
COMPUTATION: DAY 5

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Turing Machines 2
2. Turing Machine Formal Definition 2
3. Example RE and Recursive languages 3
4. Nondeterministic Turing Machines 4
5. Machines that take advice 4
5.1. The simulation argument 5
5.2. Enumerating advice 5
5.3. Input and the work tape 6
5.4. Recognizing rejection 6
6. Multitape Turing Machines 7
7. Universal Turing Machines 7
7.1. Enumeration of Turing Machines 8
8. The Entscheidungsproblem 8

1. Turing Machines

Monday, 25 March 2024

The Turing Machine was introduced by Alan Turing in a paper concerning the
Halting Problem. In it, he proved that the problem of whether a finitely described
mathematical procedure can always be made to come to a decision. For instance,
given a notion of true and false statements, whether a proof system can be made to
always prove the true statements and disprove the false statements.

And the answer is no. Proof is not entirely useless because the true statements
can be proven. However, the false statements are more accurately described as those
statements which cannot be shown to be true. Some false statements can be given
finite demonstrations for being false, but in general, this is not possible.

1



2 BURTON ROSENBERG UNIVERSITY OF MIAMI

2. Turing Machine Formal Definition

A Turing Machine is a finite automata endowed with a semi-infinite tape, consisting
of a sequence of cells, each cell containing one from a finite set of tape symbols. The
automata and the tape interact with a head, positioned over a cell, that can read,
write and move one step left or one step right, according to the programming of the
finite automata. Formally, a Turing Machine is,

M = ⟨Q,Σ,Γ, δ, qs, qa, qr ⟩

where,

• Q is a finite set of states,
• Σ is a finite set of symbols comprising the alphabet of the language,
• Γ is a finite set of symbols that can appear on the tape,

– The tape alphabet includes the language alphabet, Σ ⊂ Γ,
– There is a special blank symbol ⌞⌟ ∈ Γ, ⌞⌟ ̸∈ Σ, that fills the uninitialized
infinite portion of the tape.

• δ is the transition function, δ : Q× Γ → Q× Γ× {L,R},
• qs, qa, qr ∈ Q are respectively the start, accept and reject states, and qa ̸= qr.

A computation by a Turing Machine M has the following steps.

Initialize: The computation is prepared,

• A string s ∈ Σ∗ is written on the tape, with no blanks to the left of s;
• The Turing Machine current state is qs; and
• the tape head is positioned over the leftmost cell.

Compute: The Turing Machine computes in steps of application of δ. This involves.

• reading and writing a tape symbol at the tape head;
• transitioning the state; and
• moving the head left or right one cell.

Finalize: The computation either,

• halts by achieving qr or qa, or
• never reaches either of these two states — it runs forever never deciding for
accept or reject.

The result of a computation is in general one of three situations,

M(s) =


T if qa is achieved

F if qr is achieved

⊥ the machine does not halt



COMPUTATION: DAY 5 3

Definition 2.1. A language L ⊆ Σ∗ is recursively enumerable if there exists a Turing
Machine M such that L = L(M) where we define,

L(M) = { s ∈ Σ∗ |M(s) = T }

Definition 2.2. A language L ⊆ Σ∗ is recursive if there exists a Turing Machine M
such that L = L(M) and the set,

{ s ∈ Σ∗ |M(s) = ⊥}
is empty.

Recursively enumerable is also called recognizable and recursive is also called de-
cidable.

3. Example RE and Recursive languages

The language,
E = {w#w |w ∈ Σ∗ }

is recursive. (The program is essentially given in Figure 3.10 of Sipser 3ird edition.)
The TM program is a loop that moves back and forth over the string, matching

and marking matched symbols. The states are used while matching to remember
which σ ∈ Σ has been seen before the # as expects to be seen after the #. The
marking off assures that the match occurs in corresponding locations, from the start
of the tape and from the # symbol.

