
COMPUTATION: DAY 6

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. The Arithmetic Hierarchy 1
2. Undecidability 3
3. Rice’s Theorem 5
3.1. Equality of Turing machines 6
4. Decidability of Promise Problems 7
4.1. Regular Languages 8
4.2. Context Free Languages 8
5. Church-Turing Thesis 9
6. First order logic 10

1. The Arithmetic Hierarchy

On the previous day we discovered that not all functions are recursive. In fact,
the function Ai(j) defines a set of true instances but not a set of not-true instances
because the not-true instances include non-halting cases. Taking it from the point
of view of actually computing Ai(j), while the machine continues to run we cannot
say if in the future it will eventually accept or reject the input.

We then inferred that the complement of this set cannot even be recursively enu-
merable. HenceATM is undecidable— since recursively enumerable languages include
recursive languages, the set ATM is strictly recursively enumerable.

Many other sets are undecidable, and many such sets are of practical interest.
For instance, given two Turing machines, are they two different implementations of
the same function, or are they dissimilar. This problem is undecidable. We day
will prove Rice’s Theorem that says that all interesting properties of languages are
undecidable.

We will also show that for some languages, neither it nor its complement are
recursively enumerable, defining sets of a “higher” undecidability.

Date: 2 April 2025.
1

2 BURTON ROSENBERG UNIVERSITY OF MIAMI

Definition 1.1. Let A(a, n) be a recursive function. Then the language defined as,

a ∈ A ⇐⇒ ∃n A(a, n) = T

is called a Σ1 language; and the language defined as,

a ∈ A ⇐⇒ ∀n A(a, n) ̸= T

is called a Π1 language. Language classes Σ0 = Π0 are also defined, and are both the
recursive languages.

The class Σ1 is exactly the class of recursively enumerable functions. We create a
machine that is certainly halting but stopping it after a given number of steps. And
then search over the number of steps for a true result, if that ever occurs.

Definition 1.2. A step-bounded Turing machine is a machine A(j; t) that decides
halts after no more than t computation steps with the result T when j is accepted,
F when j is rejected, and ⊥ when j is neither accepted nor rejected by the t-th step.
The language of A(j) is,

A(j) = lim
n→∞

A(j; t)

Theorem 1.1. A language is recursively enumerable if and only it is Σ1.

Proof: Give a Turing machine A(a) with the step-bounded version A(a; t), It is
defined by

a ∈ A ⇐⇒ ∃t ∈ NA(a; t) = T.

□

Theorem 1.2. Let Mi be an enumeration of Turing Machines. The language of
non-empty languages,

ETM = { i ∈ N | L(Ai) ̸= ∅ }
is recursively enumerable.

Proof: Enumerate N×N along the diagonal,

d = ⟨ (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), . . . ⟩.

Then

i ∈ ETM ⇐⇒ ∃n such that d(n) = (j, t) and Ai(j; t) = T.

□

Theorem 1.3. Both ATM and ETM are Π1.

COMPUTATION: DAY 6 3

Proof: Note that,
(i, j) ∈ ATM ⇐⇒ ∀ t Ai(j; t) ̸= T.

For ETM one diagonalizes over inputs and time bounds,

i ∈ ETM ⇐⇒ ∀n,Ai(j; t) ̸= T where d(n) = (j, t).

□

2. Undecidability

A language which is not decidable is called undecidable. That is an undecidable
language is not in Σ0. We have already shown that

ATM = Ai(j)

the universal acceptance language is in Σ1 but not Σ0, hence it is said to be an unde-
cidable language. We can show other languages to be undecidable using the notion
of a reduction (by a recursive function) to establish precedence in the arithmetic
hierarchy.

Definition 2.1. A recursive function is and function f : Σ∗ → Σ∗ such that there
exists an always-halting Turing machine M that computes the function in the fol-
lowing sense: When M is started with string s on its tape then it runs and halts
with string f(s) in its tape.

Definition 2.2. Given A,B ⊆ Σ∗, a reduction of A to B is a recursive function
f : Σ∗ → Σ∗ that preserves the set inclusion,

(1) ∀a ∈ =⇒ f(a) ∈ B,
(2) ∀a ̸∈ A =⇒ f(a) ̸∈ B.

A reduction from A to B is denoted A ≤m B.

Theorem 2.1. If A ≤m B then A ≤m B.

Theorem 2.2. Suppose A ≤m B. If B is a recursive set then A is a recursive set.
Therefore if A is not recursive then B is not recursive.

Proof: Let f be the reduction map. If B is recursive, then there as a recursive
function g : Σ∗ → {T, F} for which g(B) = T and g(B) = F . The function h = g ◦ f
is recursive for which h(A) = T and h(A) = F . This function is equivalent to a
machine deciding A. Hence A is recursive.

