to variables, and the scope of a
variable is the clause in which it occurs, so as usual with resolution, we assume
that all the variables are renamed, or indexed with clause numbers, or otherwise
made distinct, so that the same variable cannot occur in different clauses. In
that case the originally separate correct typings T [i] (each obtained from S by
assigning values to varaibles in clause C[i]) can be combined (by union of their
graphs) into a single typing T . We claim that the set of clauses A is correctly
typed with respect to this typing T . To prove this correctness we need to prove:

(i)each occurrence of a variable in A is assigned the same type by T . This fol-
lows from the correctness of C[i], since because the variables have been renamed,
all occurrences of any given variable are contained in a single clause C[i].

(ii) If r is f(u, v), and r occurs in A, and f(u, v),u, and v are assigned types
a,b,c respectively, then there is a type specification in S of the form type(a, f(b, c)).

18

XV

If the term r occurs in A, then r occurs in some C[i], so by the correctness of
T [i], there is a type specification in S as required.

(iii) each occurrence of each term r that occurs in A has the same value type.
This follows from the coherence of S. The different typings T [i] are not allowed
to assign different value types to the same symbol and arity.

Hence A is correctly typed with respect to T .
All references to correct typing in the rest of the proof refer to the typing T .
We prove by induction on the length of proofs that all proofs from A using

the specified rules of inference lead to correctly typed conclusions. The base
case of the induction is just the hypothesis that A is correctly typable. For the
induction step, we take the rules of inference one at a time. We begin with binary
resolution. Suppose the two clauses being resolved are P |Q and −R|B, where
substitution σ is produced by lambda unification and satisfies Pσ = Rσ. Here
Q and B can stand for lists of more than one literal, in other words the rest of
the literals in the clause, and the fact that we have shown P and −R as the first
literals in the clause is for notational convenience only. By hypothesis, P |Q is
correctly typed with respect to S, and so is −R|B, and by Theorem 3, Pσ|Qσ
and −Rσ|Bσ are also correctly typed. The result of the inference is Qσ|Bσ.
But the union of correctly typed terms, literals, or sets of literals (with respect
to a coherent set of type specifications) is again correctly typed, by the same
argument as in the first part of the proof. In other words, coherence implies that
if some subterm r occurs in both Qσ and in Bσ then r gets the same value
type in both occurrences. That completes the induction step when the rule of
inference is binary resolution.

Hyperresolution and negative hyperresolution can be “simulated” by a se-
quence of binary resolutions, so the case in which the rule of inference is hyper-
resolution or negative hyperresolution reduces to the case of binary resolution.
The rule of “factoring” permits the derivation of a new clause by unifying two
literals in the same clause that have the same sign, and applying the resulting
substitution to the entire clause. By Theorem 3, a clause derived in this way is
well-typed if its premise is well-typed.

Now consider paramodulation. In that case we have already deduced t = q
and P [z := r], and unification of t and r produces a substitution σ such that tσ =
rσ. The conclusion of the rule is P [z := qσ]. We have disallowed paramodulation
from or into variables in the statement of the theorem; therefore t and r are not
variables. Let us write Type(t) for the value type of (any term) t. Because t = q
is correctly typed, we have Type(t) = Type(q). If neither t nor q is an Ap term,
then Type(tσ) = Type(qσ), since they have the same functor. If one of them
is an Ap term, then by hypothesis it is not of the form Ap(X, w), with X a
variable. Then by Theorem 3, Type(tσ) = Type(t) and Type(qσ) = Type(q) =
Type(t) = Type(tσ). Thus in any case Type(qσ) = Type(tσ). The value type of
r is the same at every occurrence, since P [z := r] is correctly typed. To show
that P [z := qσ] is correctly typed, it suffices to show that Type(qσ) = Type(r),
which is the same as the type of rσ. Since the terms t and r unify, and neither
is a variable, their main symbols are the same, since by hypothesis r is not of

19

XVI

the form Ap(X, w). Hence Type(r) = Type(rσ) = Type(tσ) = Type(qσ), which
is what had to be shown.

Now consider demodulation. In this case we have already deduced t = q and
P [z := tσ] and we conclude P [z := qσ], where the substitution σ is produced
by lambda unification of t with some subterm ρ of P [z := ρ]. Taking r = tσ, we
see that demodulation is a special case of paramodulation, so we have already
proved what is required. That completes the proof of the theorem.

Example: fixed points. The fixed point argument which shows that the group
axioms are contradictory in lambda logic requires a term Ap(f, Ap(x, x)). The
part of this that is problematic is Ap(x, x). If the type specification for Ap is
type(V, Ap(i(U, V), U)), then for Ap(x, x) to be correctly typed, we must have
V = U = i(U, U). If U and V are type symbols, this can never happen, so the
fixed point construction cannot be correctly typed. It follows from the theorem
above that this argument cannot be found by Otter-λ from a correctly typed
input file. In particular, in lagrange3.in we have correctly typed axioms, so we
will not get a contradiction from a fixed point argument.

On the other hand, in file lambda4.in, we show that Otter-λ can verify the
fixed-point construction. The input file contains the negated goal

Ap(c, Ap(lambda(x, Ap(c, Ap(x, x))), lambda(x,Ap(c, Ap(x,x)))))
$= Ap(lambda(x, Ap(c, Ap(x, x))), lambda(x, Ap(c,Ap(x, x)))).

Since this contains the term Ap(x, x), it cannot be correctly typed with respect
to any coherent list of type specifications T . Otter-λ does find a proof using
this input file, which is consistent with our argument above that fixed-point
constructions will not occur in proofs from correctly typable input files. The fact
that the input file cannot be correctly typed, which we just observed directly,
can also be seen as a corollary of the theorem, since Otter-λ finds a proof. The
fact that the theoretical result agrees with the results of running the program is
a good thing.

Remarks. (1) The (unrelativized) axioms of group theory are contradictory
in lambda logic, but if we put in only correctly-typed axioms, Otter-λ will find
only correctly typed proofs, which will be valid in the finite type structure based
on any group, and hence will not be proofs of a contradiction.

(2) We already knew that resolution plus factoring plus paramodulation from
non-variables is not refutation-complete, even for first-order logic; and we re-
marked when pointing that out that this permits typed models of some theories
that are inconsistent when every object must have the same type. Here is another
illustration of that phenomenon in the context of lambda logic.

(3) Of course Otter-lambda can find the fixed-point proof that gives the
contradiction; but to make it do so, we need to put in some non-well-typed
axiom, such as the negation of the fixed-point equation.

20

XVII

5 Enforcing type-safety

The theorems above are formulated in the abstract, rather than being theorems
about a particular implementation of a particular theorem-prover. As a practical
matter, we wish to formulate a theorem that does apply to Otter-λ and covers
the examples posted on the Otter-λ website, some of which have been mentioned
here. Otter-λ never uses paramodulation into or from variables, so that hypoth-
esis of the above theorems is always satisfied. But Otter-λ does not always use
only type-safe lambda unification; nor would we want it to do so, since it can find
some untyped proofs of interest, e.g. fixed points, Russell’s paradox, etc. Once
Otter-λ finds a correctly typable proof, we can check by hand (and could easily
check by machine) that it is correctly typable. Nevertheless it is of interest to be
able to set a flag in the input file that enforces type-safe unification. In Otter-λ,
if you put set(types) in the input file, then only certain lambda unifications
will be performed, and those unifications will always be type-safe.

Spefically, restricted lambda unification means that, when selecting a masking
subterm, only a second argument of Ap or a constant will be chosen. This is the
restriction imposed by the flag set(types). We now prove that this enforces
type safety under certain conditions.

Theorem 5 (Type safety of restricted lambda unification). Suppose that
a given set of axioms admits a coherent type specification in which there is no typ-
ing of the form Ap(U, U), and all constants receive type U . Then all deductions
from the given axioms by binary resolution, factoring, hyperresolution, demodu-
lation (including beta-reduction) paramodulation (except into or from variables
and Ap terms), lead to correctly typable conclusions, provided that restricted
lambda unification is used in those rules of inference.

Proof. It suffices to show that lambda unifications will be type-safe under these
hypotheses. The unification of Ap(x, w) with t is type-safe (by definition) if
in step (1) of the definition of lambda unification, the masking subterm q of
t has the same type as w. Now q is either a constant or term containing x
that appears as a second argument of Ap, since those are the “restrictions” in
restricted lambda unification. If q is a variable then it must be x, and must
occur as a second argument of Ap; but x occurs as a first argument of Ap, and
all second arguments of Ap get the same type, so there must be a typing of
the form type(T, Ap(U, U)). But such a typing is not allowed, by hypothesis.
Therefore q is not a variable. Then if q contains x, it must occur as a second
argument of Ap, as does w; hence by hypothesis w and q get the same type.
Hence we may assume q is a constant. But by hypothesis, all constants get the
same type as the second arguments of Ap. That completes the proof.

6 Some examples covered by Theorem 5

It remains to substantiate the claims made in the abstract and introduction,
that the theorems in this paper justify the use of implicit typing in Otter-λ for

21

XVIII

the various examples mentioned. The first theorems apply in generality to any
partial implementation of non-deterministic lambda unification, used in com-
bination with resolution and paramodulation, but disallowing paramodulation
into and from variables. Only Theorem 5 applies to Otter-lambda specifically,
when the set(types) command is in the input file. We will now check explicitly
that interesting examples are covered by this theorem.

Let us start with the “no nilpotents” example. It appears prima facie not to
meet the hypotheses of Theorem 5, since that theorem requires that all constants
have the same type as the second argument of Ap. In this example the type of Ap
is the one needed for mathematical induction: type(Prop, Ap(i(N, Prop), N)), so
the type of the second arg of Ap is N ; but the axioms include a constant o for
the zero of the ring. This is not a serious problem: we can simply replace o
in the axioms by zero(0), where zero is a new function symbol with the type
specification type(R, zero(N)). (The name zero is immaterial; this is just some
function symbol.) The term zero(0) is not a constant, so it won’t be selected as
a masking term (where it would interfere with the proof of Theorem 5). But it
will be treated essentially as a constant elsewhere in the inference process; and if
we were worried about that, we could use a weight template to ensure that it has
the same weight as a constant and hence will be treated exactly as a constant.
On the logical side we have the following lemma to justify the claim:

Lemma 1. Let T be a theory with at least one constant c. Let T ∗ be obtained
from T by adding a new function symbol f , but no new axioms. Then (i) T ∗ plus
the axioms c = f(x) is conservative over T .

(ii) If T contains another constant b and we let Ao be the result of replacing
c by f(b) in A, then T proves A if and only if T ∗ proves Ao.

(iii) There is an algorithm for transforming any proof of Ao in T ∗ to a proof
of A in T .

Proof. (i) Every model of T can be expanded to a model of T ∗ plus c = f(x)
by interpreting f as the constant function whose value is the interpretation of c.
The completeness theorem then yields the stated conservative extension result.

(ii) Ao is equivalent to A in T ∗ plus c = f(x), so by (i), Ao is provable in T ∗

plus c = f(x) if and only if T proves A. In particular, if T ∗ proves Ao then T
proves A. Conversely, if T proves A and we just replace c with f(b) in the proof,
we get a proof of Ao in T ∗.

(iii) The algorithm is fairly obvious: simply replace every term f(t) in the
proof with c. (Not just terms f(b) but any term with functor f is replaced by c.)
Terms that unify before this replacement will still unify after the replacement,
so resolution proof steps will remain valid. The axioms of T ∗ plus c = f(x) are
converted to axioms of T plus c = c. Paramodulation steps remain paramod-
ulation steps and demodulations remain demodulations. Since no variables are
introduced, paramodulations that were not from or into variables are still not
from or into variables. That completes the proof of the lemma.

This lemma shows us that logically, the formulation of the no-nilpotents prob-
lem with zero(0) for the ring zero is equivalent to the original formulation with

22

XIX

a constant o for the ring zero; and Theorem 5 directly applies to the formulation
with o(0). In practice, if we run Otter-lambda with o replaced by zero(0) in
the input file, we find the same proof as before, but with o replaced by zero(0).
In essence this amounts to the observation that o was never used as a masking
term in lambda unification in the original proof. Technically we should run the
input file with zero(0) first. Theorem 5 guarantees that if we find a proof, it will
be well-typed. The lemma guarantees that we can convert it into a proof of the
original formulation using a text editor to replace all terms with functor zero
by the original constant o.

Remark. Of course there is little difference between 0 and zero(0), and of
course we could allow the user of Otter-lambda to specify which constants have
“ground type” and which do not, and only use constants of “ground type” in
lambda-unification. In effect that is what this theorem allows us to do, without
checking the types of constants at run time: just rename all the “non-ground”
constants by wrapping them in one extra function symbol.

We conclude with another example. Bernoulli’s inequality is

(1 + nx) < (1 + x)n if x > −1 and n > 0 is an integer.

Otter-lambda, in a version that calls on MathXpert [2] for “external simplifica-
tion”, is able to prove this inequality by induction on n, being given only the
clausal form of Peano’s induction axiom, with a variable for the induction pred-
icate. The interest of the example in the present context is the fact that three
types are involved: real numbers, positive integers, and propositions. The propo-
sitional functions all have N , the non-negative integers, for the ground type, but
the types are not disjoint: N is a subset of the reals R. Moreover, the left-hand
side of the inequality uses n in multiplication, so if multiplication is typed to
take two real arguments, the inequality as it stands will not be well-typed.

The solution is to introduce a symbol for an injection map i : N → R. The
inequality then becomes

(i(1) + i(n)x) < (i(1) + x)n

This formulation is well-typed, if we type i as a function from N to R. Again, in
the definition of exponentiation we have to use 0 for the natural number zero,
and zero(0) for the real number zero, so that all the constants will have type N .
If that is done, Theorem 5 applies, and we can be assured that the inference steps
performed by Otter-lambda proper will lead from well-typed formulas to well-
typed formulas. However, the theorem does not cover the external simplification
steps performed by MathXpert. To ensure that these do not lead to mis-typed
conclusions, we have to discard any results containing a minus sign or division
sign, as that might lead out of the domain of integers. Problems involving em-
bedded subtypes also arise even in typed theorem provers or proof checkers, so
it is interesting that those problems are easily solved in lambda logic. The inter-
ested reader can find the input and output files for this and other examples on
the Otter-lambda website.

23

XX

References

1. Beeson, M., Lambda Logic, in Basin, David; Rusinowitch, Michael (eds.) Automated
Reasoning: Second International Joint Conference, IJCAR 2004, Cork, Ireland, July
4-8, 2004, Proceedings. Lecture Notes in Artificial Intelligence 3097, pp. 460-474,
Springer (2004).

2. MathXpert Calculus Assistant, software available from (and described at)
www.HelpWithMath.com.

3. McCune, W., Otter 3.0 Reference Manual and Guide, Argonne National Laboratory
Tech. Report ANL-94/6, 1994.

4. Wick, C., and McCune, W., Automated reasoning about elementary point-set topol-
ogy, J. Automated Reasoning 5(2) 239–255, 1989.

24

System Description: Leo – A Resolution based

Higher-Order Theorem Prover

Christoph Benzmüller

Fachbereich Informatik, Universität des Saarlandes
66041 Saarbrücken, Germany (www.ags.uni-sb.de/~chris)

Abstract. We present Leo, a resolution based theorem prover for clas-
sical higher-order logic. It can be employed as both an fully automated
theorem prover and an interactive theorem prover. Leo has been im-
plemented as part of the Ωmega environment [23] and has been inte-
grated with the Ωmega proof assistant. Higher-order resolution proofs
developed with Leo can be displayed and communicated to the user via
Ωmega’s graphical user interface Loui. The Leo system has recently
been successfully coupled with a first-order resolution theorem prover
(Bliksem).

1 Introduction

Many of today’s proof assistants such as Isabelle [22, 20], Pvs [21], Hol [12],
Hol-Light [13], and Tps [2, 3] employ classical higher-order logic (also known as
Church’s simple type theory) as representation and reasoning framework. One
important motivation for the development of automated higher-order proof tools
thus is to relieve the user of tedious interactions within these proof assistants by
automating less ambitious (sub)problems.

In this paper we present Leo, an automated resolution based theorem prover
for classical higher-order logic. Leo is based on extensional higher-order reso-
lution which, extending Huet’s constrained resolution [14, 15], proposes a goal
directed, rule based solution for extensionality reasoning [6, 4, 5]. The main mo-
tivation for Leo is to serve as an automated subsystem in the mathematics
assistance system Ωmega [23]. Additionally, Leo was intended to serve as a
standalone automated higher-order resolution prover and to support the illus-
tration and tutoring of extensional higher-order resolution. A previous system
description of Leo has been published in [7]. Novel in this system description is
the section on Leo’s interaction facilities and its graphical user interface. We also
provide more details on Leo’s automation and point to some recent extensions.

This system description is structured as follows: In Sections 2 and 3 we briefly
address Leo’s connection with Ωmega and Leo’s calculus. Section 4 presents
the interactive theorem prover Leo and Section 5 the automated theorem prover
Leo. In Section 6 we illustrate how Leo’s resolution proofs can be inspected
with Ωmega’s graphical user interface Loui. Some experiments with Leo are
mentioned in Section 7 and Section 8 concludes the paper.

25

2 Leo is a Subsystem of Ωmega

Leo has been realized as a part of the Ωmega framework. This framework (and
thus also Leo) is implemented in Clos [25], an object-oriented extension of Lisp.
Leo is mainly dependent on Ωmega’s term datastructure package Keim. The
Keim package provides many useful data structures (e.g., higher-order terms,
literals, clauses, and substitutions) and basic algorithms (e.g., application of
substitution, subterm replacement, copying, and renaming). Thus, the usage
of Keim allows for a rather quick implementation of new higher or first-order
theorem proving systems. In addition to the code provided by the Keim-package,
Leo consists of approximately 7000 lines of Lisp code.

Amongst the benefits of the realization of Leo within the Ωmega framework
are:

– Employing Keim supported a quick implementation of Leo. Important in-
frastructure could be directly reused or had to be only slightly adapted or
extended.

– An integration of Leo with the proof assistant and proof planner Ωmega

was easily possible.
– Leo can easily be combined with other external systems already integrated

with Ωmega. Combinations of reasoning systems are particularly well sup-
ported in Ωmega with the help of the agent based reasoning framework
Oants [8].

– Leo may retrieve and store theorems and definitions via Ωmega from Mbase,
which is a structured repository of mathematical knowledge.

– Leo employs Ωmega’s input language Post.

There are also drawbacks of Leo’s realization as a part of Ωmega:

– Leo’s latest version is only available in combination with the Ωmega pack-
age. Installation of Ωmega, however, is very complicated. Consequently,
there is a conflict with the objective of providing a lean standalone theorem
prover.

– The Keim datastructures are neither very efficient nor are they optimized
or easily optimizable with respect to Leo.

Ωmega and with it Leo can be download from http://www.ags.uni-sb.de/˜omega.

3 Leo Implements Extensional Higher-Order Resolution

Leo is based on a calculus for extensional higher-order resolution. This calculus
is described in [6, 4] and more recently in [5].

Extensionality treatment in this calculus is based on goal directed extension-
ality rules which closely connect the overall refutation search with unification
by allowing for mutually recursive calls. This suitably extends the higher-order
E-unification and E-resolution idea, as it turns the unification mechanism into
a most general, dynamic theory unification mechanism. Unification may now

26

itself employ a Henkin complete higher-order theorem prover as a subordinated
reasoning system and the theory under consideration (which is defined by the
sum of all clauses in the actual search space) dynamically changes.

In order to illustrate Leo’s extensional higher-order resolution approach we
discuss the TPTP (v3.0.1 as of 20 January 2005, see http://www.tptp.org) exam-
ple SET171+3. This problem addresses distributivity of union over intersection1

∀Aoα, Boα, Coα A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

In a higher-order context we can define the relevant set operations as follows

∪ := λYoα, Zoα (λxα x ∈ Y ∨ x ∈ Z)

∩ := λYoα, Zoα (λxα x ∈ Y ∧ x ∈ Z)

∈:= λZα, Xoα (X Z)

After recursively expanding the definitions in the input problem, i.e., com-
pletely reducing it to first principles, Leo turns it into a negated unit clause. Un-
like in standard first-order resolution, clause normalization is not a pre-process
in Leo but part of the calculus. Internalized clause normalization is an impor-
tant aspect of extensional higher-order resolution in order to support the (recur-
sive) calls from higher-order unification to the higher-order reasoning process.
Thus, Leo internally provides rules to deal with non-normal form clauses and
this is why it is sufficient to first turn the input problem into a single, usually
non-normal, negated unit clause. Then Leo’s internalized clause normalization
process can take care of subsequent normalization.

In our concrete case, this normalization process leads to the following unit
clause consisting of a (syntactically not solvable) unification constraint (here
Boα, Coα, Doα are Skolem constants and Bx is obtained from expansion of x ∈
B):

[(λxα Bx ∨ (Cx ∧ Dx)) =? (λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))]

Note that negated primitive equations are generally automatically converted
by Leo into unification constraints. This is why [(λxα Bx ∨ (Cx ∧ Dx)) =?

(λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))] is generated, and not [(λxα Bx ∨ (Cx ∧ Dx)) =
(λxα (Bx∨Cx)∧ (Bx∨Dx))]F . Observe that we write [.]T and [.]F for positive
and negative literals, respectively. This unification constraint has no ’syntactic’
pre-unifier. It is solvable ’semantically’ though with the help of the extensionality

1 We use Church’s notation oι, which stands for the functional type ι → o. The reader
is referred to [1] for a more detailed introduction. In the remainder, o will denote the
type of truth values and ι defines the type of individuals. Other small Greek letters
will denote arbitrary types. Thus, Xoα (resp. its η-long form λyα Xy) is actually a
characteristic function denoting the set of elements of type α for which the predicate
associated with X holds. We use the square dot ‘ ’ as an abbreviation for a pair of
brackets, where ‘ ’ stands for the left one with its partner as far to the right as is
consistent with the bracketing already present in the formula.

27

principles. Thus, Leo applies its goal directed functional and Boolean extension-
ality rules which replace this unification constraint (in an intermediate step) by
the negative literal (where x is a Skolem constant):

[(Bx ∨ (Cx ∧ Dx)) ⇔ ((Bx ∨ Cx) ∧ (Bx ∨ Dx))]F

This intermediate unit clause is not in normal form and subsequent normalization
generates 12 clauses including the following four:

[Bx]F [Bx]T ∨ [Cx]T [Bx]T ∨ [Dx]T [Cx]F ∨ [Dx]F

This set is essentially of propositional logic character and trivially refutable by
Leo. For the complete proof of the problem Leo needs less than one second (on
a notebook with an Intel Pentium M processor 1.60GHz and 2 MB cache) and
a total of 36 clauses is generated.

4 Leo is an Interactive Theorem Prover

Leo is an interactive theorem prover based on extensional higher-order resolu-
tion. The motivation for this is twofold. Firstly, the provided interaction features
support interaction with the automation of this calculus. For this an automated
proof attempt may be interrupted at any time and the system developer can
then employ the interaction facilities to investigate the proof state and to per-
form some steps by hand. He may then again proceed with the automated proof
search. Secondly, the interaction facilities can be employed for tutoring higher-
order resolution in the classroom and they have in fact been employed for this
purpose.

We illustrate below an interactive session with Leo within the Ωmega sys-
tem. For this we assume that the Ωmega system has already been started.
Interaction within Ωmega is supported in two ways. We may use the graphical
user interface Loui, or Ωmega’s older Emacs based command line interface.
Both interfaces can be started and used simultaneously. In this section we de-
scribe interaction only within the Emacs based interface. All commands could
alternatively also be invoked via Loui.

After starting Ωmega we are offered the following command line prompt in
the Emacs interface:

OMEGA:

We assume that we have added the following problem, formalized in Post,
to Ωmega’s structured knowledge bass.

∃Qo(oι)(oι) poo((aoιmι) ∧ ((boιmι) ∨ (coιmι))) ⇒ poo((aoιmι) ∧ (Qo(oι)(oι)coιboι))

The Post representation of this problem is

28

(th~defproblem little
(in base)
(constants (p (o o)) (a (o i)) (b (o i)) (c (o i)) (m i))
(conclusion
(EXISTS (lam (Q (o (o i) (o i)))

(IMPLIES (p (AND (a m) (OR (b m) (c m))))
(p (AND (a m) (Q c b))))))))

All problems have names and the name chosen for our problem is little. The
in-slot in this problem definition specifies Mbase theories from which further
knowledge, e.g., definitions and lemmata, is inherited. Examples of some Mbase

theories are typed-set, relation, function, and group. Our very simple
example problem is defined in the knowledge repository for theory base, and no
further information is included. The assertion we want to prove is specified in the
conclusion-slot and the typed constant symbols which occur in the assertion
are declared in the constants-slot.

