
COMPUTATION: DAY 6

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Machines that quit 1
2. Undecidability 3
2.1. It is undecidable if a Turing machine halts 3
2.2. It is undecidable if a language is non-empty 4
2.3. It is undecidable if a language is Regular 5
2.4. Rice’s Theorem 5
3. The Arithmetic Hierarchy 5
3.1. Emptiness of a language is co-RE 5
3.2. Equality of languages is neither RE nor co-RE 6

1. Machines that quit

A recursively enumerable function has two proper values, accept and reject, and
a non-halting condition. An element is in the set of the machine halts accepting.
The other cases the element is not in the language. In a sense, accepting means to
provide proof of the element being in the set. The finite set of sets that leads to the
accepting state is evidence that the element is in the set.

That an element is not in the set may or may not come with proof.
To handle this situation a bit more concretely, consider step-bounding our Turing

machines. If after t steps the machine has not decided, it explicitly returns the non-
halting symbol ⊥. To accept or reject means that there exists a time bound t, and
any time bound larger, in which the machine accepts or rejects.

Let Mi(j; t) denote the result of the i-th Turing machine computing the j-th input
for up to t logical steps. If Mi(j) halts in that many steps, so does Mi(j; t), with
the same decision. Else Mi(j; t) = ⊥, a symbol for having run out of time, and is
therefore indecisive of the result.

Then,

L(Mi) = { j | ∃t ∈ N, Mi(j; t) = T }
1



2 BURTON ROSENBERG UNIVERSITY OF MIAMI

Theorem 1.1. If a language A ⊆ Σ∗ and its complement A are both recursively
enumerable, then A is recursive. (So is A.)

Proof: There exists time bounded TM Mr and Ms whose languages are A and A,
respectively. Enumerate the set { r, s } × N as follows,

⟨ (k, t) ⟩ = ⟨ (r, 0), (s, 0), (r, 1), (s, 1), (r, 2), . . . ⟩

and create an interleaving computation as a machine,

M ′(j, (k, t)) = Mk(j; t).

If j ∈ A then there is a t for which Ms(j; t) = T ; and otherwise there is a t for which
Mr(j; t) = T . So M ′ always halts and its accepting set is A and its rejecting set is
A. □

Theorem 1.2. The language of non-empty languages,

ETM = { i ∈ N | L(Mi) ̸= ∅ }

is recursively enumerable.

Proof: Consider the enumeration,

d = ⟨ (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), . . . ⟩.

This is a sequence of pairs that enumerates over all pairs of integers such that any
pair is a finite distance along the sequence. A program for this enumeration can be
written,

def d(n):

i, d = 0, 0

while True:

for j in range(i+1):

if d==n: return (i-j,j)

d += 1

i += 1

If Mi accepts something, it does so on a specific j in a special time bound t. Enu-
merating that (j, t) will be found.

i ∈ ETM ⇐⇒ ∃n such that d(n) = (j, t) and Mi(j; t) = T.

This describes a machine accepting exactly the indices of TM’s whose languages are
non-empty. □

Note the formula for the machine has a single existential quantifier over the natural
numbers. This is the basic format when describing a recursively enumerable set; as
it is the format for finding an accepting computation.



COMPUTATION: DAY 6 3

2. Undecidability

Definition 2.1. A recursive function is and function f : Σ∗ → Σ∗ such that there
exists an always-halting Turing machine M that computes the function in the fol-
lowing sense: When M is started with string s on its tape then it runs and halts
with string f(s) in its tape.

Definition 2.2. Given A,B ⊆ Σ∗, a reduction of A to B is a recursive function
f : Σ∗ → Σ∗ that preserves the set inclusion,

(1) ∀a ∈ =⇒ f(a) ∈ B,
(2) ∀a ̸∈ A =⇒ f(a) ̸∈ B.

A reduction from A to B is denoted A ≤m B.

Theorem 2.1. If A ≤m B and B is a recursive set, then A is a recursive set.
Therefore, if B is not recursive, A is not recursive.

Proof: Let f be the reduction map. If B is recursive, then there as a recursive
function g : Σ∗ → {T, F}. The function g ◦ f is recursive. Consider the Turing
machine that computes this function and accepts if T is left on the tape and rejects
of F is left on the tape. This Turing machine decides the set A.

Theorem 2.2. If A ≤m B and B is a recursively enumerable set, then A is a
recursively enumerable set. Therefore if A is not recursively enumerable, B is not
recursively enumerable.

Proof: Similar to the above proof.

2.1. It is undecidable if a Turing machine halts. Define the halting problem
for turing machines, HTM ,

HTM = { (i, j) ∈ N× N |Mi(j) ̸= ⊥}

Consider the map (i, j) 7→ (f(i), j) which will act as,

Mf(i)(j) ≡ if Mi(j) then T else ⊥

The function f is a recursive function which which retrieves the machine definition
of machine i then operates on the definition to replace any transitions to a reject
state to a transition to an infinite loop. It then gets the index f(i) for this machine
and outputs it on its tape, along with a copy of the original j.



4 BURTON ROSENBERG UNIVERSITY OF MIAMI

It is a reduction,

(i, j) ∈ ATM =⇒ Mi(j) = T

=⇒ Mf(i)(j) = T

=⇒ (f(i), j) ∈ HTM .

(i, j) ̸∈ ATM =⇒ Mi(j) ̸= T

=⇒ Mf(i)(j) = ⊥
=⇒ (f(i), j) ̸∈ HTM .

This is the reduction

ATM ≤ HTM

and since ATM is not recursive then HTM is not recursive.