The second statement follows by the contrapositive. □

Theorem 2.3. Suppose A ≤m B. If B is a recursively enumerable set then A is a
recursively enumerable set. Therefore if A is not recursively enumerable, B is not
recursively enumerable.

4 BURTON ROSENBERG UNIVERSITY OF MIAMI

Proof: Similar to the above proof.

Theorem 2.4. Let Mi be an enumeration of Turing Machines. The language of
non-empty languages,

ETM = { i ∈ N | L(Mi) ̸= ∅ }
is not recursive.

Proof: Consider the map f(i, j) which maps the index of a Turing machine i and
test input j to the index of a Turing machine acting as,

Mf(i,j)(k) ≡ if Ai(j) then T else ⊥
That is, the function f writes the instructions for a Turing machine that uses a
universal Turing machine to compute Ai(j). If the result is accept, the machine will
immediately accept its own input k. If the result is reject, the machine enters a loop
and does not halt. The function f then finds the index of this new Turing machine
on the list of Turing machines and writes this value on the tape. This is a reduction

ATM ≤m ETM

It takes values in ATM to values in ETM ,

(i, j) ∈ ATM =⇒ Ai(j) = T

=⇒ ∀k Mf(i,j)(k) = T

=⇒ L(Mf(i,j)) = Σ∗

=⇒ f(i, j) ∈ ETM .

It takes values not in ATM to values not in ETM ,

(i, j) ̸∈ ATM =⇒ Ai(j) ̸= T

=⇒ ∀k Mf(i,j)(k) = ⊥
=⇒ L(Mf(i,j)) = ∅
=⇒ f(i, j) ̸∈ ETM

Since ATM is not recursive then ETM is not recursive. □

Theorem 2.5. Let Mi be an enumeration of Turing Machines. The language of
non-empty languages,

ETM = { i ∈ N | L(Mi) ̸= ∅ }
is not recursively enumerable. It is of class Π1.

COMPUTATION: DAY 6 5

Proof: Since ETM is recursively enumerable, if ETM were recursively enumerable
ETM would be recursive. It is definable as,

ETM = { i ∈ N | ∀j, t, Ai(j; t) ̸= T }
hence it is of class Π1. □

3. Rice’s Theorem

Rice’s theorem states that any non-trivial property of a language is undecidable.
The proof is s generalization of the reduction of the previous section. As another
example of this reduction, consider the set REG all Turing machines whose language
is regular.

Theorem 3.1. Let Mi be an enumeration of Turing machines. The language of
regular languages is not recursively enumerable.

Proof: Let N be a machine accepting a non-regular language, such as L(N) =
{ 0i 1i }. Consider the map f(i, j) which maps the index of a Turing machine i and
test input j to the index of a Turing machine acting as,

Mf(i,j)(k) ≡ if Ai(j) then N(k) else ⊥.

The resulting machine accepts a non-regular language if Ai(j) = T and otherwise
accepts a regular language.

(i, j) ∈ ATM =⇒ Ai(j) = T

=⇒ Mf(i,j)(k) = N(k)

=⇒ L(Mf(i,j)) = { 0i 1i }
=⇒ f(i, j) ∈ REG.

(i, j) ̸∈ ATM =⇒ Ai(j) ̸= T

=⇒ ∀k Mf(i,j)(k) = ⊥
=⇒ L(Mf(i,j)) = ∅
=⇒ f(i, j) ∈ REG

So
ATM ≤m REG.

Therefore REG is not recursively enumerable. □

Definition 3.1. If a set is definable as

G = { i ∈ N | ∃x ∀y, F (x, y, i) = T }
for an F of class Σn, then G is of class Σn+2.

6 BURTON ROSENBERG UNIVERSITY OF MIAMI

Theorem 3.2. The language of regular languages is in Σ3.

Proof: Let Mi be an enumeration of Turing machines. Let Dj be an enumeration
of all Finite Automata. Let Nj(k) a universal machine that simulates Dj on k. The
language of regular languages is definable as,

REG = { i ∈ N | ∃j ∀k ∃t, Ai(k; t) = Nj(k) }.

The predicate

Ai(k; t) = Nj(k)

is recursive. Therefore

∃t, Ai(k; t) = Nj(k)

is of type Σ1, and

∃j ∀k ∃t, Ai(k; t) = Nj(k)

is of type Σ3. □

Theorem 3.3 (Rice’s Theorem). Any non-trivial property of recursively enumerable
sets is undecidable.

Proof: A non-trivial property is a property that some languages have and some
languages do not have. Arrange for the language of its complement to be such that
machine P recognizes a language with the property and the empty language does
not have the property. Then the construction,

Mf(i,j)(k) ≡ if Ai(j) then P (k) else ⊥

is a reduction ATM ≤m P . Therefore P is undecidable.