We now load all problems defined in theory base and then call the Ωmega

command show-problems to display the names of all problems. ’[...]’ indicates
that some less interesting output information from Leo has been deleted here
for presentation purposes.

OMEGA: load-theory-problems base
[...]

OMEGA: show-problems
[...]
EMBEDDED
little
less-little
TEST
[...]

Next we initialize the Ωmega proof assistant with the proof problem little
and display Ωmega’s central proof object after initialization.

OMEGA: prove little
Changing to proof plan LITTLE-1

OMEGA: show-pds
...

LITTLE () ! (EXISTS [Q:(O (O I) (O I))] OPEN
(IMPLIES
(P (AND (A M) (OR (B M) (C M))))
(P (AND (A M) (Q C B)))))

OMEGA:

Then we initialize Leo with this problem. Here we choose the default set-
tings (suggested in the ’[]’-brackets) as input parameters for Leo. Each tactic
(here EXT-INPUT-RECURSIVE) determines a specific flag setting of Leo. This flag
setting is displayed after initialization.

OMEGA: leo-initialize
NODE (NDLINE) Node to prove with LEO: [LITTLE]
TACTIC (STRING) The tactic to be used by LEO: [EXT-INPUT-RECURSIVE]
THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be expanded: [()]
Expanding the Definitions....
Initializing LEO....

29

Applying Clause Normalization....
============== variable settings ================

Value(LEO*F-FO-ATP-RESOURCE) = 0
Value(LEO*F-COOPERATE-WITH-FO-ATP) = NIL
Value(LEO*F-TACTIC) = EXT-INPUT-RECURSIVE
Value(LEO*F-VERBOSE-HALF) = NIL
Value(LEO*F-VERBOSE) = NIL
Value(LEO*F-WEIGHT-AGE-INT) = 4
Value(LEO*F-SOS-TYPE) = TOSET
Value(LEO*F-USABLE-TYPE) = INDEX
Value(LEO*F-CLAUSE-LENGTH-RESTRICTION) = NIL
Value(LEO*F-SAVE-FO-CLAUSES) = T
Value(LEO*F-SUBSUM-MATCH-RESSOURCE) = NIL
Value(LEO*F-SOS-SUBSUMTION) = NIL
Value(LEO*F-BACKWARD-SUBSUMTION) = T
Value(LEO*F-FORWARD-SUBSUMTION) = T
Value(LEO*F-PARAMODULATION) = NIL
Value(LEO*F-REMOVE=EQUIV-NEG) = NIL
Value(LEO*F-REMOVE=EQUIV-POS) = NIL
Value(LEO*F-REMOVE=LEIBNIZ-NEG) = NIL
Value(LEO*F-REMOVE=LEIBNIZ-POS) = NIL
Value(LEO*F-EXT-DECOMPOSE-ONLY) = T
Value(LEO*F-EXT-UNICONSTRCLS-ONLY) = NIL
Value(LEO*F-EXTENSIONALITY-NUM) = 6
Value(LEO*F-EXT-INPUT-TREATMENT-RECURSIVE) = T
Value(LEO*F-EXT-INPUT-TREATMENT) = NIL
Value(LEO*F-EXTENSIONALITY) = T
Value(LEO*F-NO-FLEX-UNI) = NIL
Value(LEO*F-UNI-RESSOURCE) = 5
Value(LEO*F-PRIM-SUBST-TYPES) = NIL
Value(LEO*F-PRIMITIVE-SUBSTITUTION) = T
Value(LEO*F-FACTORIZE) = T
Value(LEO*F-AUTO-PROOF) = NIL
Value(LEO*F-MAIN-COUNTER) = 0

=========== end variable settings =============

OMEGA:

During initialization Leo first recursively expands defined symbols occurring
in the assumptions or the assertion with respect to the specified theories (here
we have none). Then it negates the assertion, turns it into a negated unit input
clause and subsequently normalizes it with its internalized normalization rules.
The resulting clauses are put either into Leo’s set of support (if they stem from
the assertion) or the usable set (if they stem from assumptions; here we have
none). Leo clauses have unique names starting with cl and followed by an au-
tomatically created number. In ’()’-brackets further clause specific information
follows and the ’{ }’-brackets contain the clause literals. Negative literals have
a leading - and positive literals a leading +. Type information is usually not
displayed. All symbols starting with dc are free variables.

OMEGA: show-clauses
================= BEGIN ===============================

The set of support
cl3(1.5|1):{(-(p (and (a m) (dc2 c b))))}
cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}

The set of usable clauses
================= END =================================

Leo offers a list of commands, for instance, to apply calculus rules, to ma-
nipulate and maintain the proof state, or to display information.

30

OMEGA: show-commands leo-interactive
[...]
DECOMPOSE: Applies decomposition on a clause.
DELETE-CLAUSE: Deletes a clause from the current environment.
END-REPORT: Closes the report stream.
EXECUTE-LOG: Reads a log file stepwise and eventuelly stores

some of its commands in a new log file.
EXIT: Leave the current command interpreter top level.
EXT: Applies extensionality rule on a clause.
[...]
FACTORIZE: Applies factorization rule on a clause.
[...]
GUI-PROOF: Displays the LEO proof of node in the GUI.
[...]
LEO-PROVE: Prove with default parameter-settings.
NEW-LOG: Sets the log mode and the log file name to the

given path name.
PARA: Applies paramodulation rule on two clauses.
PRE-UNIFIERS: Computes the pre-unifiers of a clause.
PRE-UNIFY: Applies pre-unification on a clause.
PRIM-SUBST: Applies primitive substitution rule on a clause.
[...]
READ-LEO-PROBLEM: Read a file, which contains a POST

representation of a problem, and transforms this
problem into clause normal form.

[...]
RESOLVE: Applies resolution rule on two clauses.
SAVE-CLAUSE: Save a clause for use after termination of LEO

under its clausename.
[...]
SET-FLAG: Sets a global flag
SET-TACTIC: Sets the tactic.
SHOW-CLAUSE: Displays a clause, determined by name.
SHOW-CLAUSES: Displays the two clause sets: the set of support

(LEO*G-SOS) and the set of usable clauses
(LEO*G-USABLE).

[...]
PROJECT: Applies projection rule on a clause.
SHOW-DERIVATION: Displays a linearized derivation of a the clause.
SHOW-FLAGS: Shows the global flags
SHOW-LEO-PROBLEM: Displays the given problem in POST.
SHOW-LEO-PROOF: Displays the linearized LEO proof
SHOW-TACTICS: Shows the tactics.
SHOW-VARS: Shows the global vars.
START-REPORT: Opens the tex and html report streams.
STEP-LOG: Reads a log file stepwise and eventuelly stores

some of its commands in a new log file.
SUBSUMES: Determines whether a clause subsumes another clause.
[...]
WRITE-DERIVATION: Writes the derivation of a clause in a file.
WRITE-LOUIDERIVATION: Writes the derivation of a clause in LOUI format

in a file.
WRITE-LOUIPROOF: Writes the proof in LOUI format in a file.
WRITE-PROOF: Writes the proof in a file.

OMEGA:

We apply the resolution rule to the clause cl3 and cl4 on literal positions
1 and 1 respectively. This results in the clause cl5 which consists only of a
unification constraint. In this display unification constraints are presented as
negated equations (on the datastructure level they are distinguished from them
as already mentioned in Section 3). Provided that we can solve the unification
constraint cl5, we have found an empty clause and we are done.

OMEGA: resolve

31

NAME1 (STRING) of a clause: cl3
NAME2 (STRING) of a clause: cl4
POSITION1 (INTEGER) in clause 1: 1
POSITION2 (INTEGER) in clause 2: 1
Clause 1: cl3(1.5|1):{(-(p (and (a m) (dc2 c b))))}.
Clause 2: cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}.
Res(CL3[1],CL4[1]):

(cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))
(p (and (a m) (or (b m) (c m))))))}).

OMEGA:

We ask Leo to compute the pre-unifiers for this unification constraint.

OMEGA: pre-unifiers
NAME (STRING) of a clause: cl5
The clause: cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))

(p (and (a m) (or (b m) (c m))))))}.
pre-unifiers: ({(dc37 --> [lam ?h45 ?h46.(or (?h46 m) (?h45 m))])}

{(dc37 --> [lam ?h45 ?h46.(or (?h46 m) (c m))])}
{(dc37 --> [lam ?h45 ?h46.(or (b m) (?h45 m))])}
{(dc37 --> [lam ?h45 ?h46.(or (b m) (c m))])}).

OMEGA:

Pre-unification of clause cl5 first generates these four pre-unifiers and then
subsequently applies them to cl5. Instantiation of different pre-unifiers usually
leads to different result clauses. In our simple case here, however, we obtain four
copies of the empty clause.

OMEGA: pre-unify cl5
The clause: cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))

(p (and (a m) (or (b m) (c m))))))}.
Result: (cl14(0|3):{NIL} cl15(0|3):{NIL} cl16(0|3):{NIL} cl17(0|3):{NIL}).

OMEGA:

We now display the derivation of clause cl14 in the Emacs interface. cl14
is the clause we obtain by application of the first pre-unifier from above. The
employed pre-unifier (see clause cl7) is displayed in non-idempotent form. After
applying pre-unifiers Leo subsequently normalizes the resulting clauses. This is
why we have this superfluous looking normalization step from cl7 to cl14.

OMEGA: show-derivation cl14
================= clauses ==================
=============

Clause cl2 is #<Justified by ((Input))> :
cl2(20|0):{(+(not (exists [lam dc-20735.
(implies (p (and (a m) (or (b m) (c m))))

(p (and (a m) (dc-20735 c b))))])))}
=============

================== proof ===================
Clause cl2 is #<Justified by ((Input))> :
cl2(20|0):{(+(not (exists [lam dc-20735.
(implies (p (and (a m) (or (b m) (c m))))

(p (and (a m) (dc-20735 c b))))])))}
=============

Clause cl3 is #<Justified by ((CNF)) on (cl2)> :
cl3(1.5|1):{(-(p (and (a m) (dc-20738 c b))))}
=============

Clause cl2 is #<Justified by ((Input))> :
cl2(20|0):{(+(not (exists [lam dc-20735.

32

(implies (p (and (a m) (or (b m) (c m))))
(p (and (a m) (dc-20735 c b))))])))}

=============
Clause cl4 is #<Justified by ((CNF)) on (cl2)> :
cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}
=============

Clause cl5 is #<Justified by
((RES 1 1) (RENAMING {(dc2 --> dc37)})) on (cl3 cl4)> :
cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))

(p (and (a m) (or (b m) (c m))))))}
=============

Clause cl7 is #<Justified by
((UNI {(?h113 --> [lam ?h122 ?h123.m])

(?h107 --> [lam ?h120 ?h121.m])
(?h101 --> [lam ?h111 ?h112.(?h111 (?h113 ?h111 ?h112))])
(?h100 --> [lam ?h105 ?h106.(?h106 (?h107 ?h105 ?h106))])
(dc37 --> [lam ?h98 ?h99.(or (?h100 ?h98 ?h99)

(?h101 ?h98 ?h99))])})
(RENAMING {})) on (cl5)> :

cl7(0|2):{NIL}
=============

Clause cl14 is #<Justified by ((CNF)) on (cl7)> :
cl14(0|3):{NIL}
=============

========== clauses in proof: 7 ============

OMEGA:

We now slightly modify our example problem and obtain a much harder one.

∃Qo(oι)(oι) poo((aoιmι) ∧ ((boιmι) ∨ (coιmι))) ⇒ poo((Qo(oι)(oι)coιboι) ∧ (aoιmι))

In Post this problem is represented as

(th~defproblem less-little
(in base)
(constants (p (o o)) (a (o i)) (b (o i)) (c (o i)) (m i))
(conclusion
(EXISTS (lam (Q (o (o i) (o i)))

(IMPLIES (p (AND (a m) (OR (b m) (c m))))
(p (AND (Q c b) (a m))))))))

While problem little can still be solved by simple higher-order to first-order
transformational approaches, this is not easily the case for the modified problem
less-little since extensionality reasoning is required. The syntactic difference
to little, however, is small. We only switched the two inner conjuncts in the
right hand side of the implication. We now first load the problem, then initialize
Leo and then display Leo’s initial proof state.

OMEGA: prove less-little
Changing to proof plan LESS-LITTLE-1

OMEGA: show-pds
...

LESS-LITTLE () ! (EXISTS [Q:(O (O I) (O I))] OPEN
(IMPLIES
(P (AND (A M) (OR (B M) (C M))))
(P (AND (Q C B) (A M)))))

OMEGA: leo-initialize
NODE (NDLINE) Node to prove with LEO: [LESS-LITTLE]
TACTIC (STRING) The tactic to be used by LEO: [EXT-INPUT-RECURSIVE]

33

THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be expanded: [()]
Expanding the Definitions....
[...]

OMEGA: show-clauses
================= BEGIN ===============================

The set of support
cl3(1.5|1):{(-(p (and (dc-304 c b) (a m))))}
cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}

The set of usable clauses
================= END =================================

OMEGA:

Again we resolve between clauses cl3 and cl4.

OMEGA: resolve cl3 cl4 1 1
Clause 1: cl3(1.5|1):{(-(p (and (dc-304 c b) (a m))))}.
Clause 2: cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}.
Res(CL3[1],CL4[1]): (cl5(1|2):{(-(= (p (and (dc1573 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}).

OMEGA:

Now the resulting clause cl5 is not pre-unifiable. Its unification constraint
has no ’syntactic’ solution.

OMEGA: pre-unifiers cl5
The clause: cl5(1|2):{(-(= (p (and (dc1573 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}.
pre-unifiers: NIL.

OMEGA: pre-unify cl5
The clause: cl5(1|2):{(-(= (p (and (dc1573 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}.
Result: NIL.

OMEGA:

However, there is a semantic solution which we find by application of Leo’s
combined extensionality treatment. This first decomposes the unification con-
straint and then applies Boolean extensionality (beforehand it usually tries to
exhaustively apply functional extensionality, which is not applicable here).

OMEGA: decompose cl5
The clause: cl5(1|2):{(-(= (p (and (dc1500 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}.
Decomposed: (cl6(1|3):{(-(= (and (dc1500 c b) (a m))

(and (a m) (or (b m) (c m)))))}).

OMEGA: ext cl6
The clause: cl6(1|3):{(-(= (and (dc1500 c b) (a m))

(and (a m) (or (b m) (c m)))))}
Result: (cl14(4.5|4):{(+(a m) +(dc-4682 c b))}

cl13(6.0|4):{(+(c m) +(b m) +(dc-4681 c b))}
cl12(1.5|4):{(+(a m))}
cl11(4.5|4):{(+(c m) +(b m) +(a m))}
cl10(6.0|4):{(-(b m) -(a m) -(dc-4680 c b))}
cl9(6.0|4):{(-(c m) -(a m) -(dc-4679 c b))}).

OMEGA:

This set of resulting (first-order like) clauses is refutable and Leo can find a
refutation. Unfortunately Leo is very bad at first-order reasoning (since it does

34

not employ optimizations and implementation tricks that are well known in the
first-order community) and therefore the refutation of this clause set is not very
efficient. This motivates a cooperation with first-order provers; see Sections 5
and 7 for further details.

5 Leo is an Automated Theorem Prover

Leo is first and foremost an automated theorem prover for classical higher-order
logic. Within Ωmega it can be applied to prove (sub)problems automatically.
Below we first reinitialize Ωmega with the problem less-little and then call
Leo in its standard flag setting to it.

OMEGA: prove less-little
Changing to proof plan LESS-LITTLE-7

OMEGA: show-pds
...

LESS-LITTLE () ! (EXISTS [Q:(O (O I) (O I))] OPEN
(IMPLIES
(P (AND (A M) (OR (B M) (C M))))
(P (AND (Q C B) (A M)))))

OMEGA: call-leo-on-node
NODE (NDLINE) Node to prove with LEO: [LESS-LITTLE]
TACTIC (STRING) The tactic to be used by LEO: [EXT-INPUT-RECURSIVE]
SUPPORTS (NDLINE-LIST) The support nodes: [()]
TIME-BOUND (INTEGER) Time bound for proof attempt: [100]
THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be
expanded: [(ALL)]
DEFS-LIST (SYMBOL-LIST) Symbols whose definitions will not be
expanded: [(= DEFINED EQUIV)]
INSERT-FLAG (BOOLEAN) A flag indicating whether a partial result will
be automatically inserted.: [()]
Looking for expandable definitions
Initializing LEO....
Applying Clause Normalization....
[...]
Start proving ...
Loop: (100sec left)
#1 (SOS 2 USABLE 0 EXT-QUEUE 0 FO-LIKE 4)

(99sec left)
#2 (SOS 1 USABLE 1 EXT-QUEUE 0 FO-LIKE 4)

[...]
(94sec left)
#29 (SOS 72 USABLE 12 EXT-QUEUE 0 FO-LIKE 98)

(91sec left)
#30 (SOS 111 USABLE 13 EXT-QUEUE 0 FO-LIKE 138)

Total LEO time: 8446
**** proof found (next clause nr: cl599) *****
; cpu time (non-gc) 7,600 msec user, 0 msec system
; cpu time (gc) 750 msec user, 10 msec system
; cpu time (total) 8,350 msec user, 10 msec system
; real time 8,451 msec
; space allocation:
; 8,909,213 cons cells, 3,568 symbols, 122,908,112 other bytes,
; 0 static bytes

OMEGA:

35

Leo’s Architecture and Main Loop

Leo’s basic architecture adapts the set of support approach. The four corner-
stones of Leo’s architecture (see Fig. 1) are:

EXT

Lightest

Resolved

Paramod

Prim−substFactorized

Ext−mod Uni−cont

USABLE

UnifiedProcessed

CONT

SOS
1

2

4
5 6

7

9

9

9

11

13

1
2
3
4
5
6
7
8
9

10
11
12
13

choose lightest from SOS
integrate light. to USABLE

8

12

resolve with USABLE
paramodulate with USABLE
factorize lightest
primitive substitution on lightest
extensionality treatment on EXT
pre−unification on CONT

store continuation object
check if extensionally interesting

3

10

implemented
not yet implemented

integrate Unified into SOS
pre−unification on Processed

Architecture of LEO

process results (tautology deletion)

Fig. 1. Leo’s main architecture (the ’dotted lines’ indicates functionalities which are
usually disabled or not fully available yet)

USABLE The set of all usable clauses, which initially only contains clauses that
are assumed to be satisfiable, i.e., the clauses stemming from the assumptions
of the theorem to prove.

SOS The set of support, which initially only contains the clauses belonging to
the negated assertion.

EXT The set of all extensionally interesting clauses, i.e., heuristically determined
clauses which are stored for extensionality treatment. Initially this set is
empty. See Step 12 of the main loop description below.

CONT The set of all continuations created by the higher-order pre-unification
algorithm when reaching the pre-unification search depth limit. The idea is
to support continuations of interrupted pre-unification attempts at a later
time. (This store is not activated yet in Leo)

36

Leo’s main loop (see Fig. 1) consists of the steps 1–13 as described below
(the Initialize step is applied only at the very beginning of the proof attempt
and is not part of the main loop). This loop, whose data-flow is graphically
illustrated in Figure 1, is executed until an empty clause, i.e., a clause consisting
no literals or only of flex-flex-unification constraints2, is detected.

Leo employs a higher-order subsumption test that is, apart from the tech-
nical details, very similar to the ones employed in first-order provers. Instead of
first-order matching, the criteria for comparing the single literals is higher-order
simplification matching, i.e., matching with respect to the deterministic higher-
order simplification rules. It is theoretically possible to develop and employ a
much stronger subsumption filter in Leo. This is future work. However, a per-
fect extensional higher-order subsumption filter, which would be the ideal case,
is not feasible since extensional higher-order unification is undecidable.

Initialize The specified assumptions and the assertion are pre-clausified, i.e.,
the assumptions become positive unit (pre-)clauses and the assertion be-
comes a negative unit (pre-)clause. Definitions are expanded (with respect
to the specified theories) and the pre-clauses are normalized. Within the
clause normalization process the positive primitive equations are usually re-
placed by respective Leibniz equations. Negative primitive equations are not
expanded but immediately encoded as extensional unification constraints.
Furthermore, identical literals are automatically factorized. The assumption
clauses are passed to USABLE and the assertion clause to SOS.

Step 1 (Choose Lightest) Leo chooses the lightest (wrt. to a clause order-
ing), i.e., topmost, clause from SOS. If this clause is a pre-clause, i.e., not
in proper clause normal form, then Leo applies clause normalization to it
and integrates the resulting proper clauses into SOS. Depending on the flag-
setting forward and/or backward subsumption is applied; see also step 13).

Step 2 (Insert to USABLE) Leo inserts the lightest clause into USABLE while
employing forward and/or backward subsumption depending on LEO’s over-
all flag-setting.

Step 3 (Resolve) The lightest clause is resolved against all clauses in USABLE
and the results are stored in RESOLVED.

Step 4 (Paramodulate) Paramodulation is applied between all clauses in
USABLE and the lightest clause, and the results are stored in PARAMOD. (This
step is currently not activated in Leo; currently Leibniz equality is globally
employed instead of primitive equality.)

Step 5 (Factorize) The lightest clause is factorized and the resulting clauses
are stored in FACTORIZED.

Step 6 (Primitive Substitution) Leo applies the primitive substitution prin-
ciple to the lightest clause. The particular logical connectives to be imi-
tated in this step are specified by a flag. The resulting clauses are stored in
PRIM-SUBST.

2 A flex-flex-unification constraint has topmost free variables in each of the two terms
to be unified. Flex-flex-constraints are always solvable.

37

Step 7 (Extensionality Treatment) The heuristically sorted store EXT con-
tains extensionally interesting clauses (i.e., clauses with unification con-
straints that may have additional pre-unifiers, if the extensionality rules
are taken into account). Leo chooses the topmost clause and applies the
compound extensionality treatment to all extensionally interesting literals.

Step 8 (Continue Unification) The heuristically sorted store CONT contains
continuations of interrupted higher-order pre-unification attempts from the
previous loops (cf. step 10). If the actual unification search depth limit (spec-
ified by a flag, whose value can be dynamically increased during proof at-
tempts) allows for a deeper search in the current loop, then the additional
search for unifiers will be performed. The resulting instantiated clauses are
passed to UNI-CONT and the new continuations are sorted and integrated
into CONT. (This step is currently not activated in Leo)

Step 9 (Collect Results) In this step Leo collects all clauses that have been
generated within the current loop from the stores RESOLVED, PARAMOD,
FACTORIZED, PRIM-SUBST, EXT-MOD, and UNI-CONT, eliminates obvious tau-
tologies, and stores the remaining clauses in PROCESSED.

Step 10 (Pre-Unify) Leo tries to pre-unify the clauses in PROCESSED. Thus, it
applies the pre-unification rules exhaustively, thereby spanning a unification
tree until it reaches the unification search depth limit specified by a special
flag. The unification search depth limit specifies how many subsequent flex-
rigid-branchings may at most occur in each path through the unification
search tree. The pre-unified, i.e., instantiated, clauses are passed to UNIFIED.
The main idea of this step is to filter out all those clauses with syntactically
non-solvable unification constraints (modulo the allowed search depth limit).
But note that there are exceptions, which are determined in steps 11 and 12.
That means that not all syntactically non-unifiable clauses are removed from
the search space as this would, e.g., also remove the extensionally interesting
clauses.

Step 11 (Store Continuations) Each time a pre-unification attempt in step
10 is interrupted by reaching the unification search depth limit, a respective
continuation is created. This object stores the state of the interrupted uni-
fication search process, i.e., it contains the particular unification constraints
as given at the point of interruption together with the remaining literals of
the clause in focus and some information on the interrupted unification pro-
cess. Continuations allow the prover to continue the interrupted unification
process at any later time. The set of all such continuations is integrated in
the sorted store CONT. (This step is not activated yet in Leo.)

Step 12 (Store Extensionally Interesting Clauses) In the pre-unification
process in step 10 Leo analyzes the unification pairs in focus in order to
estimate whether this unification constraint and thus this clause is exten-
sionally interesting, i.e., probably solvable with respect to both extensional-
ity principles. All extensionally interesting clauses are passed to EXT, which
is heuristically sorted. While inserting the clauses into EXT forward and/or
backward subsumption is applied in order to minimize the number of clauses
in this store.

38

Step 13 (Integrate to SOS) In the last step Leo integrates all pre-unified
clauses in UNIFIED into the sorted store SOS. Forward and/or backward sub-
sumption is employed depending on the flag-setting.

6 Visualizing Leo Derivations in Loui

Ωmega’s graphical user interface Loui [24] usually displays Ωmega proof ob-
jects in multiple modalities: a graphical map of the proof tree, a linearized pre-
sentation of the proof nodes with their formulae and justifications, and a term
browser. Display of type information is optional and is determined by a switch
in Loui.