2.2. It is undecidable if a language is non-empty. Consider the map

(i, j) 7→ (f(i), j)

which will act as,

Mf(i,j)(k) ≡ if Mi(j) then T else ⊥
The function f is a recursive function which which retrieves the machine definition
of machine i then operates on the definition to replace any transitions to a reject
state to a transition to an infinite loop. It then adds states to write the given j onto
the tape followed by a state transition to the start of the modified version of Mi.
The function then index f(i, j) for this machine and writes it to the tape.

(i, j) ∈ ATM =⇒ Mi(j) = T

=⇒ ∀k Mf(i,j)(k) = T

=⇒ L(Mf(i,j)) = Σ∗

=⇒ f(i, j) ∈ ETM .

(i, j) ̸∈ ATM =⇒ Mi(j) ̸= T

=⇒ ∀k Mf(i,j)(k) = ⊥
=⇒ L(Mf(i,j)) = ∅
=⇒ f(i, j) ̸∈ ETM

This is the reduction

ATM ≤m ETM



COMPUTATION: DAY 6 5

and since ATM is not recursive then ETM is not recursive. But ETM is recursively
enumerable, therefore ETM is not recursively enumerable. Otherwise said, in general
it is unprovable that any given Turing Machine accepts no strings.

2.3. It is undecidable if a language is Regular. Consider the TM N such that

L(N) = { 0i 1i }

Then,

Mf(i,j)(k) ≡ if Mi(j) then N(k) else ⊥

accepts a non-regular language if Mi(j) = T and a the regular language ∅ else.
This is reduction from the halting problem to recognizing regular languages. Hence
recognizing regular languages is undecidable.

2.4. Rice’s Theorem.

Theorem 2.3. Any non-trivial property of recursively enumerable sets is undecid-
able.

Proof: The above pattern of reductions is generalized. If the property P is non-
trivial, meaning all languages have or do not have the property, let the property be
defined in such a way that the empty language does not have the property, ∅ ̸∈ P ,
and the language of machine Mj has the property, L(Mj) ∈ P . Let P (j) be the
machine the recognizes the property. Then the construction,

Mf(i,j)(k) ≡ if Mi(j) then P (k) else ⊥

is a reduction ATM ≤m P . Therefore P is undecidable.

3. The Arithmetic Hierarchy

The term undecidable refers to any non-recursive set. So far we have found two
such sets, those that are recursively enumerable and those that are co-recursively enu-
merable, complements of recursively enumerable sets. We have employed reductions
from a recursively enumerable set to a unknown set to show it is undecidable, and
then given a recognizer for said unknown set to show it is recursively enumerable.

3.1. Emptiness of a language is co-RE. The set ¬ETM was shown to be unde-
cidable. It was also shown to be recursively enumerable. There for its complement
ETM is co-recursively enumerable. It cannot be decided, recognized, or enumerated.



6 BURTON ROSENBERG UNIVERSITY OF MIAMI

3.2. Equality of languages is neither RE nor co-RE. The question of whether
two Turing machines differ require a more complicated statement that alternates
quantifiers,

EQTM = { (i, j) ∈ N×M | ∃(k, tk) ∀t ≥ tk,Mi(k; t) ̸= Mj(k; t) }

The case here is when the difference between the two functions is a single point
where Mi halts and Mj does not. On one level, we have definite evidence, that the
disagreement was on input k, but also indefinite evidence, that for one machine a
particular step count t suffices, but for the other machine we have to consider all
step counts.

Note that a k specific lower bound for t is needed on the universal quantifier,
t > tk, since for small t both machines could still be computing and hence equal at
that (k, t) point.

Consider the map h1(i, j) 7→ (f(i, j),M∅) where,

Mf(i,j)(k) ≡ if Mi(j) then T else ⊥

and M∅ is any Turing machine that accepts nothing. Previously it was described
how f is a recursive function. It preserves truth from acceptance to non-equality.

(i, j) ∈ ATM =⇒ Mi(j) = T

=⇒ L(Mf(i,j)) = Σ∗

=⇒ Mf(i,j) ̸= M∅

=⇒ (f(i, j),M∅) ∈ ¬EQTM .

(i, j) ̸∈ ATM =⇒ Mi(j) ̸= T

=⇒ L(Mf(i,j) = ∅
=⇒ Mf(i,j) = M∅

=⇒ (f(i, j),M∅) ̸∈ ¬EQTM

Consider the very similar map h2(i, j) 7→ (f(i, j),MΣ∗) where MΣ∗ is the machine
that accepts everything. It preserves truth from acceptance to equality,

(i, j) ∈ ATM =⇒ Mi(j) = T

=⇒ (f(i, j),MΣ∗) ∈ EQTM .

(i, j) ̸∈ ATM =⇒ Mi(j) ̸= T

=⇒ (f(i, j),MΣ∗) ̸∈ EQTM

So we have two reductions,

ATM ≤m ¬EQTM , ATM ≤m EQTM



COMPUTATION: DAY 6 7

so neither can be recursive. As reductions are stable by complementing both sides,
we also have,

¬ATM ≤m EQTM , ¬ATM ≤m ¬EQTM

So neither can be recursively enumerable either.
These are sets that cannot be decided, and further neither the set nor its comple-

ment can be recognized.


	1. Machines that quit
	2. Undecidability
	2.1. It is undecidable if a Turing machine halts
	2.2. It is undecidable if a language is non-empty
	2.3. It is undecidable if a language is Regular
	2.4. Rice's Theorem

	3. The Arithmetic Hierarchy
	3.1. Emptiness of a language is co-RE
	3.2. Equality of languages is neither RE nor co-RE