3.1. Equality of Turing machines.

Theorem 3.4. Equality and non-equality for Turing machines are both non-recursively
enumerable.

Proof: Non-equality is a Σ2 statement,

EQTM = { (i, j) ∈ N×M | ∃ k, tk ∀ t, Ai(k; t) ̸= Aj(k; t) ∨ t < tk }

and equality is a Π2 statement,

EQTM = { (i, j) ∈ N×M | ∀ k, t ∃ tk, Ai(k; tk) = Aj(k; tk) ∧ tk ≥ t }

Consider the map h1(i, j) 7→ (f(i, j),M∅) where,

Mf(i,j)(k) ≡ if Ai(j) then T else ⊥

COMPUTATION: DAY 6 7

and M∅ is any Turing machine that accepts nothing. Previously it was described
how f is a recursive function. It preserves truth from acceptance to non-equality.

(i, j) ∈ ATM =⇒ Ai(j) = T

=⇒ L(Mf(i,j)) = Σ∗

=⇒ Mf(i,j) ̸= M∅

=⇒ (f(i, j),M∅) ∈ ¬EQTM .

(i, j) ̸∈ ATM =⇒ Ai(j) ̸= T

=⇒ L(Mf(i,j)) = ∅
=⇒ Mf(i,j) = M∅

=⇒ (f(i, j),M∅) ̸∈ ¬EQTM

Consider the very similar map h2(i, j) 7→ (f(i, j),MΣ∗) where MΣ∗ is the machine
that accepts everything. It preserves truth from acceptance to equality,

(i, j) ∈ ATM =⇒ Mi(j) = T

=⇒ (f(i, j),MΣ∗) ∈ EQTM .

(i, j) ̸∈ ATM =⇒ Mi(j) ̸= T

=⇒ (f(i, j),MΣ∗) ̸∈ EQTM

So we have two reductions,

ATM ≤m ¬EQTM , ATM ≤m EQTM

so neither can be recursive. As reductions are stable by complementing both sides,
we also have,

¬ATM ≤m EQTM , ¬ATM ≤m ¬EQTM

So neither can be recursively enumerable either.
These are sets that cannot be decided, and further neither the set nor its comple-

ment can be recognized.

4. Decidability of Promise Problems

If we know that a language is Regular or Context Free, some properties of these
languages are decidable. We can know that the language is these classes because they
are presented in particular ways. For instance, if we are given a finite automata, we
know the language is regular. If we are given a Context Free Grammar, we know the
language is a Context Free Language.

Another way to describe the situation is that the index is of a Turing machine,
and we are promised that the Turing machine accepts are Regular (or Context Free)
language. It’s a bit non-constructive, it could happen that the Turing machine is a

8 BURTON ROSENBERG UNIVERSITY OF MIAMI

Finite Automata simulator with a finite automata program baked right in. However
I mention it here so that these results have a wider context.

4.1. Regular Languages. While the set REG is undecidable, many properties of
regular languages are decidable.

Theorem 4.1. It is decidable if a regular language is empty, or contains all strings;
and if two regular languages are equal.

Proof: Given a regular language there is a finite automata accepting that language.
Working backwards from accept states will provide a path, if any, for some accepted
string. This decides emptiness.

The language accepts all strings if the complement is empty. Given the finite
automata for the language, exchange the accept and non-accept states and determine
if the resulting language is empty.

Given two regular languages there are two finite automata FA and FB accepting
the respective languages. A finite automata can be constructed that accepts

FA = FB ⇐⇒ (FA ∧ ¬FB) ∨ (¬FA ∧ FB) = ∅
and then decide the emptiness of this regular language. The first term is the empty
set when FA ⊆ FB, and the second term is the empty set when FB ⊆ FA. For the
sum to be empty, both these conditions need to be true. □

4.2. Context Free Languages. The same set of questions for Context Free Lan-
guages is more difficult.

Theorem 4.2. Non-equality for Context Free Languages is recursively enumerable.

Proof: A non-deterministic Turing machine can guess the string on one language
and not the other. Determining membership is recursive. If we enumerate CFG’s as
Gi, then the language is,

¬EQCFL = { i, j | ∃s,Gi(s) ̸= Gj(s) }
and the complement is co-recursively enumerable,

EQCFL = { i, j | ∀s,Gi(s) = Gj(s) }
Since the Gi is recursive, respectively these languages are class Σ1 and Π1. □

Theorem 4.3. Non-equality for Context Free Languages is undecidable.

Theorem 4.4. Emptiness for Context Free Languages is decidable.