Loui can be used to display proofs of other systems as well. Leo’s con-
nection to Loui supports the graphical presentation of extensional higher-order
resolution derivations and proofs with the gain for the user that the structure of
interactively or automatically created derivations becomes more transparent as
is possible in the linearized display shown in Section 4.

Display of external proofs is supported by Loui via a specific interface lan-
guage. In order to display Leo’s resolution proofs a simple mapping of the inter-
nal proof state in Leo into this interface language is required. Fig. 2 illustrates
the Loui visualization of the automatically generated Leo proof for problem
less-little from Section 5, and Fig. 3 displays part of the respective interface
language representation of this proof.

7 Experiments with Leo

Leo has successfully been applied to different higher-order examples. For ex-
ample, in [4] Leo’s performance on simple examples about sets has been inves-
tigated. One example is the already addressed TPTP problem SET171+3, i.e.,
distributivity of union over intersection. Despite their simplicity such examples
are often non-trivial for automated first-order theorem provers. More details on
this discussion can be found in [9]. Further, proof examples have been investi-
gated in [5].

In [9] a cooperation of Leo with a first-order theorem prover (we used the au-
tomated theorem prover Bliksem [11] since this was already well integrated in the
OMEGA framework) has been proposed and investigated. Thus, Leo has been
slightly extended so that it now constantly accumulates a bag of first-order like
clause. First-order like clauses do not contain any ‘real’ higher-order subterms
(such as a λ-abstraction or embedded equations), and are therefore suitable for
treatment by a first-order ATP or even a propositional logic decision procedure
after appropriate transformation. We use the transformation mapping as also
employed in Tramp [18], which has been previously shown to be sound and is
based on [17]. Essentially, it injectively maps expressions such as P (f(a)) to ex-
pressions such as @1

pred(P, @1
fun(f, a)), where the @ are new first-order operators

describing function and predicate application for particular types and arities.

39

Fig. 2. Loui usually displays Ωmega proof plans and Ωmega natural deduction proofs.
In addition it can be employed to display Leo’s resolution proofs. Here we display the
derivation of clause cl7 from example problem less-little.

40

[...]
insertNode(grounded none "cl3" ["cl3""cl2"]
"([NOT (O O)] ([P (O O)] ([AND (O O O)] ([DC-11438 (O (O I) (O I))]

[C (O I)] [B (O I)]) ([A (O I)] [M I]))))"
"((CNF))" ["cl2"] false)

insertNode(grounded none "cl4" ["cl4""cl2"]
"([P (O O)] ([AND (O O O)] ([A (O I)] [M I]) ([OR (O O O)] ([B (O I)]

[M I]) ([C (O I)] [M I]))))"
"((CNF))" ["cl2"] false)

insertNode(grounded none "cl5" ["cl5""cl4""cl3""cl2"]
"([NOT (O O)] ([= (O O O)] ([P (O O)] ([AND (O O O)] ([A (O I)] [M I])

([OR (O O O)] ([B (O I)] [M I]) ([C (O I)] [M I])))) ([P (O O)]
([AND (O O O)] ([dc2762 (O (O I) (O I))] [C (O I)] [B (O I)])
([A (O I)] [M I])))))"

"((RES 1 1) (RENAMING {(dc2705 --> dc2762)}))" ["cl4""cl3"] false)
insertNode(grounded none "cl6" ["cl6""cl5""cl4""cl3""cl2"]
"([NOT (O O)] ([= (O O O)] ([AND (O O O)] ([A (O I)] [M I]) ([OR (O O O)]

([B (O I)] [M I]) ([C (O I)] [M I]))) ([AND (O O O)] ([dc2762 (O (O I)
(O I))] [C (O I)] [B (O I)]) ([A (O I)] [M I]))))"

"((DEC (1)))" ["cl5"] false)
[...]

Fig. 3. Part of the Loui interface language representation of the Leo proof for problem
less-little as communicated to Loui.

The injectivity of the mapping guarantees soundness, since it allows each proof
step to be mapped back from first-order to higher-order.

Whenever Leo creates a new clause it checks whether this is a first-order
like clause, i.e., whether it is in the domain of the employed transformational
mapping. If this is the case, a copy of it is passed to the store of first-order
like clauses. In each loop of Leo’s search procedure a fast first-order prover
can now be applied to the set of first-order like clauses to find a refutation.
In this case an overall proof has been found. The experiments in [9] show that
this is a very promising approach to combining the benefits of higher-order and
first-order theorem provers. Whereas this cooperative approach can solve the
problem less-little only slightly faster than Leo alone, many examples in [9]
show that there are often significant improvements possible.

OMEGA: prove less-little
Changing to proof plan LESS-LITTLE-10

OMEGA: call-leo-on-node
NODE (NDLINE) Node to prove with LEO: [LESS-LITTLE]
TACTIC (STRING) The tactic to be used
by LEO: [EXT-INPUT-RECURSIVE]fo-atp-cooperation
SUPPORTS (NDLINE-LIST) The support nodes: [()]
TIME-BOUND (INTEGER) Time bound for proof attempt: [100]
THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be
expanded: [(ALL)]
DEFS-LIST (SYMBOL-LIST) Symbols whose definitions will not be
expanded: [(= DEFINED EQUIV)]
INSERT-FLAG (BOOLEAN) A flag indicating whether a partial result
will be automatically inserted.: [()]
Looking for expandable definitions
Initializing LEO....
Applying Clause Normalization....
[...]

41

Start proving ...
Loop: (100sec left)
#1 (SOS 2 USABLE 0 EXT-QUEUE 0 FO-LIKE 4)

(99sec left)
#2 (SOS 1 USABLE 1 EXT-QUEUE 0 FO-LIKE 4)

(98sec left)
[...]
(96sec left)
#9 (SOS 3 USABLE 4 EXT-QUEUE 0 FO-LIKE 12)

[...]
Calling bliksem process 22267 with time resource 50sec .
PARSING BLIKSEM OUTPUT ...
Bliksem has found a saturation.

[...]
(96sec left)
#10 (SOS 10 USABLE 5 EXT-QUEUE 0 FO-LIKE 20)

[...]
(94sec left)
#21 (SOS 39 USABLE 9 EXT-QUEUE 0 FO-LIKE 60)
Calling bliksem process 22454 with time resource 50sec .
bliksem Time Resource in seconds:
PARSING BLIKSEM OUTPUT ...
Bliksem has found a proof.

Bliksem’s time:
; cpu time (non-gc) 0 msec user, 0 msec system
; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 0 msec user, 0 msec system
; real time 174 msec
; space allocation:
; 416 cons cells, 0 symbols, 15,720 other bytes, 8936 static bytes
Input Clauses: 75
clauses generated: 37
(94sec left)
#22 (SOS 53 USABLE 10 EXT-QUEUE 0 FO-LIKE 75)

Total LEO time: 7262
**** proof found (next clause nr: cl323) *****
; cpu time (non-gc) 5,650 msec user, 20 msec system
; cpu time (gc) 490 msec user, 0 msec system
; cpu time (total) 6,140 msec user, 20 msec system
; real time 7,273 msec
; space allocation:
; 5,218,155 cons cells, 1,886 symbols, 82,231,456 other bytes,
; 49536 static bytes

8 Related Work and Conclusion

There are only very few automated theorem provers available for higher-order
logic. Tps [2, 3], which is based on the mating search method, is the oldest and
probably still the strongest prover in this category. The extensionality reasoning
of Tps has recently been significantly improved by Brown in his PhD thesis [10].

Related to the cooperation approach is the work of Hurd [16] which re-
alizes a generic interface between higher-order logic and first-order theorem
provers. It is similar to the solution previously achieved by Tramp [18] in
Ωmega. Both approaches pass essentially first-order clauses to first-order the-
orem provers and then translate their results back into higher-order. More re-
cent related work on the cooperation of Isabelle with the first-order theo-
rem prover Vampire is presented in [19]. Further related work is Otter-λ (see
http://mh215a.cs.sjsu.edu/), which extends first-order logic with λ-notation.

42

Leo has initially been implemented as a demonstrator system for extensional
higher-order resolution in the context of the author’s PhD thesis [4]. The exper-
iments carried out with Leo so far, in particular, its recent combination with
a fast first-order theorem prover, have been very promising, and they motivate
further work in this direction. This is particularly true since interactive proof
assistants based on higher-order logic are recently gaining increasing attention
in formal methods.

During the implementation and later during the experiments many short-
comings of Leo have been identified by the author. These shortcomings are
both of theoretical and of practical nature. Altogether this calls for a proper
reimplementation of Leo. This reimplementation should ideally be independent
of Ωmega in order to provide a lean and easy to install and use automated
higher-order theorem to the community.

References

1. P. Andrews. An Introduction to mathematical logic and Type Theory: To Truth
through Proof. Number 27 in Applied Logic Series. Kluwer, 2002.

2. P. B. Andrews, M. Bishop, and C. E. Brown. System description: TPS: A theorem
proving system for type theory. In Conference on Automated Deduction, pages
164–169, 2000.

3. P.B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS: A
theorem proving system for classical type theory. Journal of Automated Reasoning,
16(3):321–353, 1996.

4. C. Benzmüller. Equality and Extensionality in Higher-Order Theorem Proving.
PhD thesis, Universität des Saarlandes, Germany, 1999.

5. C. Benzmüller. Comparing approaches to resolution based higher-order theorem
proving. Synthese, 133(1-2):203–235, 2002.

6. C. Benzmüller and M. Kohlhase. Extensional higher-order resolution. In Proc. of
CADE-15, number 1421 in LNAI. Springer, 1998.

7. C. Benzmüller and M. Kohlhase. LEO – a higher-order theorem prover. In Proc.
of CADE-15, number 1421 in LNAI. Springer, 1998.

8. C. Benzmüller and V. Sorge. Oants – An open approach at combining Interactive
and Automated Theorem Proving. In Proc. of Calculemus-2000. AK Peters, 2001.

9. C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber. Can a higher-order and
a first-order theorem prover cooperate? In F. Baader and A. Voronkov, editors,
Proceedings of the 11th International Conference on Logic for Programming Arti-
ficial Intelligence and Reasoning (LPAR), volume 3452 of LNAI, pages 415–431.
Springer, 2005.

10. C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Dept. of
Mathematical Sciences, Carnegie Mellon University, USA, 2004.

11. H. de Nivelle. The Bliksem Theorem Prover, Version 1.12. Max-Planck-Institut,
Saarbrücken, Germany, 1999. http://www.mpi-sb.mpg.de/˜bliksem/manual.ps.

12. M. Gordon and T. Melham. Introduction to HOL – A theorem proving environment
for higher order logic. Cambridge University Press, 1993.

13. J. Harrison. The hol light theorem prover.
14. G.P. Huet. Constrained Resolution: A Complete Method for Higher Order Logic.

PhD thesis, Case Western Reserve University, 1972.

43

15. G.P. Huet. A mechanization of type theory. In Donald E. Walker and Lewis Norton,
editors, Proc. of the 3rd International Joint Conference on Artificial Intelligence
(IJCAI73), pages 139–146, 1973.

16. J. Hurd. An LCF-style interface between HOL and first-order logic. In Automated
Deduction — CADE-18, volume 2392 of LNAI, pages 134–138. Springer, 2002.

17. M. Kerber. On the Representation of Mathematical Concepts and their Translation
into First Order Logic. PhD thesis, Universität Kaiserslautern, Germany, 1992.

18. A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduc-
tion Proofs at the Assertion Level. In Proc. of CADE-17, number 1831 in LNAI.
Springer, 2000.

19. J. Meng and L. C. Paulson. Experiments on supporting interactive proof using res-
olution. In Proc. of IJCAR 2004, volume 3097 of LNCS, pages 372–384. Springer,
2004.

20. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Number 2283 in LNCS. Springer, 2002.

21. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T. Henzinger,
editors, Computer-Aided Verification, CAV ’96, number 1102 in LNCS, pages 411–
414, New Brunswick, NJ, 1996. Springer.

22. L. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in LNCS. Springer,
1994.

23. J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, I. Normann, and M. Pollet.
Proof development in OMEGA: The irrationality of square root of 2. In Thirty
Five Years of Automating Mathematics. Kluwer, 2003.

24. J. Siekmann, S. Hess, C. Benzmüller, L. Cheikhrouhou, A. Fiedler, H. Horacek,
M. Kohlhase, K. Konrad, A. Meier, E. Melis, M. Pollet, and V. Sorge. LOUI:
Lovely OMEGA user interface. Formal Aspects of Computing, 11:326–342, 1999.

25. G.L. Steele. Common Lisp: The Language, 2nd edition. Digital Press, Bedford,
Massachusetts, 1990.

44

Combining Proofs of Higher-Order and

First-Order Automated Theorem Provers

Christoph Benzmüller1, Volker Sorge2, Mateja Jamnik3, and Manfred Kerber2

1Fachbereich Informatik, Universität des Saarlandes
66041 Saarbrücken, Germany (www.ags.uni-sb.de/~chris)
2School of Computer Science, The University of Birmingham

Birmingham B15 2TT, England, UK (www.cs.bham.ac.uk/~vxs)
3University of Cambridge Computer Laboratory

Cambridge CB3 0FD, England, UK (www.cl.cam.ac.uk/~mj201)

Abstract. Ωants is an agent-oriented environment for combining infer-
ence systems. A characteristics of the Ωants approach is that a common
proof object is generated by the cooperating systems. This common proof
object can be inspected by verification tools to validate the correctness
of the proof. Ωants makes use of a two layered blackboard architecture,
in which the applicability of inference rules are checked on one (abstract)
layer. The lower layer administrates explicit proof objects in a common
language. In concrete proofs these proof objects can be quite bit, which
can make communication during proof search very inefficient. As a result
we had situations in which most of the resources went into the overhead
of constructing explicit proof objects and communicating between dif-
ferent components. Therefore we have recently developed an alternative
modelling of cooperating systems in Ωants which allows direct com-
munication between related systems during proof search. This has the
consequence that proof objects can no longer be directly constructed and
thus the correctness-validation in this novel approach is in question. In
this paper we present a pragmatic approach how this can rectified.

1 Introduction

Ωants is an agent-oriented environment for combining inference rules and in-
ference systems. Ωants was originally conceived to support interactive theorem
proving but was later extended to a fully automated proving system [23, 8]. A
characteristics of the Ωants approach is that a joint proof object is generated
by the cooperating inference rules and inference systems. This joint proof object
can be inspected by proof verification tools in combination with proof expansion
in order to validate the correctness at a purely logic level. The Ωants black-
board architecture consists of two layers, an abstract upper layer, and a more
detailed lower layer. Applicability criteria for inference rules are modelled at the
upper layer. The upper layer is supported by computations at the lower layer
which models criteria for the instantiation of the parameters of the inference
rules.

45

External systems have been modelled in Ωants as individual inference rules
at the upper layer. With this approach, Ωants has been successfully employed
in past experiments to check the validity of set equations using higher-order
and first-order theorem provers, model generation, and computer algebra [5].
However, this approach was very inefficient for hard examples because of the
communication overhead imposed by the need to translate all steps into a com-
mon proof data structure.

Therefore, we have recently developed an alternative approach: the single in-
ference rule approach of cooperating systems in Ωants which exploits the lower
layer of the blackboard architecture. This approach has been successfully applied
to the combination of automated higher-order and first-order theorem provers.
In particular, it has outperformed state-of-the-art first-order specialist reasoners
(including Vampire 7.0) on 45 examples on sets, relations and functions; see [9].

Unfortunately, using a single inference rule approach, we had to sacrifice
the generation of joint proof objects and correctness validation in this novel
approach. In this paper we present a pragmatic approach to how this can be
rectified.

The paper is structured as follows: In Section 2 we motivate and illustrate
the cooperation between a higher-order theorem prover (we employ Leo [6]) and
a first-order theorem prover (we employ Bliksem [12]). In Section 3 we compare
the two options for modelling cooperative reasoning systems in Ωants: the initial
multiple inference approach and the novel single inference rule approach. In
Section 4 we show how a joint proof object can also be obtained for the latter
modelling by mapping it back to the former. Section 5 concludes the paper.

2 Combining Higher-Order and First-Order ATP

2.1 Motivation

When dealing with problems containing higher-order concepts, such as sets, func-
tions, or relations, today’s state-of-the-art first-order automated theorem provers
(ATPs) still exhibit weaknesses on problems considered relatively simple by hu-
mans (cf. [15]). One reason is that the problem formulations use an encoding
in a first-order set theory, which makes it particularly challenging when trying
to prove theorems from first principles, that is, basic axioms. Therefore, to aid
ATPs in finding proofs, problems are often enriched by hand-picked additional
lemmata, or axioms of the selected set theory are dropped leaving the theory
incomplete. This has recently motivated extensions of state-of-the-art first-order
calculi and systems, as for example presented in [15] for the Saturate system.
The extended Saturate system can solve some problems from the SET domain
in the TPTP [25] which Vampire [22] and E-Setheo’s [24] cannot solve.

While it has already been shown in [6, 2] that many problems of this nature
can be easily proved from first principles using a concise higher-order represen-
tation and the higher-order resolution ATP Leo [6], the combinatorial explosion
inherent in Leo’s calculus prevents the prover from solving a whole range of

46

SET171+3 ∀Xoα, Yoα, Zoα.X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z)
SET611+3 ∀Xoα, Yoα.(X ∩ Y = ∅) ⇔ (X \ Y = X)
SET624+3 ∀Xoα, Yoα, Zoα.Meets(X, Y ∩ Z) ⇔ Meets(X, Y) ∨ Meets(X, Z)
SET646+3 ∀xα, yβ .Subrel(Pair(x, y), (λuα.') × (λvβ .'))
SET670+3 ∀Zoα, Roβα, Xoα, Yoβ.IsRelOn(R,X, Y) ⇒

IsRelOn(RestrictRDom(R, Z), Z, Y)

Table 1. Test Problems on Sets and Relations: Examples

possible problems with one universal strategy. Often higher-order problems re-
quire only relatively few but essential steps of higher-order reasoning, while the
overwhelming part of the reasoning is first-order or even propositional level. This
suggests that Leo’s performance could be improved when combining it with a
first-order ATP to search efficiently for a possible refutation in the subset of
those clauses that are essentially first-order.

The advantages of such a combination are not only that many problems can
still be efficiently shown from first principles in a general purpose approach, but
also that problems can be expressed in a very concise way.

For instance, in [9] we present 45 problems from the SET domain of the
TPTP-v3.0.1, together with their entire formalisation in less than two pages,
which is difficult to achieve within a framework that does not provide λ-abstraction.
We have used this problem set, which is an extension of the problems considered
in [15], to show the effectiveness of our approach (cf. [9]). While many of the
considered problems can be proved by Leo alone with some strategy, the com-
bination of Leo with the first-order ATP Bliksem [12] is not only able to solve
more problems, but also needs only a single strategy to prove them. Several of
our problems are considered very challenging by the first-order community and
five of them (of which Leo can solve four) have a TPTP rating of 1.00, saying
that they cannot be solved by any TPTP prover to date.

Technically, the combination has been realised in the concurrent reasoning
system Ωants [23, 8] which enables the cooperation of hybrid reasoning systems
to construct a common proof object. In our past experiments, Ωants has been
successfully employed to check the validity of set equations using higher-order
and first-order ATPs, model generation, and computer algebra [5]. While this
enabled a cooperation between Leo and a first-order ATP, the proposed solution
could not be classified as a general purpose approach. A major shortcoming was
that all communication of partial results had to be conducted via the common
proof object, which was very inefficient for hard examples. Thus, the solved ex-
amples from set theory were considered too trivial, albeit they were often similar
to those still considered challenging in the TPTP in the first-order context.

In [9] we have presented our novel approach to the cooperation between
Leo and Bliksem inside Ωants by decentralising communication. As has been
documented in [9] this leads not only to a higher overall efficiency but also to a
general purpose approach based on a single strategy in Leo.

47

2.2 Sets, Relations, and Functions: Higher-Order Logic Encoding

We list some examples of the test problems on sets and relations (and functions)
that have been investigated in [9]. These test problems are taken from the TPTP
against which we evaluated our system. The problems are given by the identi-
fiers used in the SET domain of the TPTP, and are formalized in a variant of
Church’s simply typed λ-calculus with prefix polymorphism. In classical type
theory, terms and all their sub-terms are typed. Polymorphism allows the intro-
duction of type variables such that statements can be made for all types. For
instance, in problem SET171 in Table 1, the universally quantified variable Xoα

denotes a mapping from objects of type α to objects of type o. We use Church’s
notation oα, which stands for the functional type α → o. The reader is referred
to [1] for a more detailed introduction. In the remainder, o will denote the type
of truth values, and small Greek letters will denote arbitrary types. Thus, Xoα

(and its η-longform λyα Xy) is actually a characteristic function denoting the
set of elements of type α, for which the predicate associated with X holds. As
further notational convention, we use capital letter variables to denote sets, func-
tions, or relations, while lower case letters denote individuals. Types are usually
only given in the first occurrence of a variable and omitted if inferable from the
context. Table 1 presents some examples of the test problems investigated in [9].

These test problems employ defined concepts that are specified in a knowl-
edge base of hierarchical theories that Leo has access to. Table 2 gives the
concepts necessary for defining the above problems:

−
∈

−
:= λxα, Aoα.[Ax]

∅ := [λxα.⊥]
−
∩

−
:= λAoα, Boα.[λxα.x ∈ A ∧ x ∈ B]

−
∪

−
:= λAoα, Boα.[λxα.x ∈ A ∨ x ∈ B]

−
\
−

:= λAoα, Boα.[λxα.x ∈ A ∨ x /∈ B]
Meets(

−
,
−

) := λAoα, Boα.[∃xα.x ∈ A ∧ x ∈ B]
Pair(

−
,
−

) := λxα, yβ .[λuα, vβ.u = x ∧ v = y]
−
×

−
:= λAoα, Boβ.[λuα, vβ .u ∈ A ∧ v ∈ B]

Subrel(
−

,
−

) := λRoβα, Qoβα.[∀xα, yβ.Rxy ⇒ Qxy]
IsRelOn(

−
,
−

,
−

) := λRoβα, Aoα, Boβ.[∀xα, yβ .Rxy ⇒ x ∈ A ∧ y ∈ B]
RestrictRDom(

−
,
−

) := λRoβα, Aoα.[λxα, yβ .x ∈ A ∧ Rxy]

Table 2. Definitions of Operations on Sets and Relations: Examples

These concepts are defined in terms of λ-expressions and they may contain
other, already specified concepts. For presentation purposes, we use customary
mathematical symbols ∪,∩, etc., for some concepts like union, intersection, etc.,
and we also use infix notation. For instance, the definition of union on sets in
Table 2 can be easily read in its more common mathematical representation
A∪B := {x|x ∈ A∨ x ∈ B}. Before proving a problem, Leo always expands —

48

Assumptions: ∀B, C, x [x ∈ (B ∪ C) ⇔ x ∈ B ∨ x ∈ C] (1)

∀B, C, x [x ∈ (B ∩ C) ⇔ x ∈ B ∧ x ∈ C] (2)

∀B, C [B = C ⇔ B ⊆ C ∧ C ⊆ B] (3)

∀B, C [B ∪ C = C ∪ B] (4)

∀B, C [B ∩ C = C ∩ B] (5)

∀B, C [B ⊆ C ⇔ ∀x x ∈ B ⇒ x ∈ C] (6)

∀B, C [B = C ⇔ ∀x x ∈ B ⇔ x ∈ C] (7)

Proof Goal: ∀B, C, D [B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)] (8)

Table 3. Problem SET171+3: The First-Order TPTP Encoding.

recursively, if necessary — all occurring concepts. This straightforward expansion
to first principles is realised by an automated preprocess in our current approach.

2.3 Sets, Relations, and Functions: First-Order Logic Encoding

Let us consider example SET171+3 in its first-order formulation from the TPTP
(see Table 3). We can observe that the assumptions provide only a partial ax-
iomatisation of naive set theory. On the other hand, the specification introduces
lemmata that are useful for solving the problem. In particular, assumption (7) is
trivially derivable from (3) with (6). Obviously, clausal normalisation of this first-
order problem description yields a much larger and more difficult set of clauses.
Furthermore, definitions of concepts are not directly expanded as in Leo. It
is therefore not surprising that most first-order ATPs still fail to prove this
problem. In fact, very few TPTP provers were successful in proving SET171+3.
Amongst them are Muscadet 2.4. [21], Vampire 7.0, and Saturate. The nat-
ural deduction system Muscadet uses special inference rules for sets and needs
0.2 seconds to prove this problem. Vampire needs 108 seconds. The Saturate

system [15] (which extends Vampire with Boolean extensionality rules that
are a one-to-one correspondence to Leo’s rules for Extensional Higher-Order
Paramodulation [3]) can solve the problem in 2.9 seconds while generating 159
clauses. The significance of such comparisons is clearly limited since different
systems are optimised to a different degree. One noted difference between the
experiments with first-order provers listed above, and the experiments with Leo

and Leo-Bliksem is that first-order systems often use a case tailored problem
representation (e.g., by avoiding some base axioms of the addressed theory),
while Leo and Leo-Bliksem have a harder task of dealing with a general (not
specifically tailored) representation. Thus, the comparison of the performance
of Leo and Leo-Bliksem with first-order systems as done in [9] is unfair: the
higher-order systems attack harder, non-tailored problems. Nevertheless, as we
demonstrated by the performance results in [9] the higher-order systems still
perform better.

49

(1) ∀B,C, D.B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)
↓ clause initialization
↓ def.-expansion, cnf
↓ B, C, D Skolem const.

(2) [(λx.Bx ∨ (Cx ∧ Dx))= (λx.(Bx ∧ Cx) ∨ (Cx ∧ Dx))]F

↓ unification constraint
(3) [(λx.Bx ∨ (Cx ∧ Dx))=?(λx.(Bx ∧ Cx) ∨ (Cx ∧ Dx))]

↓ f-extensionality
↓ x new Skolem constant

(4) [(Bx ∨ (Cx ∧ Dx))=?((Bx ∧ Cx) ∨ (Cx ∧ Dx))]
↓ B-extensionality

(5) [(Bx ∨ (Cx ∧ Dx))⇔((Bx ∧ Cx) ∨ (Cx ∧ Dx))]F

↓ cnf, factor., subsumption
(6) [Bx]F

(7) [Bx]T∨[Cx]T propositional problem!
(8) [Bx]T∨[Dx]T

(9) [Cx]F∨[Dx]F

↓ propositional reasoning
(10) !

Table 4. Problem SET171+3: Solution in Leo

For the experiments with Leo and the cooperation of Leo with the first-order
theorem prover Bliksem, λ-abstraction as well as the extensionality treatment
inherent in Leo’s calculus [4] is used. This enables a theoretically1 Henkin-
complete proof system for set theory. In the above example SET171+3, Leo gen-
erally uses the application of functional extensionality to push extensional unifi-
cation constraints down to base type level, and then eventually applies Boolean
extensionality to generate clauses from them. These are typically much simpler
and often even propositional-like or first-order-like (FO-like, for short), that is,
they do not contain any ‘real’ higher-order subterms (such as a λ-abstraction or
embedded equations), and are therefore suitable for treatment by a first-order
ATP or even a propositional logic decision procedure.

2.4 Solving the Test Problem SET171+3 in Leo

Table 4 illustrates how Leo tackles and solves the test problem SET171+3. First
the resolution process is initialised, that is, the definitions occurring in the input
problem are expanded, that is, completely reduced to first principles. Then the
problem is turned into a negated unit clause. The resulting (not displayed inter-
mediate) clause is not in normal form and therefore Leo first normalizes it with
explicit clause normalisation rules (cnf) to reach some proper initial clauses. In

1 For pragmatic reasons, such as efficiency, most of Leo’s tactics are incomplete. Leo’s
philosophy is to rely on a theoretically complete calculus, but to practically provide
a set of complimentary strategies so that these cover a broad range of theorems.

50

our concrete case, this leads to the unit clause (2). Note that negated prim-
itive equations are generally automatically converted by Leo into unification
constraints. This is why (2) is automatically converted into (3), which is a syn-
tactically not solvable, but is a semantic unification problem. Observe, that we
write [.]T and [.]F for positive and negative literals, respectively. Leo then applies
its goal directed functional and Boolean extensionality rules which replace the
unification constraint (3) by the clauses (4) and (5). Unit clause (5) is again not
normal; normalisation, factorisation and subsumption yields the clauses (6)-(9).
This set is essentially of propositional logic character and trivially refutable. Leo

needs 0.56 seconds for solving the problem and generates a total of 36 clauses.

2.5 Solving the Test Problem SET171+3 in Leo-Bliksem

As illustrated in Table 4, Leo transforms test problem SET171+3 straight-
forwardly into a propositional like subproblem. Here the generated clause set
(7)–(10) can still be efficiently refuted by Leo. Generally, however, the gener-
ated subsets of propositional or first-order like subproblems may quickly become
so big that Leo’s refutation procedure, which is not optimised for these prob-
lem classes, gets stuck. And in Leo’s search space generally some further real
higher-order clauses have to be taken into account. This observation motivates
our cooperative Leo-Bliksem proof search approach: while Leo performs its
proof search as before, it periodically also passes the detected first-order like
clauses (which, of course, include the propositional like clauses) to the first-order
specialist reasoner Bliksem. We note:

– The generated first-order like clauses in Leo are copied into a special bag
which never decreases and usually always increases. That is, the bag of first-
order like clauses dynamically changes and eventually becomes refutable
(such as clauses (7)–(10) in our example).

– Leo’s proof search procedure remains unchanged and Leo still tries to refute
such subproblems itself (as before) in a bigger context.

– In addition, specialist reasoners may now support Leo by showing that the
bag of first-order like subproblems is refutable.

– Each time the bag of first-order like subproblems is increased by Leo, a new
instance of a specialist reasoner is launched (with a resource-bound). This
instance runs in parallel to Leo’s proof search and may eventually signal
success to Leo. If Leo receives such a success signal, it stops its own proof
search and reports that a cooperative proof has been found. Alternatively
(as before) Leo stops proof search when it finds the proof itself.

– Our cooperative approach can easily be fine-grained by separating the bag of
first-order like clauses into even more specialised subclasses, such as propo-
sitional logic, guarded fragment, etc. Different specialist reasoners can then
be employed to attack these clause sets.

– For the higher-order problems investigated in [9] we further observe:
• Some problems are immediately mapped by recursive definition expan-

sion (without extensionality reasoning) and normalisation into first-order
like problems; an example is SET624+3.

51

• Some problems are immediately mapped by recursive definition expan-
sion (without extensionality reasoning) and normalisation into the empty
clause such that proof search does not even start; an example is SET646+3.

• Some problems require several rounds of extensionality processing within
Leo’s set-of-support based proof search procedure before the bag of first-
order like clauses turns into a refutable set of clauses; an example is
SET611+3.

The result of the case study performed in [9] is: The Leo-Bliksem cooper-
ation impressively outperforms both state-of-the art first-order specialists (in-
cluding Vampire 7.0) and the non-cooperative Leo system.

In the next section we describe in more detail how the cooperative proof
search approach between Leo and the first-order prover Bliksem has been mod-
elled in Ωants.

3 Ωants

Ωants was originally conceived to support interactive theorem proving but was
later extended to a fully automated proving system [23, 8]. Its basic idea is to
compose a central proof object by generating, in each proof situation, a ranked
list of potentially applicable inference steps. In this process, all inference rules,
such as calculus rules or tactics, are uniformly viewed with respect to three
sets: premises, conclusions, and additional parameters. The elements of these
three sets are called arguments of the inference rule and they usually depend
on each other. An inference rule is applicable if at least some of its arguments
can be instantiated with respect to the given proof context. The task of the
Ωants architecture is now to determine the applicability of inference rules by
computing instantiations for their arguments.

The architecture consists of two layers. On the lower layer, possible instanti-
ations of the arguments of individual inference rules are computed. In particular,
each inference rule is associated with its own blackboard and concurrent pro-
cesses, one for each argument of the inference rule. The role of every process is
to compute possible instantiations for its designated argument of the inference
rule, and to record these on the blackboard. The computations are carried out
with respect to the given proof context and by exploiting information already
present on the blackboard, that is, argument instantiations computed by other
processes. On the upper layer, the information from the lower layer is used for
computing and heuristically ranking the inference rules that are applicable in
the current proof state. The most promising rule is then applied to the central
proof object and the data on the blackboards is cleared for the next round of
computations.

Ωants employs resource reasoning to guide search.2 This enables the con-
trolled integration (e.g., by specifying time-outs) of full-fledged external reason-

2 Ωants provides facilities to define and modify the processes at run-time. But notice
that we do not use these advanced features in the case study presented in this paper.

52

ing systems such as automated theorem provers, computer algebra systems, or
model generators into the architecture.

3.1 Cooperation via multiple inference rules

The use of the external systems is modelled by inference rules, usually one for
each system. Their corresponding computations are encapsulated in one of the
independent processes in the architecture. For example, an inference rule mod-
elling the standard application Leo has its conclusion argument set to be an
open higher-order (HO) goal.

HO-goal
Leo (LEO-parameters)

A process can then place an open goal on the blackboard, where it is picked
up by a process that applies the Leo prover to it. Any computed proof from the
external system is again written to the blackboard from where it is subsequently
inserted into the proof object when the inference rule is applied. While this setup
enables proof construction by a collaborative effort of diverse reasoning systems,
the cooperation can only be achieved via the central proof object. This means
that all partial results have to be translated back and forth between the syntaxes
of the integrated systems and the language of the proof object. For modelling
the cooperation of Leo with a first-order reasoner we have first experimented
with the following multiple inference rule modelling (see also [5]):

Neg-Conj-of-FO-clauses

HO-goal
Leo-with-partial-result(Leo-parameters)

FO-goal
Bliksem (Bliksem-parameters)

The first rule models a process that picks up higher-order proof problem from
the blackboard, passes it to Leo which starts its proof search, and then returns
the negated conjunction of generated first-order clauses back (e.g. the negated
conjunction of the clauses (7)–(10) in our previous example). For each modified
bag of first-order like clauses in Leo this rule may suggest a novel reduction of
the original higher-order goal to a first-order criterion.

Since there are many types of integrated systems, the language of the proof
object maintained in Ωants — a higher-order language even richer than Leo’s,
together with a natural deduction calculus — is expressive but also cumbersome.
This leads not only to a large communication overhead, but also means that
complex proof objects have to be created, even if the reasoning of all systems
involved is clause-based. Large clause sets need to be transformed into large
single formulae to represent them in the proof object; the support for this in
Ωants to date is inefficient. Consequently, the cooperation between external
systems is typically rather inefficient [5].

53

3.2 Cooperation via a single inference rule

In order to overcome the problem of the communication bottleneck described
above, we devised a new method for the cooperation between a higher-order
and a first-order theorem prover within Ωants. Rather than modelling each
theorem prover as a separate inference rule (and hence needing to translate
the communication via the language of the central proof object), we model the
cooperation between a higher-order (concretely, Leo) and a first-order theorem
prover (in our case study Bliksem) in Ωants as a single inference rule.

HO-goal
Leo-Bliksem (

Leo-partial-proof, FO-clauses, FO-proof, Leo-
parameters, Bliksem-parameters

)

The communication between the two theorem provers is carried out directly
by the parameters of the inference rule and not via the central proof object. This
avoids translating clause sets into single formulae and back.

Concretely, the single inference rule modelling the cooperation between Leo

and a first-order theorem prover needs the following arguments to be applicable:
(1) an open higher-order proof goal, (2) a partial Leo proof, (3) a set of FO-
like clauses in the partial proof, (4) a first-order refutation proof for the set
of FO-like clauses, and (5) and (6) the usual flag-parameters for the theorem
provers Leo and Bliksem. Each of these arguments is computed, that is, its
instantiation is found, by an independent process. The first process finds open
goals in the central proof object and posts them on the blackboard associated
with the new rule. The second process starts an instance of the Leo theorem
prover for each new open goal on the blackboard. Each Leo instance maintains
its own set of FO-like clauses. The third process monitors these clauses, and as
soon as it detects a change in this set, that is, if new FO-like clauses are added by
Leo, it writes the entire set of clauses to the blackboard. Once FO-like clauses
are posted, the fourth process first translates each of the clauses directly into
a corresponding one in the format of the first-order theorem prover, and then
starts the first-order theorem prover on them. Note that writing FO-like clauses
on the blackboard is by far not as time consuming as generating higher-order
proof objects. As soon as either Leo or the first-order prover finds a refutation,
the second process reports Leo’s proof or partial proof to the blackboard, that
is, it instantiates argument (2). Once all four arguments of our inference rule
are instantiated, the rule becomes applicable and its application closes the open
proof goal in the central proof object. That is, the open goal is proved by the
cooperation between Leo and a first-order theorem prover. When computing
applicability of the inference rule, the second and the fourth process concurrently
spawn processes running Leo or a first-order prover on a different set of FO-like
clauses. Thus, when actually applying the inference rule, all these instances of
provers working on the same open subgoal are stopped.

While in the previous approach with multiple inference rules the cooperation
between Leo and Bliksem was modelled at the upper layer of the Ωants ar-
chitecture, our new approach models their cooperation by exploiting the lower

54

layer of the Ωants blackboard architecture. This is not an ad hoc solution,
but rather, it demonstrates Ωants’s flexibility in modelling the integration of
cooperative reasoning systems.

Our approach to the cooperation between a higher-order and a first-order
theorem prover has many advantages. The main one is that the communication
is restricted to the transmission of clauses, and thus it avoids any intermediate
translation into the language of the central proof object. This significantly re-
duces the communication overhead and makes effective proving of more involved
theorems feasible.

4 Constructing a Combined Proof Object

A disadvantage of our approach is that we cannot easily translate and integrate
the two proof objects produced by Leo and Bliksem into the central proof ob-
ject maintained by Ωants. This has been possible in our previous approach with
multiple inference rules. Thus, we developed a simple and pragmatic solution to
the problem:

– The main idea is to replay the proof on the upper level of the Ωants archi-
tecture (using the multiple inference rule modelling) once a proof attempt
was successful (with a single inference rule modelling) on the lower level.

– We can essentially reconstruct all the information from the blackboard that
we need in order to replay the proof. For this remember that the rule Leo-
Bliksem is only applicable if all parameters of the rule are instantiated,
that is, the respective parameter instantiation information is available on
the blackboard for each successful cooperative proof attempt. Respective
instantiation information generated from a successful cooperative proof at-
tempt for our running example SET171+3, for instance, is:

HO-Goal := ∀B, C, D.C ∪ (B ∩ D) = (C ∪ B) ∩ (C ∪ D)

Leo-partial-proof := . . . a HO resolution proof object ∆ . . .

FO-clauses := (7) [Bx]F

(8) [Bx]T∨[Cx]T

(9) [Bx]T∨[Dx]T

(10) [Cx]F∨[Dx]F

FO-proof := . . . a FO resolution proof object Γ . . .

Leo-parameters := . . . the flags chosen for the Leo call . . .

Bliksem-parameters := . . . the flags chosen for the Bliksem call . . .

– For finding joint proofs efficiently in our experiment we called Bliksem in
the fastest mode. In this case the generated FO-proof object is typically very
sparse, i.e. contains only very little information for proof reconstruction and
transformation.

55

– When the above suggestion of a successful joint proof attempt is selected for
application in Ωants, the initially open (sub-)goal ∀B, C, D.C ∪ (B ∩D) =
(C ∪ B) ∩ (C ∪ D) is closed and the new justification of this proof node
becomes ‘Leo-Bliksem’ augmented with the above parameter instantiation
information:

∀B, C, D.C∪(B∩D) = (C∪B)∩ (C∪D)
Leo-Bliksem (above param. inst.)

– Expansion of this node then replaces the (sub-)proof object by the following
(sub-)proof object employing the multiple inference rule modelling of the
cooperative proof attempt:

neg-FO-clauses
Bliksem (modified Bliksem-param. instantiation)

∀B, C, D. . . . = . . .
Leo-with-partial-result (Leo-param. instantiation)

where ‘neg-FO-clauses ’ is computed from the instantiation of the parameter
FO-clauses as

¬(¬(Bx) ∧ (Bx ∨ Cx) ∧ (Bx ∨ Dx) ∧ (¬(Cx) ∨ ¬(Dx))

– The idea is to support verification of this (sub-)proof by subsequent proof
node expansion, i.e., to investigate the contributions of both reasoning sys-
tems separately. For the expansion of Bliksem, a translation of the pre-
viously generated proof into a proper proof-object is not an option if we
called Bliksem in the fastest mode since the delivered first-order proof ob-
ject may be too sparse. Therefore, the expansion of this proof node simply
calls Bliksem again but now within a different mode (determined by the
slightly changed modified Bliksem-param. instantiation) which ensures the
generation of detailed first-order proof objects.

– For the translation of this regenerated, detailed first-order proof object into
an Ωants proof object we employ the Tramp system [18]. This enables us
to verify the (sub-)proof of Bliksem after its translation into an Ωants

proof object.
– Generally, we could also replace the second call to Bliksem by a call to any

other first-order proof system that is supported by Tramp’s generic proof
transformation mechanism (and which is as strong as Bliksem).

5 Conclusion

In this paper we have discussed the difference between two forms of modelling
cooperating proof systems within Ωants: the multiple inference rule approach
and the single inference rule approach. In previous experiments the latter has
been shown as highly efficient and it has outperformed state-of-the-art first-order
specialist reasoners on 45 examples on sets, relations and functions; cf. [9]. The
drawback so far, however, was that no joint proof object could be generated. In

56

this paper we have reported how we have solved this problem by simply mapping
the single inference rule modelling back to the multiple inference rule modelling.

Related to our approach is the Techs system [13], which realises a cooper-
ation between a set of heterogeneous first-order theorem provers. Similarly to
our approach, partial results in Techs are exchanged between the different the-
orem provers in form of clauses. The main difference to the work of Denzinger
et al. (and other related architectures like [14]) is that our system bridges be-
tween higher-order and first-order automated theorem proving. Also, unlike in
Techs, we provide a declarative specification framework for modelling exter-
nal systems as cooperating, concurrent processes that can be (re-)configured at
run-time. Related is also the work of Hurd [16] which realises a generic inter-
face between HOL and first-order theorem provers. It is similar to the solution
previously achieved by Tramp [18] in Omega, which serves as a basis for the
sound integration of ATPs into Ωants. Both approaches pass essentially first-
order clauses to first-order theorem provers and then translate their results back
into HOL resp. Omega. Some further related work on the cooperation of Is-
abelle with Vampire is presented in [19]. The main difference of our work to
the related systems is that while our system calls first-order provers from within
higher-order proof search, this is not the case for [16, 18, 19].

Future work is to investigate how far our approach scales up to more complex
problems and more advanced mathematical theories. In less trivial settings as
discussed in this paper, we will face the problem of selecting and adding relevant
lemmata to avoid immediate reduction to first principles and to appropriately
instantiate set variables. Relevant related work for this setting is Bishop’s ap-
proach to selectively expand definitions as presented in [10] and Brown’s PhD
thesis on set comprehension in Church’s type theory [11].

References

1. P. Andrews. An Introduction to mathematical logic and Type Theory: To Truth
through Proof. Number 27 in Applied Logic Series. Kluwer, 2002.

2. C. Benzmüller. Equality and Extensionality in Higher-Order Theorem Proving.
PhD thesis, Universität des Saarlandes, Germany, 1999.

3. C. Benzmüller. Extensional higher-order paramodulation and RUE-resolution.
Proc. of CADE-16, LNAI 1632, p. 399–413. Springer, 1999.

4. C. Benzmüller. Comparing approaches to resolution based higher-order theorem
proving. Synthese, 133(1-2):203–235, 2002.

5. C. Benzmüller, M. Jamnik, M. Kerber, and V. Sorge. Experiments with an Agent-
Oriented Reasoning System.Proc. of KI 2001,LNAI 2174, p.409--424. Springer, 2001.

6. C. Benzmüller and M. Kohlhase. LEO – a higher-order theorem prover. Proc. of
CADE-15, LNAI 1421. Springer, 1998.

7. C. Benzmüller and V. Sorge. A Blackboard Architecture for Guiding Interactive
Proofs. Proc. of AIMSA’98, LNAI 1480, p. 102–114. Springer, 1998.

8. C. Benzmüller and V. Sorge. Ωants – An open approach at combining Interactive
and Automated Theorem Proving. Proc. of Calculemus-2000. AK Peters, 2001.

9. C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber. Can a Higher-Order and a
First-Order Theorem Prover Cooperate? Proc. LPAR’04, LNAI 3452, Montevideo,
Uruguay. Springer, 2005.

57

10. M. Bishop and P. Andrews. Selectively instantiating definitions. Proc. of CADE-

15, LNAI 1421. Springer, 1998.
11. C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Dept. of

Mathematical Sciences, Carnegie Mellon University, USA, 2004.
12. H. de Nivelle. The Bliksem Theorem Prover, Version 1.12. Max-Planck-Institut,

Saarbrücken, Germany, 1999. http://www.mpi-sb.mpg.de/ bliksem/manual.ps.
13. J. Denzinger and D. Fuchs. Cooperation of Heterogeneous Provers. Proc. IJCAI-

16, p. 10–15. Morgan Kaufmann, 1999.
14. M. Fisher and A. Ireland. Multi-agent proof-planning. CADE-15 Workshop “Using

AI methods in Deduction”, 1998.
15. H. Ganzinger and J. Stuber. Superposition with equivalence reasoning and delayed

clause normal form transformation. Proc. of CADE-19, LNAI 2741. Springer, 2003.
16. J. Hurd. An LCF-style interface between HOL and first-order logic. Automated

Deduction — CADE-18, LNAI 2392, p. 134–138. Springer, 2002.
17. M. Kerber. On the Representation of Mathematical Concepts and their Translation

into First Order Logic. PhD thesis, Universität Kaiserslautern, Germany, 1992.
18. A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduction

Proofs at the Assertion Level. Proc. of CADE-17, LNAI 1831. Springer, 2000.
19. J. Meng and L. C. Paulson. Experiments on supporting interactive proof using

resolution. Proc. of IJCAR 2004, LNCS 3097, p. 372–384. Springer, 2004.
20. R. Nieuwenhuis, Th. Hillenbrand, A. Riazanov, and A. Voronkov. On the evalua-

tion of indexing techniques for theorem proving. Proc. of IJCAR-01, LNAI 2083,
p. 257–271. Springer, 2001.

21. D. Pastre. Muscadet2.3 : A knowledge-based theorem prover based on natural
deduction. Proc. of IJCAR-01, LNAI 2083, p. 685–689. Springer, 2001.

22. A. Riazanov and A. Voronkov. Vampire 1.1 (system description). Proc. of IJCAR-

01, LNAI 2083, p. 376–380. Springer, 2001.
23. V. Sorge. OANTS: A Blackboard Architecture for the Integration of Reasoning Tech-

niques into Proof Planning. PhD thesis, Universität des Saarlandes, Germany, 2001.
24. G. Stenz and A. Wolf. E-SETHEO: An Automated3 Theorem Prover – System

Abstract. Proc. of the TABLEAUX’2000, LNAI 1847, p. 436–440. Springer, 2000.
25. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1.

Journal of Automated Reasoning, 21(2):177–203, 1998.

58

Benchmarks for Higher-Order Automated

Reasoning

Chad E. Brown

Universität des Saarlandes, Saarbrücken, Germany, cebrown@ags.uni-sb.de

For a higher-order system to be successful it should support users performing
tasks both large and small. Large tasks include interactive construction of large
theories, including storing definitions, theorems and proofs. Small tasks include
using automation to fill in small gaps in proofs. Consider the following theorem:

(C) If f is an n-tuple of complex numbers and fi = 0, then the product f1 · · · fn

of the n-tuple is 0.

In order to even state this theorem, one must first have already defined the
complex numbers, n-tuples of complex numbers and multiplication of such n-
tuples. If one defines the complex numbers using pairs of reals, defines the reals
using Dedekind cuts, and so on, then it is unrealistic to expect a system to
automatically prove this theorem. On the other hand, suppose we include the
following as a hypothesis:

(A) Any n-tuple of complex numbers has product 0 iff there exists some j
between 1 and n such that fj = 0.

Proving the first from the second (i.e., [A ⊃ C]) is a minor exercise in logic
and is precisely the sort of gap automation should be able to fill. Such problems
are not trivial, however, since an automated system might consider any number
of irrelevant possibilities during proof search. This is especially true once one
begins expanding definitions.

The example above comes from Jutting’s translation of Landau’s Grundlagen
der Analysis [6] into Automath [5]. This formalization was recovered and restored
by Wiedijk [7]. We are now in the process of porting the definitions and theorems
from the Automath signature into Church’s Type Theory, a form of higher-order
logic based on simple type theory [2, 4]. However, we are not translating the
Automath proof objects to Church’s Type Theory. Consequently, one obtains
thousands of unproven theorems such as C.