Proof: The the grammar in Chomsky Normal Form, apply a marking algorithm that
determines for each variable whether that variable is productive, that is can become
by the grammar a string of terminals. If the rule S → ε is present the language is

COMPUTATION: DAY 6 9

non-empty. Mark any variable V if it appears in the rule V → v, with v a terminal.
Mark any variable V if it appears in the rule V → AB, where A and B are both
marked. Continue until no more markings can be made. The language is non-empty
if and only if S is marked. □

Theorem 4.5. Whether a Context Free Languages is all strings is undecidable, and
Π1, as it is the predicate for the i-th language Gi, ∀s,Gi(s) with Gi(s) recursive.

5. Church-Turing Thesis

Philosophy seems to me to be amongst men now, in the same manner as corn and
wine are said to have been in the world in ancient time. . . .By reasoning I understand
computation.

— Thomas Hobbs 1

A variant of Lady Lovelace’s objection states that a machine can ‘never do anything
really new’. This may be parried for a moment with the saw, ‘There is nothing new
under the sun’. Who can be certain that ‘original work’ that he has done was not
simply the growth of the seed planted in him by teaching, or the effect of following
well-known general principles. A better variant of the objection says that a machine
can never ‘take us by surprise’. This statement is a more direct challenge and can
be met directly. Machines take me by surprise with great frequency.

— Alan Turing 2

6.54 My propositions serve as elucidations in the following way: anyone who un-
derstands me eventually recognizes them as nonsensical, when he has used them —
as steps — to climb beyond them. (He must, so to speak, throw away the ladder after
he has climbed up it.) He must transcend these propositions, and then he will see the
world aright.

In German: Meine Sätze erläutern dadurch, dass sie der, welcher mich versteht,
am Ende als unsinnig erkennt, wenn er durch sie — auf ihnen — über sie hinaus-
gestiegen ist. (Er muss sozusagen die Leiter wegwerfen, nachdem er auf ihr hin-
aufgestiegen ist.) Er muss diese Sätze überwinden, dann sieht er die Welt richtig.

1De Corpore, in Thomæ Hobbes Malmesburiensis: Opera Philosophica (Volume 1), William
Molesworth (ed.), London: J. Bohn, 1839. ch. 1 sect. 1 and ch.1 sec. 2.

2Alan Turing, Computing Machinery and Intelligence, Mind: A quarterly Review of Psychology
and Philosophy, Vol. LIX, No. 236. (October 1950)

10 BURTON ROSENBERG UNIVERSITY OF MIAMI

— Ludwig Wittgenstein 3

6. First order logic

The classes Σi and Πi were defined using the logical operators “for all” and “there
exists”. This section reviews the logic of these symbols.

A predicate is a function in boolean algebra. It may have variables that are con-
nected with the logical operations of and, or and not. Other operations are intro-
duced, such as implication, however they can be defined in terms of and, or and not.
For instance,

(x =⇒ y) ⇐⇒ ((¬x) ∨ y)

A logical formula is expressed with unbound variables. For instance, the formula
ϕ(x, y) has two unbound variables, x and y. The quantifiers ∀ and ∃ can bind the
variable in a formula, as follows,

∃x ϕ(x, y) or ∀ y ϕ(x, y)

The result is a formula with one unbound variable.
While a formula can be written with the quantifiers mixed inside the formula. e.g

x ∧ (∀ y y ∨ z), the quantifiers can alway be brought to the front of the formula,
putting the formula in prenex form,

x ∧
(
∀ y(y ∨ z)

)
⇐⇒ ∀ y

(
x ∧ (y ∨ z)

)
In this way, a quantified boolean formula is always an alternation of quantifies binding
variables in a predicate, perhaps leaving some variables free. If no variables are free
then the formula is either true or false, for instance,

∀ a, b ∃x(a+ bx = 0).

is true when the range of discourse is the rational number. It is false when the range
of discourse is the integers.

Two important rules for quantifiers are,

¬
(
∃x ϕ(x, y)

)
⇐⇒ ∀ x ¬ϕ(x, y)

¬
(
∀x ϕ(x, y)

)
⇐⇒ ∃ x ¬ϕ(x, y)

3Wittgenstein, Ludwig. Klement, Kevin C. (ed.). Tractatus Logico-Philosophicus. Translated by
Pears, D. F.; McGuinness, B. F. (Side-by-Side-by-Side ed.). University of Massachusetts. Retrieved
January 27, 2019. https://people.umass.edu/klement/tlp/

https://people.umass.edu/klement/tlp/

	1. The Arithmetic Hierarchy
	2. Undecidability
	3. Rice's Theorem
	3.1. Equality of Turing machines

	4. Decidability of Promise Problems
	4.1. Regular Languages
	4.2. Context Free Languages

	5. Church-Turing Thesis
	6. First order logic