For each such theorem C, one can attempt to prove C in isolation (possi-
bly making use of axioms such as description, choice, extensionality or infinity).
For most theorems this is unrealistic since the gap between the axioms and the
theorem is simply too wide. On the other hand, one can take all axioms and
previously proven theorems A1, . . .Am and try to prove C follows from the con-
junction of A1, . . .Am. This is generally unrealistic for two reasons. Firstly, the
formula becomes too large for automated search once m becomes large. Secondly,
if some Ai contains type variables, then one must find a way to instantiate these

59

type variables during the search for a proof. A third alternative is the most real-
istic. We provide precisely the relevant axioms and previously proven theorems,
with the correct type variable instantiations, and try to prove C follows. In gen-
eral, of course, we cannot know which of the Ai’s are relevant. However, for the
Grundlagen theorems, we can extract this information from the Automath proof
terms. Using this information, we obtain thousands of theorems of the form

[A′

i1
∧ · · · ∧ A′

ik
] ⊃ C

where A′

i1
is Ai1 with types instantiated appropriately.

Most such theorems correspond to a step given by a single line in the Au-
tomath code. For this reason, one can expect most of the theorems to have rea-
sonably short proofs. On the other hand, Automath has a stronger type system
than simple type theory, so one step in Automath may correspond to many steps
in the simply typed version. (Intuitively, what was type checking in Automath
becomes deduction in Church’s type theory.)

This corpus of theorems can be used to empirically test the automated fa-
cilities of a higher-order reasoning system. The hope is that such a corpus can
provide reasonable, practical benchmarks for judging the effectiveness and effi-
ciency of systems and procedures. We report on the initial results of applying
the theorem prover Tps [1, 3].

References

1. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning,
and Hongwei Xi. TPS: A theorem proving system for classical type theory. Journal
of Automated Reasoning, 16:321–353, 1996.

2. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To

Truth Through Proof. Kluwer Academic Publishers, second edition, 2002.
3. Chad E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, De-

partment of Mathematical Sciences, Carnegie Mellon University, 2004.
4. Alonzo Church. A Formulation of the Simple Theory of Types. Journal of Symbolic

Logic, 5:56–68, 1940.
5. L. S. Jutting. Checking Landau’s ”Grundlagen” in the AUTOMATH system. PhD

thesis, Eindhoven Univ., Math. Centre, Amsterdam, 1979.
6. E. Landau. Grundlagen der Analysis. Leizig, 1930.
7. Freek Wiedijk. A new implementation of Automath. J. Autom. Reasoning, 29(3-

4):365–387, 2002.

60

Co-Synthesis of New Complex Selection
Algorithms and their Human Comprehensible

XML Documentation

Jutta Eusterbrock

JEusterbrock@seamless-solutions.de

Abstract. In this paper, an approach for program and algorithm syn-
thesis within a higher-order framework is presented that allows us to
generate new algorithm structures together with readable documentation
which enable users to conveniently inspect the results of this synthesis
process. The synthesis approach is based on feature graphs as a higher-
order data type for specifying synthesis types like proof terms, theorems
and document types. The document synthesis method uses constructive
reasoning about a user-defined knowledge base to synthesise documents
from metaobjects which are composed of diagrams,text, and references
to articles, theorems and algorithms. The data format used for reasoning
is a variant of XML syntax and thus enables the organisation of compre-
hensive knowledge in XML repositories and the conversion of document
terms into LATEX, PDF or XHTML documents which can be displayed
by browsers.
This framework has been applied for the automated synthesis of several
new selection algorithms and their documentation. As one new result,
an algorithm that proves selecting the 4th element of 24 elements needs
at most 34 comparisons was synthesised using 50 seconds CPU time on
an AMD Athlon 3200. The correctness of the synthesised algorithm was
manually checked. It improves the known upper bounds for the specific
selection problems. The running time for synthesis is several orders of
magnitude more efficient than comparative approaches.

1 Introduction

The idea of automatically discovering solutions to mathematical conjectures or
proving the non-existence of solutions which are beyond human comprehension
is intriguing. In recent years, computers have been used for a number of famous
algorithmic problems to facilitate analysis based upon a detailed problem specific
formalisation. For instance, C. Lam proved that a projective plane of order 10
does not exist [Lam91]. As the “proof” took several years of computer search
(the equivalent of 2000 hours on a Cray-1), it is considered to be the most time-
intensive computer assisted single proof. Recently, G. Gonthier, a mathematician
who works at Microsoft Research in Cambridge, England, used the CoQ system
(cf. [Dev05]) to verify the computer supported proof of the famous Four Color

61

Theorem, which was originally proven in 1976 by Appel and Haken who used
computer programs to check a very large number of cases.

However, for a mathematician it is unsatisfying to know that there exists
a solution or no solution for a problem, because thousands, hundreds of thou-
sands or millions of states have been explored by a theorem prover whose rules
have been verified, and at the same time, not be able to comprehend the te-
dious machine-generated proofs and not be able to draw conclusions from the
automated proof.

In previous work [Eus92b] on automated algorithm synthesis, we designed
and implemented a metalevel methodology and system to assist algorithm syn-
thesis and the proof of lower complexity bounds. The system evaluated the search
process and derived new knowledge which was abstracted and added to a dy-
namically growing knowledge base. The system was applied to assist the proof
of a number-theoretic conjecture for the selection problem. It was possible to
prove the values for very small n within a few minutes on a Sparc Workstation.
Surprisingly, the system synthesised an algorithm which constructed a counter
example to a set of rules which should be verified by the system [Eus92a]. As
a side effect, an isolated counter-example for a published lower bound for the
selection problem was constructed. The computation took several days and the
machine generated proofs were cumbersome because the nested proof graphs
are hard to comprehend. However, treating proofs as graphs enables various
forms for generating explanations. In [EN96], a visualisation component was
implemented in order to assist the exploration of huge graphs. Techniques like
zooming, organising of graphs on various hierarchy levels, folding and unfolding
techniques enabled the interactive exploration of large graphs. However, it is
assumed that presenting algorithms by documents which are similar to scien-
tific or textbook descriptions, making use of different formats and establishing
links to published results is cognitively more appropriate for proof presentation
than uniform means such as visualisation techniques. Meanwile, XML-based data
formats have emerged as a standard for data encoding and exchange. XML doc-
uments can be comparatively easily converted into web pages, LATEX or PDF
document files which facilitate the display of natural language, graphics, math-
ematical symbols and references in an appropriate form.

In this paper, it is illustrated how XML based documentation for automati-
cally synthesised algorithms and programs can be generated from specifications
and proof terms and further processed by XML tools is analysed. Synthesised
theorems and programs should be presented at the right level of granularity such
that experts can check the automatically synthesised programs in the same way
as they verify a proof in a publication. The key to a solution is abstraction.
It is achieved by a higher-order formalisation of abstract synthesis objects and
document components and a higher-order approach towards automated synthe-
sis which raises the level of abstraction (cf. [Kre93]). A method is devised that
transforms program specifications and synthesised algorithms into documents
which include graphics, text, and references. The method is based upon gen-
eral correspondences between synthesis types and document types. User-defined

62

context-specific rules as how to decompose the proof graph, when to generate
lemmata and what kind of additional visual information to present at various
stages can be provided. The method has been applied to automatically synthe-
sise documents for new complex selection algorithms which were automatically
synthesised.

The paper is organised as follows. In section 2, the selection problem is in-
troduced. Section 3 gives an overview of the synthesis framework. In section 4,
the synthesis types and the building blocks of the metatheory for the encod-
ing of mathematical knowledge are defined. The document synthesis method
is exlained in section 5. Section 6 summarises some experimental results. Sec-
tion 7 concludes this paper. Appendix A contains the automatically synthesised
document for the automatically constructed new selection algorithm.

2 The Selection Problem

The selection problem is the problem of finding the i-th largest element, given a
set of n distinct unordered numbers, 1 < i < n. The special case i = !n/2" is the
median problem. The worst-case, minimum number of comparisons is denoted
by Vi(n). The problem goes back to Rev. C. L. Dodgson’s (aka Lewis Carroll)
essay on how prizes were awarded unfairly in tennis tournaments (see Knuth
[8:5.33]). In the classic book The Art of Computer Programming, Volume 2,
Sorting and Searching [Knu73a], D. Knuth introduces the problem and states
the combinatorial bounds for n ≤ 10. In [Eus85], the present author constructed
the formula Hi(n)

Hi(n) = n− i +
i−1∑

l=1

(!lg(
n− i + 2
i− l + 3

)"+ 2). (1)

It was shown in [Eus85] that the numbers Hi(n) unify the published results
for the worst-case behaviour of selection-algorithms as follows. For admissible
combinations of i, n the numbers Hi(n):

– match the exact numbers Vi(n) for i = 1, 2, 3 [Kis64,Knu73b,Aig82];
– are equal to or less than the lower bounds [Kis64,Yao74,FG79,Aig82,MP82,BJ85];
– are equal or greater than the upper bounds

[Kis64,HS69,BFP+73,FR75,SPP76,Yap76,Aig82,RH84]

known at that time. Furthermore, using the numbers Hi(n), novel combinatorial
algorithms for small values of i, n were constructed which prove the upper bounds
for small values of i, n:

Vi(n) ≤ Hi(n), iff i ≤ 4, n ≤ 14 and i ≤ 5, n ≤ 12. (2)

The approximate behaviour for the medians is given by the formula below

Hn/2(n) ≈ 2.5n− 3!lg(n + 4)"+ 5 (3)
63

The author stated the hypothesis Vi(n) = Hi(n) for all i, n. For all known upper
and lower bounds either Vi(n) ≥ Li(n) or Vi(n) ≤ Ui(n) with one exception
which will be described later on. The hypothetical formula for the median coin-
cides with the conjecture of Yao and the conjecture of Paterson Vn/2 ≈ 2.4094n.
In [Eus92b] we designed a system in order to assist the refinement of rules. Us-
ing this system, it was possible to prove the values for very small n within a
few minutes on a Sun Workstation. Surprisingly the system synthesised an al-
gorithm which proves V3(22) < H3(22) and thus constructed a counter example
to a set of rules which should be verified by the system [Eus92a]. The compu-
tation took several days. Computerised searches for the selection problem were
subsequently performed by [GKP96] and [Oks05] which use alpha-beta search, a
transposition table and some optimisations. Oksanen’s system constructs deci-
sion graphs which in summary suggest Vi(n) ≤ Hi(n), iff i ≤ 6, n ≤ 14. However,
it is also claimed that V5(12) ≥ 19 = H5(12)−1 while in [Eus85] an algorithm is
presented that proves V5(12) ≤ 18 and thus contradicts the automatically proven
statement. The constructed decision graphs presented in [Oks05] are too large
to comprehend and in the case i = 7, n = 14 consist of more than 600 nodes.

The process for constructing algorithms or lower bounds for selection prob-
lems is similar to minimum-comparison sorting. M. Peczarski has devised a
system and analysed the optimal lower bounds S(n) for sorting n elements,
n = 13, 14, 22 based on an algorithm for counting the linear extensions of partial
orders. The proof S(22) > 70 took 1740 hours on a computer with a 650 MHz
processor (cf. [Pec04]).

3 The Higher-order Synthesis Framework

In this paper, a reformalisation and reimplementation of our knowledge-based
synthesis framework, called SEAMLESS (cf. [Eus95]) is analysed. The synthesis
system consists of verified generic methods which take a specification as in-
put and generate metalevel proofs by metalevel reasoning about domain-specific
knowledge which may be interpreted as programs. The synthesis system evalu-
ates the search processes, generalises the case solutions which result from success-
ful and failed proof attempts and stores them for further reuse in the knowledge
base. A documentation synthesis component has been added. The document syn-
thesis component transforms specifications, derived theorems and synthesised
proofs into XML documents including graphical visualisations, references and
text. The XML documents can be converted by freely available tools into human-
readable documents in multiple formats such as XHTML, LATEX or PDF. The
resulting system structure is shown in Figure 1.

In order to achieve an integrated formal framework for the logic-based co-
synthesis of proofs and their documentation, principles of a higher-order logic of
program synthesis are applied (cf. [Kre93]). The core for the integration of the
different types of knowledge and the correct design of the synthesis methods is a
metatheory or, in other terms, an ontology. Types and higher-order predicates to
represent the structure of algorithm design knowledge fragments and properties

64

Fig. 1. Scenario for Knowledge-based Synthesis

or relationships between them have been defined. Figure 2 lists the major types
of the SEAMLESS framework.

Basic types Bool, Integer, Constants, Vars, String
Object logic Atom, Clause, Algebraic Expression, Constraint
Synthesis types Precondition, Postcondition, Program, Proof

Fig. 2. Types for Program Synthesis

In this paper, the notation of [Kre93] is adopted and used in a semi-formal
way. A definition New Object Type≡ Composition of Defined Object Types defines
a new object in terms of already existing object types. Meta theorems are written
in the form Goal ⇐ Subgoal1 ∧ . . . ∧ Subgoalr or they are stated as facts.

The Floyd-Hoare logic [Hoa69] is used for specifying the semantics of imper-
ative programs and to associate logical specifications with programs. In Floyd-
Hoare’s logic, triples of the form {Pre}Prog{Post} state that if program Prog
starts in an input state satisfying Pre then if and when Prog halts, it does so in
a state satisfying Post. Programs are sequences of statements. Hoare provided
a set of logical rules in order to reason about the correctness of computer pro-
grams. It is well-known that the Floyd-Hoare rules and axioms can be embedded
in higher order logic and become derived rules. In the SEAMLESS framework,
a statement is a variable assignment, procedure or conditional. Loop statements
together with their specifications can be added to the knowledge base, however,
their automatic synthesis is currently not supported as it is based on non-trivial

65

mathematical induction. Consequently, the key conceptual building elements
of the SEAMLESS theory include the abstractions precondition, postcondition,
proofs which may be interpreted as programs, and, moreover, range constraints
for a cost function as part of the postcondition. The metatheory is defined in
terms of generic predicates and formal axioms for them which provide correctness
axioms for the suitable domain theories. For example, the correctness axiom for
the higher-order predicate Know states that a proof for the validity of a Hoare
triple is known.

Know(Pre, Post, Prog, True) ≡ * {Pre}Prog{Post}

Domain-specific design knowledge can be provided by definitions for the
open generic higher-order predicates, if the correctness axioms are satisfied.
The SEAMLESS knowledge base of the system entails theorems which are re-
lations among truth values, specifications and programs. They are stated as
higher-order theorems, once types for the corresponding abstractions and the
semantics of the higher-order predicates have been defined. In this application
scenario, the knowledge bases contain published domain specific theorems about
the complexity of selection problems, as summarised in section 2, and various
related algorithms encoded as arguments of the higher-order predicate Know.
The knowledge base of the synthesis system also comprises theorems whose proof
is only given by a bibliographic reference to the corresponding document.

Generic synthesis methods have been derived from the generic predicates
as metatheorems. The proofs-as-programs paradigm is adapted to the Hoare
logic for the purpose of extending it to synthesising imperative programs. A
synthesis method is a set of rules including metavariables for programs which
are instantiated while proving the synthesis task. A very basic synthesis strategy
is to retrieve solutions from the knowledge base which is specified below.

Synthesis(Pre, Prog, Post, Bool) ⇐ Know(Pre, Prog, Post, Bool)

Experience has shown that theorems as they are published in the literature
are often not directly applicable for solving a problem specification. Equivalences,
generalisations, and reductions are considered to establish semantic relations
between specifications and the theorems in the literature to obtain proofs. These
relations can be modelled by corresponding higher-order predicates.

4 Graphterms as a Higher-order Datastructure and XML

The extensible Markup Language (XML) has emerged as a quasi-standard for
knowledge exchange, document processing and Web applications. XML is a met-
alanguage used to create generalised markup languages. XML annotations facili-
tate the retrieval of document fragments based upon their semantic annotations.
The focus in this paper is on a more convenient and efficient data structure than
arbitrary terms for the organisation of the knowledge fragments. The data struc-
tures are optimised in order

66

– to facilitate the automatic synthesis of human comprehensible XML-based
documents;

– to elicit the interplay between design knowledge - which has been published
in scientific documents and Web resources - and the corresponding encoding
as theorem in the knowledge base of a reasoning system;

– to tackle the huge search complexities.

Linear (serial) term representations, named graphterms, were devised as a data
structure for the encoding of labelled DAGs and feature graphs [Eus97]. Graph-
terms (cf. [Eus01,Eus97]) are used as the core data structure to encode formalised
knowledge fragments in SEAMLESS.

Definition 1 Suppose that there are given an infinite set of variables, a set of
features, and a set of constants. From features, constants attribute variables, and
variables, terms are constructed, if features are seen equivalently as binary pred-
icates that must be interpreted as functional relations. Let f be a feature symbol,
X a variable. A feature graphterm is an expression f(X, Graphtermlist), where
Graphtermlist is either the empty list [], or denotes a list of constants, variables
and feature graphterms.

To ensure that graphterms are directed acyclic graphs, further axioms constrain
the valid terms. A graphterm algebra, that is term rewriting operations that
implement graph operations and canonical forms for classes of isomorphic objects
was constructed (cf. [Eus97]). Composed types can be defined using feature
graphs and the objects of a type are instantiated feature graphs. The following
assertion defines a type Spec

Spec([Id = No], [Pre([], [Pre]), Post([], [Post])]) ⇐
Conjunction of Atom(Pre) ∧ Conjunction of Atom(Post).

Each attribute variable of a feature graph may be instantiated by a thuslist of
attributes. In the examples above, specifications are assigned the attribute iden-
tifier. Attributes don’t change the logical semantics of the terms, however, they
may be used to design more efficient synthesis methods. It is possible to attach
hash values to a graphterm by means of attributes. Objects may be substituted
by references to them. An algorithm reference can be an automatically generated
counter, e.g., Alg12345. Then it refers to an automatically generated object in
the knowledge base or it refers to published algorithms, e.g., Kislitsyn,Aigner
which were constructed outside the synthesis system. The use of references fa-
cilitates sharing of terms. It decreases the size of the knowledge base and makes
relationships more obvious. The encoding of knowledge is demonstrated by the
higher-order formula 4.

Know([], P re([], [poset]), P rog([Id = id,Refid = Kislitsyn], []),
Post([], [Select(i, poset), Bound(r..r)), T rue) ⇐

i = 2 ∧ Forest(poset) ∧ CostK(poset) = r. (4)
67

The advantage of using graphterms for encoding higher-order formulas is
that feature graphterms directly correspond to XML Document Type Defini-
tions (DTDs) and the instantiated ground terms are syntactic variants of XML
(cf. [Eus01]). This facilitates the storing and maintenance of structured design
knowledge fragments in XML repositories or XML databases, their retrieval
based upon semantic annotations, and at the same time enables formal reason-
ing about them.

5 Higher-order XML-based Document Synthesis

To an increasing degree widely used XML Document Type Definitions like Doc-
Book are being used for the structuring and mark-up of software documentation
and scientific publications. Common document structuring elements are, for ex-
ample, figure, graphics, theorem, proof or enumeration. These XML documents
then can be transformed into different target formats like LATEX, XHTML or
PDF and provided with a professional layout using freely available tools. Docu-
ment synthesis is a process that automatically generates a complete structured
document. In this section, how to synthesise documents, given a program speci-
fication and its proof will be examined.

In order to enable constructive synthesis of documentation, a subset of the
tbook DTD is used to formalise the types of the theory for document syn-
thesis. The tbook DTD was chosen because it is an XML file format that is
suitable for scientific texts, but it is also as simple and small as possible, uses
similar names to LATEX and it accepts MathML’s presentation and contents
markup. The tbook tools for XML authoring (cf. [Bro05]) may be used to
transform the XML document into XHTML, DocBook or LATEX documents.
The tbook document types are used in the SEAMLESS knowledge base to
model document structure. Type definitions are encoded by non-ground facts
using feature graphs as knowledge representation format. The simplified doc-
ument type is sketched in Figure 3. Automatic document synthesis is imple-

Document ≡ Sequence of Header and Body
Body ≡ Sequence of Theorems or Lemmata and their Proofs
Theorem, Lemma ≡ Sequence of Statements or Enumeration of Items
Proof ≡ Sequence of Statements or Enumeration of Items
Item, Statement ≡ Natural language sentence, Figure, Reference or Algebraic expression

Fig. 3. Simplified Document Type

mented by the generic method Doc synthesis which when invoked by a goal
⇐ Doc synthesis([spec,proof],docterm), given a pair [spec,proof], causes the in-
stantiation of the metavariable docterm by a document term that describes
the document structure. Scripts are provided that convert document terms of
type document into the corresponding XML syntax. The resulting documents

68

can be processed by the tbook tools. The synthesised method is formalised by
higher-order predicates which relate programming types and document types. A
method which creates the basic document structure is outlined in Figure 4 and
need to be augmented by the specifications for the methods Doc syn theorem,
Doc syn proof , Doc syn lemmata:

– Doc syn theorem synthesises theorem content from formal specifications.
– Doc syn proof generates the proof content and a set of proof cases which

shall be treated as lemmata.
– Doc syn lemmata generates the presentation for the proof cases.

Doc syn([spec, proof], doc)⇐ Doc header(header)∧
Doc body([spec, proof], body)∧
doc = Document(att, [header, body]).

Doc body([spec, proof], body)⇐ Doc theorem(spec, theo)∧
Doc proof(proof, doc proof, subcases)∧
Doc syn lemmata(subCases, seq lem proof))∧
body = Body(att, [theo, doc proof, seq lem proof].

Fig. 4. Skeleton of the document synthesis method

The above synthesis skeleton prescribes the main structure of the document to be
synthesised. Specifications are mapped into theorems and programs into proofs.
However, the content of these elements needs to be determined in more detail.
It requires the partition of the specifications and their proofs into manageable
parts, each part should be presented adequately, avoiding low-level details, but
compiling all the information which is necessary for the comprehension of a proof
part and required to keep the coherence between the parts. Each of the 3 methods
Doc syn theorem, Doc syn proof, Doc syn lemmata is realised as a divide-and-
conquer strategy. The specifications of the generic methods consist of metarules
which define how to decompose the program synthesis fragments and how to
compose the document fragments. Synthesis involves various decisions which
are based on context-specific knowledge:

– how to decompose the program into subprograms which are represented as
one major step;

– when to use graph visualisations or textual explanations for proof parts;
– which parts of the proof graph to split and to treat separately as lemmata.

The knowledge base of the document synthesiser can be augmented by heuristic
layout knowledge, e.g., “acceptable” sizes for decision trees. The knowledge base
entails parameterised text templates which are associated with corresponding
objects of the program synthesis theory. The graph visualisation tool graphviz
[Res05] is called on demand to generate graph layouts in the desired format.

69

6 Experimental Results

A previous version of SEAMLESS included generic methods for synthesis and
machine learning which were devised independently of the data structure used
for knowledge encoding. Domain specific knowledge was provided through an in-
termediate component as definitions for open generic predicates. The system was
used to prove V3(22) ≤ 28 which constructed a counter example for a published
theorem. Although the time for constructing the algorithm that has verified
V3(22) ≤ 28 was not exactly measured, the computation had taken several days
on a Sun Solaris workstation.

The system has been partially reimplemented by reusing the formally correct
generic methods, however, changing the implementation of the data structures
and the knowledge representation format. The knowledge representation schema
and graph-based data structure which have been devised in this paper have been
used to structure and implement the specialised domain knowledge about the
selection problem. Indexing techniques for graphs have been introduced to tackle
the huge search complexities structure. The results of these changes are

1. a radical improvement of the search complexities;
2. more abstract well-defined metalevel proofs with a higher degree of reuse

which is reflected by references and links to objects and theorems;
3. a clearer distinction between informal or formal knowledge which has been

derived outside of the system and automatically derived knowledge.

This implementation was used to re-synthesise algorithms for small n and it
could be automatically proven that Vi(n) ≤ Hi(n), 1 ≤ i ≤ 6, 1 ≤ n ≤ 14.
In addition, the implementation was used to automatically synthesise various
new complex algorithms which prove V4(21) ≤ 30, V4(23) ≤ 33, V4(24) ≤ 34,
V4(25) ≤ 35 and V4(26) ≤ 26 and confirm the number-theoretic hypothesis for
the selection problem.

The re-implementation was experimentally analysed on an Athlon 3200 64
bit computer with 1 GB memory and on a 1.3 GHZ Intel Centrino laptop with
512 MB memory. In this experimental application scenario, Yap Prolog turned
out to be the fastest Prolog compared against Sicstus, GNU, B and SWI Prolog.
In Figure 6 some complexity indicators for automated synthesis are collected: 1)
a small example whose solution is described in the classic book by Knuth; 2) a
more complex example; 3) the previously discovered selection algorithm which
took days and now can be handled within seconds; 4) much more complex prob-
lems whose solutions improve the known upper bounds and confirm the stated
hypothesis. The test environment was as follows: a) Centrino + Yap Prolog, b)
Centrino + SWI Prolog, c) Athlon 3200 + Yap Prolog, d) Athlon 3200 + SWI
Prolog. Some experimental results are summarised in Figure 5. The CPU time
is measured in seconds. During the synthesis process, for each case solution, a
canonical form is computed that represents the solution up to isomorphism. The
abstracted case solutions can be reused and adapted. The number of generated
case solutions for isomorphism classes is given in the last column of the table. A
missing entry means that a solution couldn’t be constructed within a couple of

70

hours. It should be noted that these indicators are snapshots of an implementa-
tion in progress. Each minor modification may alter the search space. This can
decrease or increase the complexities to solve a problem drastically.

Spec a b c d #examined isomorphism classes
V4(7) ≤ 10 0.026 0.05 0.014 0.01 68
V3(22) ≤ 28 1.87 8.6 0.84 2.93 3,062
V4(14) ≤ 21 9.0 56.0 3.3 18.1 12,122
V4(21) ≤ 30 52.0 996.4 19.3 321.2 61,859
V4(23) ≤ 33 288.9 16,239.7 107.1 5,210.2 277,178
V4(24) ≤ 34 136.8 6,163.3 50.4 1,951.6 127,572
V4(25) ≤ 35 390.4 – 146.5 13,034.3 362,458
V4(26) ≤ 36 – – 525.1 – 1,048,665

Fig. 5. Complexity indicators for correct search

In all experimental analysed cases, it can be experimentally verified that
reuse of derived knowledge from previous proof searches when solving new prob-
lems improves the search complexities by up to 25%. Although the system is
able to examine around 1,500,000 isomorphic states in less than one half hour
and store them in 1 GB memory, the complexities of the selection problem fairly
soon exceed the capabilities of the system. The experiments also showed that
when using the computers to full capacity, odd runtime errors occur, e.g., unin-
stantiated variables, which cannot attributed to programming errors.

The reuse and knowledge-based synthesis approach generates proof graphs
whose size has been decreased enormously compared to the uniform approaches.
However, taking the constructed selection algorithms, in most of the more com-
plex cases, the sizes of the generated decision graphs are still unsatisfying, be-
cause they cannot be manually checked with reasonable effort.

The generic synthesis method is based upon a 3-valued logic. Heuristic know-
ledge marked with the truth value Maybe can be provided. In order to decrease
the sizes of the proof graphs various incorrect lower bounds were experimentally
added to the knowledge base. The simplest form of an incorrect lower bound
is a depth restriction. The incorrect lower bounds restrict the search space.
Employing these heuristics, an unsuccesful search may yield the result Maybe.
Using heuristic search a solution for V4(24) ≤ 34 could be constructed within 6.5
secs, having examined 13695 isomorphism classes and having used Yap Prolog
on the AMD Athlon 3200. The size of this proof graph was also substantially
decreased.

The generated graph is still too large to be easily comprehensible, therefore
it is embedded in a system-generated documentation which provides a mathe-
matically skilled reader background information about the proofs, such as cases
which can be reduced to problems known from the literature, or are solved using
the dedicated lemmata. The automatically synthesised documentation of this
automatically synthesised algorithm is presented in appendix A.

71

A major advantage of combining higher-order program synthesis and doc-
ument synthesis is that the generated proof terms describe programs at the
algorithmic abstraction level. There is no need to raise the level of abstraction
or to integrate a planning module into the document synthesis component. The
synthesised document is a direct mapping from specifications and proofterms. An
improved knowledge base of the system directly causes an improved documen-
tation. Comprehensibility depends on the size of the automatically synthesised
proof graphs. For small i, n the automated co-synthesis of algorithms and their
documentation achieves human-comprehensible documents. For complex prob-
lems, synthesis of proof terms of reasonable sizes is an experimental endeavour.

7 Conclusions and Related Work

In [Kre93], it has been stated “We believe that a formalization of the metatheory
of programming is one of the most important steps towards the development of
program synthesisers which are flexible and reliable and whose derivations are
both formally correct and comprehensible for human programmers.” As a step
towards this objective, this paper has experimentally analysed the interplay be-
tween mathematical documents and knowledge-based algorithm synthesis based
upon a metatheory for structuring problem solving knowledge. Structuring ele-
ments are identified to formalise algorithm design knowledge which is implicit in
scientific documents and include abstractions like pre- and postconditions based
upon the Floyd-Hoare program logics. Types, higher-order predicates and syn-
thesis methods have been defined. The resulting framework is more fine-grained
than related approaches for program synthesis which are based upon higher-
order logic or proof planning [Kre93,IS04,RicCA]. The SEAMLESS framework
also aims at the formalisation of heuristic problem solving strategies and resource
restrictions. The framework devised has been applied to structure comprehensive
knowledge relating to the selection problem and encode it for use in a knowledge
base. The knowledge base has been used for the synthesis of complexity bounded
algorithms using generic methods that were previously devised. Extended graph-
terms are used as the core data structure for knowledge encoding. They provide
the key for the efficiency of the implementation as they support various optimi-
sation techniques. The huge search complexities are tackled by a combination
of indexing techniques, isomorphism abstraction, machine learning and knowl-
edge reuse through references. It was possible to synthesise several new complex
selection algorithms which improve known bounds and confirm our hypothesis.

Based upon the higher-order synthesis framework, a method that synthe-
sises human-comprehensible XML-based documents from specifications and con-
structed proofs has been devised and implemented. The synthesised documents
include diagrams and references to reused knowledge. The method has been ap-
plied for the automatic synthesis of documentation for automatically synthesised
algorithms. It allows logic-based synthesis of documents on a higher abstraction
level than a number of current low-level XML-based approaches which aim at the
exchange or presentation of arbitrary mathematical documents, Website synthe-

72

sis or program documentation and merely exploit the correspondences between
XML data and logical terms, e.g., [BDHG,LR03,SR01]. The presented framework
distinguishes itself from related approaches (cf. [Pec04,GKP96,Oks05]) in which
computer have been used for the complexity analysis of unsolved mathematical
problems. The results synthesised by SEAMLESS are constructive, comprehen-
sible and can be manually checked for correctness, provided that the sizes of the
generated proof graphs are reasonable. In one case, it was possible to synthe-
sise a new complex algorithm of reasonable length, and, thus the synthesised
documentation is comprehensible (cf. Appendix A).

Our future work will include experimental work on automated abstraction
to decrease the size of the generated algorithms and to get more abstract ex-
planations for series of single proof steps or comprehensive decision trees. The
objective is to discover a few rules which describe new correct algorithms for
infinitely many n.

References

[Aig82] M. Aigner. Selecting the top three elements. Discrete Applied Mathematics,
4:247–267, 1982.

[BDHG] Dietmar A. Seipel, Bernd D. Heumesser and Ulrich Güntzer. An expert
system for the flexible processing of XML-based mathematical knowledge in
a Prolog-environment.

[BFP+73] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds
for selection. J. Comp. Syst. Sci., 7:448–461, 1973.

[BJ85] S.W. Bent and J.W. John. Finding the median requires 2n comparisons. In
Proc. 17th ACM Symposium Theory of Computing, pages 213–216, 1985.

[Bro05] Torsten Bronger. The tbook system for XML authoring.
http://tbookdtd.sourceforge.net, 25.9.2005.

[Dev05] Keith Devlin. Last doubts removed about the proof of the four color theorem.
http://www.maa.org/devlin/devlin 01 05.html, January 2005.

[EN96] J. Eusterbrock and M. Nicolaides. The visualization of constructive proofs
by compositional graph layout: A world-wide web interface. Proc. CADE
Visual Reasoning Workshop, Rutgers University, 1996.

[Eus85] J. Eusterbrock. Ein rekursiver Ansatz zur Bestimmung der Anzahl von
Vergleichen bei kombinatorischen Selektionsproblemen. Diplomarbeit, Uni-
versität Dortmund, 1985.

[Eus92a] J. Eusterbrock. Errata to “Selecting the top three elements” by M. Aigner:
A Result of a computer assisted proof search. Discrete Applied Mathematics,
41:131–137, 1992.

[Eus92b] J. Eusterbrock. Wissensbasierte Verfahren zur Synthese mathematischer
Beweise: Eine kombinatorische Anwendung, volume 10 of DISKI, 1992.

[Eus95] J. Eusterbrock. SEAMLESS: Knowledge based evolutionary system synthe-
sis. ERCIM News, 23, October 1995.

[Eus97] J. Eusterbrock. Canonical term representations of isomorphic transitive
DAGs for efficient knowledge-based reasoning. In Proceedings of the In-
ternational KRUSE Symposium, Knowledge Retrieval, Use and Storage for
Efficiency, pages 235–249, 1997.

73

[Eus01] J. Eusterbrock. Knowledge mediation in the world-wide web based upon
labelled dags with attached constraints. Electronic Transactions on Artificial
Intelligence, 5:”http://www.ida.liu.se/ext/epa/ej/etai/2001/D”, 2001.

[FG79] F. Fussenegger and H.N. Gabow. A counting approach to lower bounds for
selection problems. J. Assoc. Comput. Mach., 26:227–238, 1979.

[FR75] R.W. Floyd and R.L. Rivest. Expected time bounds for selection. Comm.
ACM, 18:165–172, 1975.

[GKP96] William Gasarch, Wayne Kelly, and William Pugh. Finding the ith largest
of n for small i,n. SIGACT News, 27(2):88–96, 1996.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. CACM,
12(10):576–581, 1969.

[HS69] A. Hadian and M. Sobel. Selecting the t-th largest using binary errorless
comparisons. In P. Erdös, A. Renyi, and V.T. Sos, editors, Combinatorial
Theory and its Applications II, pages 585–600. North Holland, 1969.

[IS04] A. Ireland and J. Stark. Combining proof plans with partial order planning
for imperative program synthesis. Journal of Automated Software Engineer-
ing, Accepted for publication, 2004.

[Kis64] S. S. Kislitsyn. On the selection of the k-th element of an ordered set by
pairwise comparisons. Sib. Mat. Z., 5:557–564, 1964.

[Knu73a] D.E. Knuth. Fundamental algorithms, volume 1 of The Art of Computer
Programming. Addison Wesley, Reading, MA, 1973.

[Knu73b] D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro-
gramming. Addison Wesley, Reading, MA, 1973.

[Kre93] Chr. Kreitz. Metasynthesis - deriving programs that develop programs. Ha-
bilitationsschrift, Technische Hochschule Darmstadt, 1992.

[Lam91] Clement Lam. The search for a finite projective plane of order 10. American
Mathematical Monthly, 98:305–318, 1991.

[LR03] S. Leung and D. Robertson. Automated website synthesis.
http://www.ukuug.org/events/linux2003/papers/leung.pdf, 2003.

[MP82] J.I. Munro and P.V. Poblete. A lower bound for determining the median.
Technical report, University of Waterloo Research Report CS-82-21, 1982.

[Oks05] Kenneth Oksanen. Selecting the ith largest of n elements.
http://www.cs.hut.fi/ cessu/selection/, 2005.

[Pec04] Marcin Peczarski. New results in minimum comparison sorting. Algorith-
mica, 40:133–145, 2004.

[Res05] AT&T Research. Graphviz - graph visualization software.
http://www.graphviz.org/, 25.9.2005.

[RH84] P.V. Ramanan and L. Hyafil. New algorithms for selection. J. of Alg.,
1:557–578, 1984.

[RicCA] C.S Richardson, J.D. Proof planning and program synthesis: a survey. In
Logic-Based Program Synthesis: State-of-the-Art & Future Trends, AAAI
2002 Spring Symposium, March 25-27, 2002, Stanford University, CA.

[SPP76] A. Schönhage, M. Paterson, and N. Pippenger. Finding the median. J.
Comp. System Sci., 13:184–199, 1976.

[SR01] Johann Schumann and Peter Robinson. [] or success is not
enough: Current technology and future directions in proof presentation.
http://www.cs.bham.ac.uk/ mmk/events/ijcar01-future/, 2001.

[Yao74] F.F. Yao. On lower bounds for selection problems. Technical report, TR-121,
MIT, Project Mac, Cambridge, Mass., 1974.

[Yap76] C.K. Yap. New upper bounds for selection. Comm. ACM, 19:501–508, 1976.

74

A Automatically Synthesised Documentation1

Select(4,24)

c©Jutta Eusterbrock

theorem 1 V4(24) ≤ 34

Proof. Let KEYS be a totally ordered set, |KEY S| = 24. The 4 -th largest element of
KEYS is computed by Algorithm 1. The computation takes in the worst-case at most
34 comparisons.

algorithm 1

1. Partition the set KEYS into disjoint subsets |K1| = 16, |K2| = 8. Determine the
maxima of K1,K2 by setting-up balanced tournaments. The resulting poset is iso-
morphic to the poset as shown in Figure 6. For setting-up the balanced tournaments
22 comparisons are needed.

 a1

 a9 a5 a3 a2

 a13 a11 a10 a7 a6 a4

 a15 a14 a12

 a16

 a8

 a17

 a21 a19 a18

 a23 a22 a20

 a24

Fig. 6. Balanced Tournaments of Set Partition

1This is an automatically composed documentation of a new, automatically
synthesised algorithm Select(4, 24) with the worst-case complexity V4(24) ≤ 34.
Based on the proof structure derived during the synthesis, the system selected,
instantiated, and composed appropriate text templates to generate the explanatory
text and document structure. The graphs were visualised by the graphviz system. The
proof was checked for correctness by the present author.

75

2. Perform the comparisons in accordance with the decision graph in Figure 7. The
nodes in the decision graph represent:
(a) Comparisons X : Y , shown as circles. The left child node represents the case

X > Y and the right one the case X < Y .
(b) Subgraph place holders, shown by references to a diamond which correspond

to solutions which can be obtained by instantiating theorems and algorithms
known from published literature. The cases 1, 27, 48, 49, 739, 743, 744, 873,
874, 7772, 7773, 7823, 7824, 7839, 7840 are instances of published theorems.

(c) Place holders for calls to simplification functions, especially isomorphism func-
tions, which are denoted by boxes. There are two type of function calls. Firstly,
solutions for the simplified subcases are represented by a subgraph which is then
referenced. This concerns case 7844. Secondly, in some situations more detailed
explanations for the simplified subcases, e.g, lemmata, have been generated. In
the given decision graph, the cases 876 and 7775 are handled separately.

 a9-a17

 a17-a5

 a3-a19

 a17-a3 a13-a3 a3-a21

7844

1

 a13-a3 a13-a5 a9-a5

kislitsyn

 [5, 40.0] 27

 a9-a3

 [4, 12.0] 48 49

 [4, 12.0] [3, 18.0]

739

 a9-a5 a9-a3 876

 [4, 20.0] 743 744

 [4, 20.0] [4, 20.0]

873 874

 [5, 16.0] [3, 18.0]

 a3-a5 a5-a21

 a17-a3 7775 a17-a5 a1-a21

7772 7773

 [4, 26.0] [4, 22.0]

7823 7824 7839 7840

 [4, 18.0] [4, 12.0] [4, 26.0] [4, 20.0]

Fig. 7. Decision Tree

3. Generate solutions for specific cases:
– Case 876 is described as follows. Let P be the poset as visualised in Figure 8. It

needs to be proven V3(P) ≤ 8. The specification is up-to-isomorphism handled
by Lemma 1.

– Case 7775 is described as follows. Let P be the poset as visualised in Figure 9. It
needs to be proven V3(P) ≤ 8. The specification is up-to-isomorphism handled
by Lemma 2.

76

 a5

 a6 a7 a9

 a8 a10 a11 a17

 a3

 a4

 a12 a18 a19 a21

 a2

 a20 a22 a23

 a24

Fig. 8. Poset P

 a5

 a3 a6 a7

 a4 a8

 a17

 a18 a9

 a10 a11 a13

 a2

 a12 a14 a15

 a16

Fig. 9. Poset P

lemma 1 Let P be a poset as visualised in Figure 10. The 3-rd largest element of P
can be computed by at most 8 comparisons.

Proof. algorithm 2

1. Compare a9 and a3.
(a) a9 > a3. a9 is greater than the 3-rd largest element and is reduced. The result-

ing poset P satisfies the precondition of the algorithm [Kis64]. Hence, selecting
the 2-nd largest element takes at most f(5,14.0)=7 comparisons.

(b) a9 < a3. a3 is greater than the 3-rd largest element and is reduced. The result-
ing poset P satisfies the precondition of the algorithm [Kis64]. Hence, selecting
the 2-nd largest element takes at most f(3,10.0)=5 comparisons.

77

 a9

 a10 a11 a5

 a12 a17 a6 a7

 a3

 a4

 a18 a19 a21 a8

 a2

 a20 a22 a23

 a24

Fig. 10. Poset P

lemma 2 Let P be a poset as visualised in Figure 11. The 3-rd largest element of P is
computed by at most 8 comparisons.

 a5

 a3 a6 a7

 a4 a8

 a2 a17

 a18 a9

 a10 a11 a13

 a12 a14 a15

 a16

Fig. 11. Poset P

Proof. algorithm 3

1. Compare a5 and a17.
(a) a5 > a17. a5 is greater than the 3-rd largest element and is reduced. The result-

ing poset P satisfies the precondition of the algorithm [Kis64, kislitsyn]. Hence,
selecting the 2-nd largest element takes at most f(5,10.0)=7 comparisons.

(b) a5 < a17. a17 is greater than the 3-rd largest element and is reduced. The
resulting poset P satisfies the precondition of the algorithm [Kis64]. Hence,
selecting the 2-nd largest element takes at most f(4,18.0)=7 comparisons.

78

Mixing Finite Success and Finite Failure

in an Automated Prover

Alwen Tiu1, Gopalan Nadathur2, and Dale Miller3

1 INRIA Lorraine/LORIA
2 Digital Technology Center and Dept of CS, University of Minnesota

3 INRIA & LIX, École Polytechnique

Abstract. The operational semantics and typing judgements of mod-
ern programming and specification languages are often defined using re-
lations and proof systems. In simple settings, logic programming lan-
guages can be used to provide rather direct and natural interpreters for
such operational semantics. More complex features of specifications such
as names and their bindings, proof rules with negative premises, and the
exhaustive enumeration of state spaces, all pose significant challenges
to conventional logic programming systems. In this paper, we describe
a simple architecture for the implementation of deduction systems that
allows a specification to interleave between finite success and finite fail-
ure. The implementation techniques for this prover are largely common
ones from higher-order logic programming, i.e., logic variables, (higher-
order pattern) unification, backtracking (using stream-based computa-
tion), and abstract syntax based on simply typed λ-terms. We present a
particular instance of this prover’s architecture and its prototype imple-
mentation, Level 0/1, based on the dual interpretation of (finite) success
and finite failure in proof search. We show how Level 0/1 provides a high-
level and declarative implementation of model checking and bisimulation
checking for the (finite) π-calculus.

1 Introduction

The operational semantics and typing judgements of modern programming and
specification languages are often defined using relations and proof systems, e.g.,
in the style of Plotkin’s structural operational semantics. In simple settings,
higher-order logic programming languages, such as λProlog and Twelf, can be
used to provide rather direct and natural interpreters for operational seman-
tics. However, such logic programming languages can provide little more than
animation of semantic descriptions: in particular, reasoning about specified lan-
guages has to be done outside the system. For instance, checking bisimulation
in process calculi needs analyzing all the transition paths a process can poten-
tially go through. To add to the complication, modern language specifications
often make use of complex features such as variable bindings and the notion
of names (as in the π-calculus [MPW92]), which interferes in a non-trivial way
with case analyses. These case analyses cannot be done directly inside the logic

79

programming system, not in a purely logical way at least, even though they are
simply enumerations of answer substitutions. In this paper, we describe an ex-
tension to logic programming with logically sound features which allow us to do
some modest automated reasoning about specifications of operational semantics.
This extension is more conceptual than technical, that is, the implementation of
the extended logic programming language uses only implementation techniques
that are common to logic programming, i.e., logic variables, higher-order pattern
unification, backtracking (using stream-based computation) and abstract syntax
based on typed λ-calculus.

The implementation described in this paper is based on the logic FOλ∆∇

[MT03], which is a logic based on a subset of Church’s Simple Theory of Types
but extended with fixed points and the ∇ quantifier. In FOλ∆∇ quantification
over propositions is not allowed but quantifiers can otherwises range over vari-
ables of higher-types. Thus the terms of the logic can be simply typed terms,
which can be used to encode the λ-tree syntax of encoded objects in an opera-
tional semantics specification. This style of encoding is a variant of higher-order
abstract syntax in which meta-level λ-abstractions are used to encode object-
level variable binding. The quantifier ∇ is first introduced in [MT03] to help
encode the notion of “generic judgment” that occurs commonly when reasoning
with λ-tree syntax.

The logical extension to allow fixed points is done through a proof theoretical
notion of definitions [SH93,Eri91,Gir92,Stä94,MM00]. In a logic with definitions,
an atomic proposition may be defined by another formula (which may contain
the atomic proposition itself). Proof search for a defined atomic formula is done
by unfolding the definition of the formula. A provable formula like ∀X.pX ⊃ qX ,
where p and q are some defined predicates, expresses the fact that for every term
t for which there is a successful computation (proof) of pt, there is a computation
(proof) of qt. Towards establishing the truth of this formula, if the computation
tree associated with p is finite, we can effectively enumerate all its computation
paths and check the provability of qt for each path. Note that if the computation
tree for p is empty (pt is not provable for any t) then ∀X.pX ⊃ qX is (vacuously)
true. In other words, failure in proof search for pX entails success in proof search
for pX ⊃ qX . The analogy with negation-as-failure in logic programming is
obvious: if we take qX to be ⊥ (false), then provability of pX ⊃ ⊥ corresponds to
success in proof search for not(pX) in logic programming. This relation between
negation-as-failure in logic programming and negation in logic with definitions
has been observed in [HSH91,Gir92]. In the implementation of FOλ∆∇, the
above observation leads to a neutral view on proof search: If proof search for a
goal A returns a non-empty set of answer substitutions, then we have found a
proof of A. On the other hand, if proof search for A returns an empty answer set,
then we have found a proof for ¬A. Answer substitutions can thus be interpreted
in a dual way depending on the context of proof search; see Section 3 for more
details.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the logic FOλ∆∇. Section 3 describes an implementation of a fragment of

80

FOλ∆∇, the Level-0/1 prover, which is based on a dual interpretation of fail-
ure/success in proof search. Section 4 discusses the treatment of variables in the
Level-0/1 prover, in particular, it discusses the issues concerning the interaction
between eigenvariables and logic variables. Section 5 specifically contrasts the
expressiveness of Level-0/1 over what is available in λProlog. Section 6 gives a
specification of the operational semantics for the π-calculus and shows how Level-
0/1 can turn that specification naturally into a checker for (open) bisimulation.
Section 7 provides a specification of modal logic for the π-calculus, which the
Level-0/1 prover can use to do model checking for that process calculus. These
two specifications involving the π-calculus illustrate the use of the ∇-quantifier
to help capture various restrictions of names in the π-calculus. Section 8 dis-
cusses the components of proof search implementation and outlines a general
implementation architecture for FOλ∆∇. Section 9 discusses future work. An
extended version of this paper is available on the web, containing more exam-
ples and more detailed comparison with logic programming.

2 Overview of the logic FOλ∆∇

The logic FOλ∆∇ [MT03] (pronounced “fold-nabla”) is presented using a se-
quent calculus that is an extension of Gentzen’s system LJ [Gen69] for intuition-
istic logic. The first extension to LJ is to allow terms to be simply typed λ-terms
and to allow quantification to be over all types not involving the predicate type
(in Church’s notation [Chu40], the types of quantified variables do not contain
o). A sequent is an expression of the form B1, . . . , Bn − B0 where B0, . . . , Bn

are formulas and the elongated turnstile − is the sequent arrow. To the left of
the turnstile is a multiset: thus repeated occurrences of a formula are allowed. If
the formulas B0, . . . , Bn contain free variables, they are considered universally
quantified outside the sequent, in the sense that if the above sequent is prov-
able then every instance of it is also provable. In proof theoretical terms, such
free variables are called eigenvariables. Eigenvariable can be used to encode the
dynamics of abstraction in the operational semantics of various languages. How-
ever, for reasoning about certain uses of abstraction, notably the notion of name
restriction in π-calculus, eigenvariables do not capture faithfully the intended
meaning of such abstractions. To address this problem, in the logic FOλ∆∇ se-
quents are extended with a new notion of “local scope” for proof-level bound
variables (see [MT03] for motivations and examples). In particular, sequents in
FOλ∆∇ are of the form

Σ ; σ1 %B1, . . . ,σn %Bn − σ0 %B0

where Σ is a global signature, i.e., the set of eigenvariables whose scope is over
the whole sequent, and σi is a local signature, i.e., a list of variables scoped over
Bi. We shall consider sequents to be binding structures in the sense that the
signatures, both the global and local ones, are abstractions over their respective
scopes. The variables in Σ and σi will admit α-conversion by systematically
changing the names of variables in signatures as well as those in their scope,

81

Σ, σ ! t : γ Σ ; σ & B[t/x], Γ − C

Σ ; σ & ∀γx.B, Γ − C
∀L

Σ, h ; Γ − σ & B[(h σ)/x]

Σ ; Γ − σ & ∀x.B
∀R

Σ, h ; σ & B[(h σ)/x], Γ − C

Σ ; σ & ∃x.B,Γ − C
∃L

Σ, σ ! t : γ Σ ; Γ − σ & B[t/x]

Σ ; Γ − σ & ∃γx.B
∃R

Σ ; (σ, y) & B[y/x], Γ − C

Σ ; σ & ∇x B, Γ − C
∇L

Σ ; Γ − (σ, y) & B[y/x]

Σ ; Γ − σ & ∇x B
∇R

Fig. 1. The introduction rules for quantifiers in FOλ∆∇.

following the usual convention of the λ-calculus. The meaning of eigenvariables
is as before, only that now instantiation of eigenvariables has to be capture-
avoiding, with respect to the local signatures. The variables in local signatures
act as locally scoped generic constants, that is, they do not vary in proofs since
they will not be instantiated. The expression σ %B is called a generic judgment
or simply a judgment. We use script letters A, B, etc., to denote judgments. We
write simply B instead of σ %B if the signature σ is empty.

The logical constants of FOλ∆∇ are ∀γ (universal quantifier), ∃γ (existen-
tial quantifier), ∇γ (nabla quantification), ∧ (conjunction), ∨ (disjunction), ⊃
(implication),) (true) and ⊥ (false). The subscript for the three quantifiers is
the type of the variable they are intended to bind: in particular, γ can range
over any type not containing the predicate type. Usually this type subscript is
suppressed. The inference rules for the three quantifiers of FOλ∆∇ are given in
Figure 1. The introduction rules for propositional connectives are straightfor-
ward generalization of LJ: in particular, local signatures are distributed over the
subformulas of the main formula (reading the rules bottom-up). The complete
set of rules for FOλ∆∇ is given in Figure 10 at the end of this paper.

During the search for proofs (reading rules bottom up), the right-introduction
rule for ∀ and the left-introduction rule for ∃ place new variables into the global
signature: the left and right introduction rules for ∇ place new variables into the
local signature. In the ∀R and ∃L rules, raising [Mil92] is used when replacing
the bound variable x, which can range over the variables in both the global
signature and the local signature σ, with the variable h that can only range
over variables in the global signature: so as not to miss substitution terms, the
variable x is replaced by the term (h x1 . . . xn), which we shall write simply as
(hσ), where σ is the list x1, . . . , xn (h must not be free in the lower sequent of
these rules). In ∀L and ∃R, the term t can have free variables from both Σ and
σ. This is presented in the rule by the typing judgment Σ,σ * t : γ. The ∇L
and ∇R rules have the proviso that y is not free in ∇x B.

Besides these introduction rules for logical constants, FOλ∆∇ additionally
allows the introduction of atomic judgments, that is, judgments of the form
σ %A where A is an atomic formula. To each atomic judgment, A, we associate
a judgment B called the definition of A. The introduction rule for the judgment
A is in effect done by replacing A with B during proof search. This notion of

82

definitions is an extension of work by Schroeder-Heister [SH93], Eriksson [Eri91],
Girard [Gir92], Stärk [Stä94] and McDowell and Miller [MM00] and allows for
modest reasoning about the fixed points of definitions.

Definition 1. A definition clause is written ∀x̄[p t̄
"
= B], where p is a predicate

constant, every free variable of the formula B is also free in at least one term
in the list t̄ of terms, and all variables free in p t̄ are contained in the list x̄ of
variables. The atomic formula p t̄ is called the head of the clause, and the formula

B is called the body. The symbol
"
= is used simply to indicate a definitional

clause: it is not a logical connective.

Let ∀γ1
x1 . . .∀γn

xn.H
"
= B be a definition clause. Let y1, . . . , ym be a list of

variables of types α1, . . . ,αm, respectively. The raised definition clause of H with
respect to the signature {y1 : α1, . . . , ym : αm} is defined as

∀h1 . . . ∀hn.ȳ %Hθ
"
= ȳ %Bθ

where θ is the substitution [(h1 ȳ)/x1, . . . , (hn ȳ)/xn] and hi is of type α1 →
. . . → αm → γi. A definition is a set of definition clauses together with their
raised clauses.

The introduction rules for a defined judgment are displayed below. When
applying the introduction rules, we shall omit the outer quantifiers in a definition
clause and assume implicitly that the free variables in the definition clause are
distinct from other variables in the sequent.

{Σθ ; Bθ,Γθ − Cθ | θ ∈ CSU(A,H) for some clause H
"
= B}

Σ ; A,Γ − C defL

Σ ; Γ − Bθ
Σ ; Γ − A def R, where H

"
= B is a definition clause and Hθ = A

In the above rules, we apply substitutions to judgments. The result of applying
a substitution θ to a generic judgment x1, . . . , xn % B, written as (x1, . . . , xn %
B)θ, is y1, . . . , yn % B′, if (λx1 . . .λxn.B)θ is equal (modulo λ-conversion) to
λy1 . . .λyn.B′. If Γ is a multiset of generic judgments, then Γθ is the multiset
{Jθ | J ∈ Γ}. In the defL rule, we use the notion of complete set of unifiers
(CSU) [Hue75]. We denote by CSU(A,H) a complete set of unifiers for the pair
(A,H), that is, for any unifier θ of A and H, there is a unifier ρ ∈ CSU(A,H)
such that θ = ρ ◦ θ′ for some substitution θ′. Since we allow higher-order terms
in definitions, in certain cases there are no finite CSU’s for a given unification
problem. Thus, in the fully general case, defL may have an infinite number of
premises [MM00]. In all the applications of defL in this paper, however, the
terms involved in unification are those of higher-order patterns [Mil91,Nip93],
that is, terms in which variables are applied only to distinct bound variables.
Since higher-order pattern unification is decidable and unary (i.e., the most
general unifiers exist if the unification is solvable), the set CSU(A,H) in this

83

case can be treated as being either empty or containing a single substitution
which is the most general unifier. In this restricted setting, defL will have a
finite number of premises (assuming as we shall that definitions are based on
the raising of only a finite number of clauses). The signature Σθ in defL denotes
the signature obtained from Σ by removing the variables in the domain of θ
and adding the variables in the range of θ. In the defL rule, reading the rule
bottom-up, eigenvariables can be instantiated in the premise, while in the def R

rule, eigenvariables are not instantiated. The set that is the premise of the defL
rule means that that rule instance has a premise for every member of that set:
if that set is empty, then the premise is considered proved.

One might find the following analogy with logic programming helpful: if a
definition is viewed as a logic program, then the def R rule captures backchaining
and the defL rule corresponds to case analysis on all possible ways an atomic
judgment could be proved. The latter is a distinguishing feature between the
implementation of FOλ∆∇ discussed in Section 3 and logic programming. For
instance, given the definition

{pa
"
=), pb

"
=), qa

"
=), qb

"
=), qc

"
=)},

one can prove ∀x.px ⊃ qx: for all successful “computation” of p, there is a
successful computation for q. Notice that by encoding logic programs as defini-
tions, one can effectively encode negation-as-failure in logic programming using
defL [HSH91], e.g., for the above program (definition), the goal not(pc) in logic
programming is encoded as the formula pc ⊃ ⊥.

Two properties of FOλ∆∇ are particularly important to note here. First, if
a certain stratification of predicates within definitions is made (so that there
is no circularity in defining predicates through negations) then cut-elimination
and consistency can be proved [MT05,Tiu04]. Second, many inference rules are
known to be invertible, in the sense that they can always be applied without
the need for backtracking. Those rules include defL, ∇L, ∇R, ∃L, ∀R, the right
introduction rules for ∧ and ⊃, and the left introduction rules for ∧ and ∨
[Tiu04]. The invertibility of these rules motivates the choice of the fragment of
FOλ∆∇ on which the Level-0/1 prover works.

3 Mixing success and failure in a prover

We now give an overview of an implementation of proof search for a fragment
of FOλ∆∇. This implementation, called Level 0/1 prover, is based on the dual
interpretation of finite success and finite failure in proof search. In particular,
the finite failure in proving a goal ∃x.G should give us a proof of ¬(∃x.G) and
vice versa. We experiment with a simple class of formulas which exhibits this
duality. We first assume that all predicate symbols are classified as belonging to
either level-0 or level-1 (via some mapping of predicates to {0, 1}). Next consider

84

the following classes of formulas:

Level 0: G :=) | ⊥ | A | G ∧ G | G ∨ G | ∃x.G | ∇x.G
Level 1: D :=) | ⊥ | A | D ∧ D | D ∨ D | ∃x.D | ∇x.D | ∀x.D | G ⊃ D
atomic: A := p t1 . . . tn

Here, atomic formulas A in level 0 formulas must have predicates that have been
assigned to level 0. Atomic formulas in level 1 formulas can have predicates of

either level 0 and 1. Each definition clause pt̄
"
= B must be stratified, i.e., if p

is a level-0 predicate then B should belong to the class level-0, otherwise if p
is a level-1 predicate then B can be a level-0 or level-1 formula. In the current
implementation, stratification checking and type checking are not implemented,
so that we can experiment with a wider range of definitions than those for which
the meta-theory is fully developed.

Notice that in the Level-1 formula, the use of implication is restricted to the
form G ⊃ D where G is a Level-0 formula. Therefore, nested implication like
(A ⊃ B) ⊃ C is not allowed. The Level-0/1 prover actually consists of two sepa-
rate subprovers, one for each class of formulas. Implementation of proof search for
level-0 formula follows the standard logic-programming implementation for Horn
clauses: it is actually the subset of λProlog based on Horn clauses but allowing
also ∇ quantification in the body of clauses. In this prover, existential quantifiers
are instantiated with logic variables, ∇-quantifiers are instantiated with scoped
(local) constants (which have to be distinguished from eigenvariables), and def R
is implemented via backchaining. For level-1 formulas, the non-standard case is
when the goal is an implication, e.g., G ⊃ D. Proof search strategy for this case
derives from the following observation: the left-introduction rules for level-0 for-
mulas are all invertible rules, and hence can always be applied first. Proof search
for an implicational goal G ⊃ D therefore proceeds as follows:

Step 1 Run the level-0 prover with the goal G, treating any level-1 eigenvari-
ables as level-0 logic variables.

Step 2 Collect all answer substitutions produced by Step 1 into a lazy stream
of substitutions and for each substitution θ in this stream, proceed with
proving Gθ. For example, if Step 1 fails, then this stream is empty and this
step succeeds immediately.

In Step 1, we impose a restriction: the formula G must not contain any occur-
rences of level-1 logic variables. If this restriction is violated, a runtime exception
is returned and proof search is aborted. We shall return to this technical restric-
tion in Section 4. This restriction on the occurrence of logic variable has not
posed a problem for a number of applications, e.g., checking bisimulation and
satisfiability of modal logic formulas for the π-calculus.

We claim the following soundness theorem for the provers architecture above:
If Level-0/1 is given a definition and a goal formula and it successfully claims
to have a proof of that goal (that is, the system terminates without a runtime
error), then that goal follows from the definition also in the FOλ∆∇ logic.

85

Concrete syntax The concrete syntax for Level 0/1 prover follows the syntax of
λProlog. The concrete syntax for logical connectives are as follows:

) true ⊥ false
∧ & (ampersand) or , (comma) ∨ ; (semi-colon)
∀ pi ∃ sigma
∇ nabla ⊃ =>

The λ-abstraction is represented in the concrete syntax using an infix back-
slash, with the body of a λ-abstraction is goes as far to the right as possible,
consistent with the existing parentheses: for example, λxλf.fx can be written
as (x\f\ f x). The order of precedence for the connectives is as follows (in
decreasing order): ∧, ∨, ⊃, {∀, ∃,∇}. Follow the convention started by Church
[Chu40], the bound variable associated to a quantifier is actually a λ-abstraction:
for example, the logical expression ∀x[p(x) ⊃ q(x)]∧ p(a) can be encoded as the
(pi x\ p x => q x) & (p a). Non-logical constants, such as ‘not’ (negation-
as-failure) and ‘!’ (Prolog cut), are not implemented, while we do allow the
non-logical constant print for printing terms. Finally, we note that the percent
sign % starts a comment line.

The symbol
"
= separating the head and the body of a definition clause is writ-

ten as ‘:=’ in the concrete syntax. For example, the familiar ‘append’ predicate
for lists can be represented as the following definition.

append nil L L.

append (cons X L1) L2 (cons X L3) := append L1 L2 L3.

As in λProlog, we use ‘.’ (dot) to indicate the end of a formula. Identifiers
starting with a capital letter denote variables and those starting with lower-case
letter denote constants. Variables in a definition clause are implicitly quantified
outside the clause (the scope of such quantification is over the clause, so there
is no accidental mixing of variables across different clauses). A definition clause
with the body ‘true’ is abbreviated with the ‘true’ removed, e.g., the first clause
of append above is actually an abbreviation of append nil L L := true.

4 Eigenvariables, logic variables and ∇

The three quantifiers, ∀, ∃ and ∇, give rise to three kinds of variables dur-
ing proof search: eigenvariables, logic variables and “variables” generated by ∇.
Their characteristics are as follows: logic variables are genuine variables, in that
they can be instantiated during proof search. Eigenvariables are subject to in-
stantiation only in proving negative goals, while in positive goals they are treated
as scoped constants. Variables generated by ∇ are never instantiated and are
usually represented by λ-abstractions. Eigenvariables and logic variables share
similar data structures, and explicit raising is used to encode their dependency
on ∇-variables. The interaction between eigenvariables and logic variables is

86

more subtle. Consider the case where both eigenvariables and logic variables are
present in a negative goal, for example, consider proving the goal

∀x.∃y.(px ∧ py ∧ x = y ⊃ ⊥),

where p is defined as {pa
"
=), pb

"
=), pc

"
=)}. In proof search for this formula,

we are asked to produce for each x, a y such that x and y are distinct. This is no
longer a unification problem in the usual sense, since we seek to cause a failure
in unification, instead of success. This type of problem is generally referred to as
complement problems or disunification [LC89], and its solution is not unique in
general, even for the first-order case, e.g., in the above disunification problem, if
x is instantiated to a then y can be instantiated with either b or c. In the higher-
order case [MP03] the problem is considerably more difficult, and, hence, in the
current implementation, we disallow occurrences of logic variables in negative
goals.

In Figure 2, we show a sample session in Level 0/1 prover which highlights
the differences between eigenvariables, logic variables, and ∇-variables. The uni-
fication problem in the first two goals can be seen as the unification problem
λx.x = λx.(Mx). Notice that there is no difference between ∀ and ∇ if the goal
is level-0 (i.e., there is no implication in the goal). A non-level 0 goal is given in
the third example. Here the unification fails (hence the goal succeeds) because
x is bound in the scope of where M is bound. It is similar to the unification
problem λx.x = λx.M. Here substitution must be capture-avoiding, therefore
M cannot be instantiated with x. However, if we switch the order of quantifier
or using application-term (as in (fx) in the fourth goal) the unification succeeds.
In the last goal, we are trying to prove implicational goal with logic variables,
and the system returns an exception.

5 Comparison with λProlog

Setting aside the ∇ quantifier, one might think that the proof search behavior for
∀ and ⊃ connectives in FOλ∆∇ can be approximated in λProlog with negation-
as-failure. As we outline below, only in some weak settings can λProlog naturally
capture the deduction intended in FOλ∆∇.

The ⊃ connective, for instance, might be defined in λProlog as

imp A B :- not(A, not(B)).

If proof search for A terminates with failure, then the goal imp A B succeeds.
Otherwise, for each answer substitution for A, if B fails then the whole goal fail,
otherwise the not(B) fails and hence imp A B succeeds. For ground terms A and B
(thus, containing no eigenvariables), this coincides with the operational reading
of A => B in Level 0/1 prover. The story is not so simple, however, if there are
occurrences of eigenvariables in A or B.

One can sort of see intuitively why the inclusion of eigenvariables in A or B
would cause problem: the eigenvariables in λProlog play a single role as scoped

87

?- nabla x\ x = (M x).

Yes
M = x1\x1
Find another? [y/n] y
No.

?- pi x\ x = (M x).
Yes
M = x1\x1

Find another? [y/n] y
No.
?- pi M\ nabla x\ x = M => false.

Yes
Find another? [y/n] y
No.

?- pi f\ nabla x\ x = f x => print "unification succeeded".
unification succeeded
Yes

?- nabla x\ pi y\ x = y => print "unification succeeded".
unification succeeded
Yes

?- nabla x\ x = (M x) => false.
Error: non-pure term found in implicational goal.

Fig. 2. A session in Level 0/1 prover.

constant, while in Level 0/1 they have dual roles, as constants and as variables
to be instantiated. However, there is one trick to deal with this, that is, suppose
we are to prove ∀x.Ax ⊃ Bx, instead of the straightforward encoding of ∀ as pi,
we may use sigma instead:

sigma x\ not (A x, not (B x)).

Here the execution of the goal forces the instantiation of the (supposed to be)
‘eigenvariable’. The real problem appears when eigenvariables may assume two
roles at the same time. Consider the goal

∀x∀y.x = a ⊃ y = b

where a and b are constants. Assuming nothing about the domain of quantifi-
cation, this goal is not provable. Now, the possible encodings into λProlog is to
use either sigma or pi to encode the quantifier. Using the former, we get

sigma x\ sigma y\ not (x = a, not(y = b)).

This goal is provable, hence it is not the right encoding. If instead we use pi to
encode ∀, we get

pi x\ pi y\ not (x = a, not (y = b)).

88

This goal also succeeds, since x here will become an eigenvariable and hence it
is not unifiable with a. Of course, one cannot rule out other more complicated
encodings, e.g., treating ∀ as pi in one place and as sigma in others, but it
is doubtful that there will be an encoding scheme which can be generalized to
arbitrary cases.

6 Example: the π-calculus and bisimulation

An implementation of one-step transitions and strong bisimulation for the π-
calculus [MPW92] are given in this section. More details on the adequacy of the
encodings presented in this section can be found in [TM04,Tiu04]. We consider
only finite π-calculus, that is, the fragment of π-calculus without recursion or
replication. The syntax of processes is defined as follows

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|Q | P + Q.

We use the notation P, Q, R, S and T to denote processes. Names are denoted
by lower case letters, e.g., a, b, c, d, x, y, z. The occurrence of y in the process
x(y).P and (y)P is a binding occurrence, with P as its scope. The set of free
names in P is denoted by fn(P), the set of bound names is denoted by bn(P). We
write n(P) for the set fn(P) ∪ bn(P). We consider processes to be syntactically
equivalent up to renaming of bound names. The operator + denotes the choice
operator: a process P +Q can behave either like P or Q. The operator | denotes
parallel composition: the process P |Q consists of subprocesses P and Q running
in parallel. The process [x = y]P behaves like P if x is equal to y. The process
x(y).P can input a name through x, which is then bound to y. The process
x̄y.P can output the name y through the channel x. Communication takes place
between two processes running in parallel through the exchanges of messages
(names) on the same channel (another name). The restriction operator (), e.g.,
in (x)P , restricts the scope of the name x to P .

One-step transition in the π-calculus is denoted by P
α

−−→ Q, where P and Q
are processes and α is an action. The kinds of actions are the silent action τ ,
the free input action xy, the free output action x̄y, the bound input action x(y)
and the bound output action x̄(y). Since we are working with the late transition
semantics [MPW92], we shall not be concerned with the free input action. The
name y in x(y) and x̄(y) is a binding occurrence. Just like we did with processes,
we use fn(α), bn(α) and n(α) to denote free names, bound names, and names in
α. An action with a binding occurrences of a name is a bound action, otherwise
it is a free action.

We encode the syntax of process expressions using λ-tree syntax as follows.
We shall require three primitive syntactic categories: n for names, p for processes,
and a for actions, and the constructors corresponding to the operators in π-
calculus. The translation from π-calculus processes and transition judgments to
λ-tree syntax is given in Figure 3. Figure 4 shows some example processes in λ-
tree syntax. The definition clauses corresponding to the operational semantics of

89

z : p in : n → (n → p) → p out, match : n → n → p → p

plus : p → p → p par : p → p → p taup : p → p

nu : (n → p) → p tau : a up : n → n → a

dn : n → n → a one : p → a → p → o onep : p → (n → a) → (n → p) → o

[[0]] = z [[[x = y]P]] = match x y [[P]]
[[x̄y.P]] = out x y [[P]] [[x(y).P]] = in x λy.[[P]]
[[P + Q]] = plus [[P]] [[Q]] [[P|Q]] = par [[P]] [[Q]]
[[τ.P]] = taup [[P]] [[(x)P]] = nu λx.[[P]]

[[P
τ

−−→ Q]] = one [[P]] tau [[Q]] [[P
x̄y

−−→ Q]] = one [[P]] (up x y) [[Q]]

[[P
x(y)
−−→ Q]] = onep [[P]] (dn x) (λy[[Q]]) [[P

x̄(y)
−−→ Q]] = onep [[P]] (up x) (λy[[Q]])

Fig. 3. Encoding the π-calculus syntax with λ-tree syntax.

example 0 (nu x\ match x a (taup z)).
example 1 (par (in x y\z) (out x a z)).

example 2 (in x u\ (plus (taup (taup z)) (taup z))).
example 3 (in x u\ (plus (taup (taup z))

(plus (taup z) (taup (match u y (taup z)))))).

example 4 (taup z).
example 5 (nu x\ (par (in x y\z) (out x a z))).
example 6 (in x u\ nu y\ ((plus (taup (taup z))

(plus (taup z) (taup (match u y (taup z))))))).

Fig. 4. Several examples processes written in Level-0/1 syntax.

π-calculus are given in Figure 5. The original specification of the late semantics
of π-calculus can be found in [MPW92]. We note that various side conditions on
names and their scopes in the inference rules in the original specification are not
present in the encoding in Figure 5 since these are handled directly by the use
of λ-tree syntax and the FOλ∆∇ logic.

We consider some simple examples involving one-step transitions, using the
example processes in Figure 4. We can, for instance, check whether a process is
stuck, i.e., no transition is possible from the given process. Consider example 0
in Figure 4 which corresponds to the process (x)[x = a]τ.0. This process clearly
cannot make any transition since the name x has to be distinct with respect to
the free names in the process. This is specified as follows

?- example 0 P, (pi A\pi Q\ one P A Q => false),

(pi A\pi Q\ onep P A Q => false).
Yes

Recall that we distinguish between bound-action transition and free-action tran-
sition, and hence there are two kinds of transitions to be verified.

90

onep (in X M) (dn X) M. % bound input

one (out X Y P) (up X Y) P. % free output
one (taup P) tau P. % tau
one (match X X P) A Q := one P A Q. % match prefix

onep (match X X P) A M := onep P A M.
one (plus P Q) A R := one P A R. % sum
one (plus P Q) A R := one Q A R.

onep (plus P Q) A M := onep P A M.
onep (plus P Q) A M := onep Q A M.
one (par P Q) A (par P1 Q) := one P A P1. % par

one (par P Q) A (par P Q1) := one Q A Q1.
onep (par P Q) A (x\par (M x) Q) := onep P A M.
onep (par P Q) A (x\par P (N x)) := onep Q A N.

% restriction
one (nu x\P x) A (nu x\Q x) := nabla x\ one (P x) A (Q x).
onep (nu x\P x) A (y\ nu x\Q x y) := nabla x\ onep (P x) A (y\ Q x y).

% open
onep (nu y\M y) (up X) N := nabla y\ one (M y) (up X y) (N y).
% close

one (par P Q) tau (nu y\ par (M y) (N y)) :=
sigma X\ onep P (dn X) M & onep Q (up X) N.

one (par P Q) tau (nu y\ par (M y) (N y)) :=

sigma X\ onep P (up X) M & onep Q (dn X) N.
% comm
one (par P Q) tau (par R T) := sigma X\ sigma Y\ sigma M\

onep P (dn X) M & one Q (up X Y) T & (R = (M Y)).
one (par P Q) tau (par R T) := sigma X\ sigma Y\ sigma M\

onep Q (dn X) M & one P (up X Y) R & (T = (M Y)).

Fig. 5. Definition of one-step transitions of finite late π-calculus

bisim P Q :=
(pi A\ pi P1\ one P A P1 => sigma Q1\ one Q A Q1 & bisim P1 Q1) &

(pi X\ pi M\ onep P (dn X) M => sigma N\ onep Q (dn X) N &
pi w\ bisim (M w) (N w)) &

(pi X\ pi M\ onep P (up X) M => sigma N\ onep Q (up X) N &

nabla w\ bisim (M w) (N w)) &
(pi A\ pi Q1\ one Q A Q1 => sigma P1\ one P A P1 & bisim Q1 P1) &
(pi X\ pi N\ onep Q (dn X) N => sigma M\ onep P (dn X) M &

pi w\ bisim (N w) (M w)) &
(pi X\ pi N\ onep Q (up X) N => sigma M\ onep P (up X) M &

nabla w\ bisim (N w) (M w)).

Fig. 6. Definition of open bisimulation

91

We now consider a notion of equivalence between processes, called bisimu-
lation. It is formally defined as follows: a relation R is a bisimulation, if it is a
symmetric relation such that for every (P, Q) ∈ R,

1. if P
α

−−→ P′ and α is a free action, then there is Q′ such that Q
α

−−→ Q′ and
(P′, Q′) ∈ R,

2. if P
x(z)
−−→ P′ and z /∈ n(P, Q) then there is Q′ such that Q

x(z)
−−→ Q′ and for every

name y, (P′[y/z], Q′[y/z]) ∈ R,

3. if P
x̄(z)
−−→ P′ and z /∈ n(P, Q) then there is Q′ such that Q

x̄(z)
−−→ Q′ and (P′, Q′) ∈

R.

Two processes P and Q are strongly bisimilar if there is a bisimulation R such that
(P, Q) ∈ R. The above definition is also called late bisimulation in the literature.

Consider the definition of the bisim predicate Figure 6 that is inspired by
the above definition. Notice that the difference between bound-input and bound-
output actions is captured by the use of ∀ and ∇ quantifiers. This definition
provides a sound encoding of late bisimulation, meaning that if bisim P Q is
provable then P and Q are late-bisimilar. This encoding turns out to sound
and complete for open bisimulation [San96], a finer bisimulation relation than
late bisimulation (see [TM04] for details of the encoding and adequacy results).
The following example, taken from [San96], illustrates the incompleteness with
respect to late bisimulation.

P = x(u).(τ.τ.0 + τ.0), Q = x(u).(τ.τ.0 + τ.0 + τ.[u = y]τ.0).

This example fails because to prove their bisimilarity, one needs to do case
analysis on the input name u above, i.e., whether it is equal to y or not, and
since our current prover implements intuitionistic logic, this case split based on
the excluded middle is not available. However, if we restrict the scope of y so
that it appears inside the scope of u, then [u = y] is trivially false. In this case,
the processes would be x(u).(τ.τ.0+ τ.0) and x(u).(y)(τ.τ.0+ τ.0+ τ.[u = y]τ.0),
which correspond to example 3 and 6 in Figure 4. They can be proved bisimilar.

?- example 2 P, example 6 Q, bisim P Q.
Yes

One should compare the above declarative specification and its implementation
of symbolic bisimulation checking with that found in, say, [BN96].

7 Example: modal logics for π-calculus

We now consider the modal logics for π-calculus introduced in [MPW93]. In order
not to confuse meta-level (FOλ∆∇) formulas (or connectives) with the formulas
(connectives) of modal logics under consideration, we shall refer to the latter
as object formulas (respectively, object connectives). We shall work only with
object formulas which are in negation normal form, i.e., negation appears only

92

top : o′, bot : o′, and : o′ → o′ → o′, or : o′ → o′ → o′

boxMatch : n → n → o′ → o′, diaMatch : n → n → o′ → o′,
boxAct : a → o′ → o′, diaAct : a → o′ → o′,
boxInL : n → (n → o′) → o′, diaInL : n → (n → o′) → o′

boxOut : n → (n → o′) → o′, diaOut : n → (n → o′) → o′

sat : p → o′ → o.

[[true]] = top [[false]] = bot
[[A ∧ B]] = and [[A]] [[B]] [[A ∨ B]] = or [[A]] [[B]]
[[[x = y]A]] = boxMatch x y [[A]] [[〈x = y〉A]] = diaMatch x y [[A]]
[[〈α〉A]] = diaAct α [[A]] [[[α]A]] = boxAct α [[A]]
[[〈x(y)〉LA]] = diaInL x (λy[[A]]) [[[x(y)]LA]] = boxInL x (λy[[A]])
[[〈x̄(y)〉A]] = diaOut x (λy[[A]]) [[[x̄(y)]A]] = boxOut x (λy[[A]])
[[P |= A]] = sat [[P]] [[A]]

Fig. 7. Translation from modal formula to λ-tree syntax.

at the level of atomic object formulas. As a consequence, we introduce explicitly
each dual pair of the object connectives. Note that since the only atomic object
formulas are either true or false, we will not need negation as a connective (since
¬true ≡ false and ¬false ≡ true). The syntax of the object formulas is given by

A ::= true | false | A ∧ A | A ∨ A | [x = z]A | 〈x = z〉A
| 〈α〉A | [α]A | 〈x̄(y)〉A | [x̄(y)]A | 〈x(y)〉LA | [x(y)]LA

Here, α denotes a free action, i.e., it is either τ or x̄y. The modalities [x(y)]L

and 〈x(y)〉L are the late bound-input modalities, and 〈x̄(y)〉 and [x̄(y)] are the
bound output modalities. There are other variants of input and output modal-
ities considered in [MPW93] which we do not represent here. For the complete
encoding of the modal logics, we refer the interested readers to [Tiu05]. In each
of the formulas (and their dual ‘boxed’-formulas) 〈x̄(y)〉A and 〈x(y)〉LA, the oc-
currence of y in parentheses is a binding occurrence whose scope is A. Object
formulas are considered equivalent up to renaming of bound variables. We shall
be concerned with checking whether a process P satisfies a given modal formula
A. This satisfiability judgment is written as P |= A. The translation from modal
formulas and judgments to λ-tree syntax is given in Figure 7.

The satisfiability relation for the modal logic is encoded as the definition
clauses in Figure 8. For the original specification, we refer the interested readers
to [MPW93]. The definition in Figure 8 is not complete, in the sense that there
are true assertion of the modal logic which are not provable using this definition
alone. For instance, the modal judgment

x(y).x(z).0 |= 〈x(y)〉L〈x(z)〉L(〈x = z〉true ∨ [x = z]false)

which basically says that two names are either equal or not equal, is valid, but
its encoding in FOλ∆∇ is not provable since the meta logic is intuitionistic. A
complete encoding of the modal logic is given in [Tiu05] by explicitly introducing
axioms for the excluded-middle on name equality, namely, ∀x∀y[x = y ∨ x /= y].

93

sat P top.
sat P (and A B) := sat P A, sat P B.

sat P (or A B) := sat P A; sat P B.
sat P (boxMatch X Y A) := (X = Y) => sat P A.
sat P (diaMatch X Y A) := (X = Y), sat P A.

sat P (boxAct X A) := pi P1\ one P X P1 => sat P1 A.
sat P (diaAct X A) := sigma P1\ one P X P1, sat P1 A.
sat P (boxOut X A) := pi Q\ onep P (up X) Q => nabla y\ sat (Q y) (A y).

sat P (diaOut X A) := sigma Q\ onep P (up X) Q, nabla y\ sat (Q y)(A y).
sat P (boxInL X A) := pi Q\ onep P (dn X) Q => sigma y\ sat (Q y) (A y).
sat P (diaInL X A) := sigma Q\ onep P (dn X) Q, pi y\ sat (Q y) (A y).

Fig. 8. Specification of a modal logic for π-calculus.

The definition in Figure 8 serves also as a model checker for π-calculus. For
instance, consider the processes 2 and 6 given by in Figure 4. We have seen that
the two processes are bisimilar. A characterization theorem given in [MPW93]
states that (late) bisimilar processes satisfy the same set of modal formulas. We
consider a particular case here. The modal formula

〈x(y)〉L(〈τ〉〈τ〉true ∨ 〈τ〉true)

naturally corresponds to the process 2. In the concrete syntax, this formula is
written as follows

assert (diaInL x (y\ or (diaAct tau (diaAct tau top))
(diaAct tau top))).

We show that both processes 2 and 6 satisfy this formula.

?- assert A, example 2 P, example 6 Q, sat P A, sat Q A.
Yes

8 Components of proof search implementation

Implementation of proof search for FOλ∆∇ is based on a few simple key com-
ponents: λ-tree syntax, i.e., data structures for representing objects containing
binding, higher-order pattern unification, and stream-based computation. The
first two are implemented using the suspension calculus [NW98], an explicit
substitution notation that allows computations over λ-terms to be realized flex-
ibly and efficiently; further details of the implementation used may be found in
[NL05]. We explain the last component briefly. We use streams to store answer
substitutions, which are computed lazily, i.e., only when they are queried. The
data type for stream in the ML language is shown in Figure 9. Here the type
ustream is a polymorphic stream. The element of a stream is represented as the
data type cell, which can be a delayed cell or a forced cell. A delayed cell stores

94

an unevaluated expression, and its evaluation is triggered by the call to the func-
tion getcell. A forced cell is an element which is already a value. Elements of
a stream are initially created as delayed cells. Note that since an element of a
stream can also be a (cell of) stream, we can encode different computation paths
using streams of streams. This feature is used, in a particular case, to encode
the notion of backtracking in logic programming.

datatype ’a cell = delayedcell of unit -> ’a | forcedcell of ’a
type ’a elm = ’a cell

datatype ’a ustream = empty | ustream of ’a * (’a ustream elm ref)
fun getcell(t as ref(delayedcell t’)) =

let val v = t’() in (t := (forcedcell v); v) end

| getcell(ref (forcedcell v)) = v
fun mkcell t = ref(delayedcell t)

Fig. 9. The stream datatype in ML.

A stream of substitutions for a given goal stores all answer substitutions for
the goal. In logic programming, such answer substitutions can be queried one
by one by users. Often we are interested in properties that hold for all answer
substitutions. For instance, in bisimulation checking for transition systems, as
we have seen in the π-calculus example, one needs to enumerate all possible
successors of a process and check bisimilarity for each successor. In some other
examples, information on failed proof search attempts could be of interest as
well, e.g., generating counter-model in model checking. This motivates the choice
of implementation architecture for FOλ∆∇: various fragments of FOλ∆∇ are
implemented as (specialized) automated provers which interact with one another.
For the current implementation, interaction between provers are restricted to
exchanging streams of answer substitutions. A particular arrangement of the
interaction between provers that we found quite useful is what we call a ∀∃-
interaction. In its simplest form, this consists of two provers, as exemplified
in the Level-0/1 prover. Recall that in Level-0/1 prover, a proof search session
consists of Level-1 calling the Level-0 prover, extracting all answer substitutions,
and for each answer substitutions, repeating the calling cycle until the goals are
proved. At the implementation level, one can generalize the provers beyond two
levels using the same implementation architecture. For instance, one can imagine
implementing a “Level-2 prover” which extracts answers from a Level-1 prover
and perform some computations on them. Using the example of π-calculus, a
Level-2 prover would, for instance, allow for proving goals like “P and Q are not
bisimilar”. This would be implemented by simply calling Level-1 on this goal
and declare a success if Level-1 fails.

95

9 Future work

The current prover implements a fairly restricted fragment of the logic FOλ∆∇.
We consider extending it to richer fragments to include features like, among
others, induction and co-induction proof rules (see, e.g.,[Tiu04]) and arbitrary
stratified definition (i.e., to allow more nesting of implications in goals). Of
course, with induction and co-induction proofs, there is in general no complete
automated proof search. We are considering implementing a circular proof search
to automatically generates the (co)inductive invariants. Works along this line has
been studied in, e.g., [SD03]. This extended feature would allow us, for example,
to reason about bisimulation of non-terminating processes. Another possible
extension is inspired by an on going work on giving a game semantics for proof
search, based on the duality of success and failure in proof search. Our particular
proof search strategy for Level-0/1 prover turns out to correspond to certain ∀∃-
and ∃∀-strategies in the game semantics in [MS05]. The game semantics studied
there also applies to richer fragments of logics. It would be interesting to see if
these richer fragments can be implemented as well using a similar architecture
as in Level-0/1 prover.

We also plan to use more advance techniques to improve the current im-
plementation such as using tabling to store and reuse subproofs. The use of
tabled deduction in higher-order logic programming has been studied in [Pie03].
It seems that the techniques studied there are applicable to our implementation,
to the Level-0 prover at least, since it is a subset of λProlog. Another possi-
ble extension would be a more flexible restriction on the occurrence of logic
variables. The current prover cannot yet handle the case where there is a case
analysis involving both eigenvariables and logic variables. Study on a notion of
higher-order pattern disunification [MP03] would be needed to attack this prob-
lem at a general level. However, we are still exploring examples and applications
which would justify this additional complication to proof search. We also plan
to study more examples on encoding process calculi and the related notions of
bisimulations.

Acknowledgements. Support has been obtained for this work from the following
sources: from INRIA through the “Equipes Associées” Slimmer, from the ACI
grants GEOCAL and Rossignol and from the NSF Grant CCR-0429572 that also
includes support for Slimmer.

References

[BN96] Michele Boreale and Rocco De Nicola. A symbolic semantics for the π-
calculus. Information and Computation, 126(1):34–52, April 1996.

[Chu40] Alonzo Church. A formulation of the simple theory of types. J. of Symbolic
Logic, 5:56–68, 1940.

[Eri91] Lars-Henrik Eriksson. A finitary version of the calculus of partial induc-
tive definitions. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister,
editors, Proc. of the Second International Workshop on Extensions to Logic
Programming, volume 596 of LNAI, pages 89–134. Springer-Verlag, 1991.

96

Σ ; σ & B, Γ − σ & B
init

Σ ; ∆ − B Σ ; B, Γ − C

Σ ; ∆, Γ − C
cut

Σ ; σ & B, σ & C, Γ − D

Σ ; σ & B ∧ C, Γ − D
∧L

Σ ; Γ − σ & B Σ ; Γ − σ & C

Σ ; Γ − σ & B ∧ C
∧R

Σ ; σ & B, Γ − D Σ ; σ & C, Γ − D

Σ ; σ & B ∨ C, Γ − D
∨L

Σ ; Γ − σ & B

Σ ; Γ − σ & B ∨ C
∨R

Σ ; σ & ⊥, Γ − B
⊥L

Σ ; Γ − σ & C

Σ ; Γ − σ & B ∨ C
∨R

Σ ; Γ − σ & B Σ ; σ & C, Γ − D

Σ ; σ & B ⊃ C, Γ − D
⊃ L

Σ ; σ & B, Γ − σ & C

Σ ; Γ − σ & B ⊃ C
⊃ R

Σ, σ ! t : γ Σ ; σ & B[t/x], Γ − C

Σ ; σ & ∀γx.B, Γ − C
∀L

Σ, h ; Γ − σ & B[(h σ)/x]

Σ ; Γ − σ & ∀x.B
∀R

Σ, h ; σ & B[(h σ)/x], Γ − C

Σ ; σ & ∃x.B,Γ − C
∃L

Σ, σ ! t : γ Σ ; Γ − σ & B[t/x]

Σ ; Γ − σ & ∃γx.B
∃R

Σ ; (σ, y) & B[y/x], Γ − C

Σ ; σ & ∇x B, Γ − C
∇L

Σ ; Γ − (σ, y) & B[y/x]

Σ ; Γ − σ & ∇x B
∇R

Σ ; B,B, Γ − C

Σ ; B, Γ − C
cL

Σ ; Γ − C

Σ ; B, Γ − C
wL

Σ ; Γ − σ & -
-R

Fig. 10. The core rules of FOλ∆∇.

[Gen69] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, ed-
itor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland
Publishing Co., Amsterdam, 1969.

[Gir92] Jean-Yves Girard. A fixpoint theorem in linear logic. Email to the lin-
ear@cs.stanford.edu mailing list, February 1992.

[HSH91] Lars Hallnäs and Peter Schroeder-Heister. A proof-theoretic approach to
logic programming. II. Programs as definitions. Journal of Logic and Com-
putation, 1(5):635–660, October 1991.

[Hue75] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Com-
puter Science, 1:27–57, 1975.

[LC89] Pierre Lescanne and Hubert Comon. Equational problems and disunification.
Journal of Symbolic Computation, 3 and 4:371–426, 1989.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. Journal of Logic and Computation,
1(4):497–536, 1991.

[Mil92] Dale Miller. Unification under a mixed prefix. J. of Symbolic Computation,
14(4):321–358, 1992.

[MM00] Raymond McDowell and Dale Miller. Cut-elimination for a logic with defi-
nitions and induction. Theoretical Computer Science, 232:91–119, 2000.

[MP03] Alberto Momigliano and Frank Pfenning. Higher-order pattern complement
and the strict λ-calculus. ACM Trans. Comput. Logic, 4(4):493–529, 2003.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, Part II. Information and Computation, pages 41–77, 1992.

97

[MPW93] Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile
processes. Theoretical Computer Science, 114(1):149–171, 1993.

[MS05] Dale Miller and Alexis Saurin. A game semantics for proof search: Prelim-
inary results. In Proceedings of the Mathematical Foundations of Program-
ming Semantics (MFPS), 2005.

[MT03] Dale Miller and Alwen Tiu. A proof theory for generic judgments: An ex-
tended abstract. In LICS 2003, pages 118–127. IEEE, June 2003.

[MT05] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM
Transactions on Computational Logic, 6(4), October 2005.

[Nip93] Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi,
editor, LICS93, pages 64–74. IEEE, June 1993.

[NL05] Gopalan Nadathur and Natalie Linnell. Practical higher-order pattern uni-
fication with on-the-fly raising. In ICLP 2005: 21st International Logic Pro-
gramming Conference, volume 3668 of LNCS, pages 371–386, Sitges, Spain,
October 2005. Springer.

[NW98] Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A
generalization of environments. Theoretical Computer Science, 198(1-2):49–
98, 1998.

[Pie03] Brigitte Pientka. Tabled Higher-Order Logic Programming. PhD thesis,
Carnegie Mellon University, December 2003.

[San96] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Infor-
matica, 33(1):69–97, 1996.

[SD03] Christoph Sprenger and Mads Dam. On the structure of inductive reason-
ing: Circular and tree-shaped proofs in the µ-calculus. In A.D. Gordon, edi-
tor, Proceedings, Foundations of Software Science and Computational Struc-
tures (FOSSACS), Warsaw, Poland, volume 2620 of LNCS, pages 425–440.
Springer-Verlag, 2003.

[SH93] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,
Eighth Annual Symposium on Logic in Computer Science, pages 222–232.
IEEE Computer Society Press, June 1993.

[Stä94] R. F. Stärk. Cut-property and negation as failure. International Journal of
Foundations of Computer Science, 5(2):129–164, 1994.

[Tiu04] Alwen Tiu. A Logical Framework for Reasoning about Logical Specifications.
PhD thesis, Pennsylvania State University, May 2004.

[Tiu05] Alwen Tiu. Model checking for π-calculus using proof search. In Mart́ın
Abadi and Luca de Alfaro, editors, CONCUR, volume 3653 of Lecture Notes
in Computer Science, pages 36–50. Springer, 2005.

[TM04] Alwen Tiu and Dale Miller. A proof search specification of the π-calculus.
In 3rd Workshop on the Foundations of Global Ubiquitous Computing, 2004.

98

Otter-lambda

Michael Beeson1

San José State University, San José, Calif.
beeson@cs.sjsu.edu,

www.cs.sjsu.edu/faculty/beeson

Abstract. Otter-lambda is a theorem-prover based on an untyped logic
with lambda calculus, called Lambda Logic. Otter-lambda is built on Ot-
ter, so it uses resolution proof search, supplemented by demodulation and
paramodulation for equality reasoning, but it also uses a new algorithm,
lambda unification, for instantiating variables for functions or predicates.
The underlying logic of Otter-lambda is lambda logic, an untyped logic
combining lambda calculus and first-order logic. The use of lambda unifi-
cation allows Otter-lambda to prove some theorems usually thought of as
“higher-order”. There are theoretical questions about lambda logic and
its relation to first-order and higher-order logic, and theoretical questions
about lambda unification and its relation to higher-order unification,
but the demonstration will focus on the practical capabilities of Otter-
lambda. Specifically, several proofs in algebra and number theory will be
discussed, with special focus on the use of Otter-lambda in connection
with mathematical induction. Otter-lambda has had some successes in
this area, since lambda logic can state the general induction schema (with
a variable for a predicate), and lambda unification can sometimes find
the appropriate instance(s) of induction for a particular problem, even
when nested multiple inductions are required. Once that it is done, the
full resources of Otter are available to carry out the base case and the in-
duction step, with lambda-unification still available if another induction
is needed. Some examples are carried out directly from Peano’s axioms,
such as the commutativity of multiplication. Some involve algebra, for
example, there are no nilpotents in an integral domain. Others are carried
out with the aid of external simplification by MathXpert, for example,
a proof by induction on n of Bernoulli’s inequality 1 + nx ≤ (1 + x)n if
x > −1.

99

100

Tps: A Theorem Proving System for Church’s

Type Theory

Chad E. Brown

Universität des Saarlandes, Saarbrücken, Germany, cebrown@ags.uni-sb.de

Tps [1, 2] is a theorem proving system providing support for automated and
interactive proving in fragments of Church’s Type Theory [3, 5]. Tps has been
developed by Peter Andrews and several of his students at Carnegie Mellon
University. Tps users can interactively construct natural deduction proofs of
theorems in Church’s Type Theory. Users can also ask Tps to prove theorems
automatically using a variety of modes. (A mode is a collection of flag settings.)
Depending on the mode, the search procedure will attempt to find a proof in
elementary type theory or extensional type theory, with various restrictions on
the search space [4]. Proofs found automatically by Tps are translated to nat-
ural deduction proofs. Users can also interactively construct part of a natural
deduction proof, then ask Tps to automatically fill in certain gaps.

References

1. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning,
and Hongwei Xi. TPS: A theorem proving system for classical type theory. Journal

of Automated Reasoning, 16:321–353, 1996.
2. Peter B. Andrews, Matthew Bishop, and Chad E. Brown. System description:

TPS: A theorem proving system for type theory. In McAllester [6], pages 164–169.
3. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To

Truth Through Proof. Kluwer Academic Publishers, second edition, 2002.
4. Chad E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, De-

partment of Mathematical Sciences, Carnegie Mellon University, 2004.
5. Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5:56–68, 1940.
6. David McAllester, editor. Proceedings of the 17th International Conference on Au-

tomated Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, Pitts-
burgh, PA, USA, 2000. Springer-Verlag.

101

102

System Description: The Metis Proof Tactic

Joe Hurd!

Computing Laboratory
University of Oxford,

joe.hurd@comlab.ox.ac.uk

The Metis proof tactic for the HOL4 theorem prover [1] proves higher order
logic goals using a first order proof calculus. It is implemented in Standard ML,
supporting a tight integration with the rest of the HOL4 theorem prover, and is
required to respond within a few seconds to be useful during interactive proof.

The steps of its operation are as follows:

1. The initial higher order logic goal is negated and converted by proof to
conjunctive normal form. Definitional conjunctive normal form is used to
avoid exponential blow-up (occasionally encountered in practice).

2. A suitable logical interface (m, t) is selected, consisting of a mapping m from
higher order logic formulas to first order clauses, and also a translation t that
lifts first order refutations to higher order logic proofs [2]. The conjuncts are
mapped to first order logic clauses.

3. A refutation of the clauses is found, where the search is performed using the
ordered paramodulation calculus [3].

4. The first order refutation is lifted to a higher order logic proof of the nor-
malized goal, completing the proof of the initial goal.

The Metis proof tactic is effective on many classes of higher order logic goal,
particularly those that require a combination of deductive and equality reason-
ing. It automatically selects an interface for the goal, first trying a fast one that
discards type information, and then a more robust one that includes type in-
formation in the first order clauses. A syntactic check detects whether the goal
contains higher order features such as quantification over functions, and if so
an interface is selected that maps higher order logic function application to a
first order function symbol (i.e., f(x) is mapped to app(f, x)). This automatic
interface selection makes Metis more efficient and also gives it a wider cover-
age than might be expected of a first order proof tactic. As an indication of its
popularity, the string METIS TAC occurs 1,822 times in the 243,636 lines of the
HOL4 sources, and work is ongoing to port it to other higher order logic theorem
provers.

References

1. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL (A theorem-
proving environment for higher order logic). Cambridge University Press, 1993.

! Supported by a Junior Research Fellowship at Magdalen College, Oxford.

103

2 Joe Hurd

2. Joe Hurd. An LCF-style interface between HOL and first-order logic. In Andrei
Voronkov, editor, Proceedings of the 18th International Conference on Automated
Deduction (CADE-18), volume 2392 of Lecture Notes in Artificial Intelligence, pages
134–138, Copenhagen, Denmark, July 2002. Springer.

3. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 7, pages 371–443. Elsevier Science, 2001.

104