The program always halts and correctly halts either accepting or rejecting. For
a sting of length n in the language, we can very precisely count the number of
state transitions from start to halting. Using asymptotic notation to avoid irrelevant
details, a budget of O(n2) state transitions is sufficient to decide for a string of
length n. Hence, not only is this recursive, it has time complexity O(n2) in deciding
membership.

N.B.: If a one-tape turning machine recognizes a language in o(n log n), then the
language is regular. The language E is not regular, so it is necessary that our
algorithm be Ω(n log n).

The halting problem is an example of an R.E. but not recursive language.

4. Nondeterministic Turing Machines

The non-deterministic counterpart of the (deterministic) Turing machine differs in
that,

(1) The transition map δ mapsQ×Γ is a set of actions, a subset ofQ×Γ×{L,R }.
It is possible that δ(q, σ) is the empty set, in which case the machine halts.



4 BURTON ROSENBERG UNIVERSITY OF MIAMI

(2) Non-determinism introduces the possibility of some paths accepting and some
paths rejecting. For a non-deterministic Turing Machine, accepting a string
means there is an computation that accepts, regardless of any paths the reject.

(3) Only if all paths reject will an NTM reject. The reject states are better
thought of as non-accepting halting states, as none is individually decisive.

There is an asymmetry between accepting and rejecting, in that a single path demon-
strates acceptance, but even an infinite set of rejecting paths does not demonstrate
rejection. To demonstrate rejection, there must be for each n ∈ Z≥0 an integer step
bound bn so that for all strings of length n or less, all computations halt before bn
steps; and each and every of these finitely many computations result in a reject.

5. Machines that take advice

The nondeterministic choices determine the computation path. An oracle is a
hypothetical correspondent to the Turing Machine which chooses an advice string
in some space of advice strings Ω∗, and presents that to the NTM to resolve its
non-determinism. Let N(s) be the computation of an NTM on string s. An oracle
machine is a two tape deterministic machine M with an additional terminated state
⊥. The computation on string s and advice a is denoted M(s, a). The rules for such
advice strings are that, for language S ⊆ Σ∗,

• For any s such that N(s) = T there is an advice string a ∈ Ω∗ such the
M(s, a) = T ;

• For all s such that N(s) ̸= T , then no advice string a ∈ Ω∗ does M(s, a)
return true. It may either reject or run out the advice string and enter the
terminated state.

• Halting advice cannot be retracted. That is if M(s, a) = T then M(s, a′) = T
for all a′ for which a is a prefix, and likewise for F .

In the case of N(s) = F , the machine M needs fairly extensive evidence to reject at
string,

N(s) = F =⇒ ∃ k s.t. ∀a ∈ Ωk,M(s, a) = F

Here we use that advice cannot be retracted, so a decision to reject on shorter advice
applies to all longer advice.

We note that such a machineM is easily constructed from a machineN by indexing
the set result of δ(q, γ) with elements from Ω,

δN(q, γ) = { ((q′, γ′, a)ω |ω ∈ Ω }
and then selecting,

δM(q, γ, ω) = δ(q, γ)(ω).

With every TM step the advice tape head advances one to the right. The blank
symbol on the advice tape will terminate the computation and return the value ⊥.



COMPUTATION: DAY 5 5

q1start q2 q3 q4
$ → R

1, 0 → R

0, 1 → L

⌞⌟, 0 → L

→ L

$ → L

Figure 1. Lexicographic next of the advice

5.1. The simulation argument. From an NTM machine N the oracle machine M
is constructed, as described above. For an s in the language, a systematic search
can be made for an a such that M(s, a). This is best described by a multi-tape
Turing Machine which is set to have k tapes, and k heads that read and written
and moved over with each state transition. We we later show how multiple tapes
are a convenience, and do not change the class of languages recognized or decided
by Turing machines.

5.2. Enumerating advice. The simulation will try all advice by enumerating the
strings in Ω in lexicographic ordering. This means, shorter string first, having placed
in some arbitrary order the elements of Ω. The increment that increases the length
is a significant event, because if all advice of a given length are rejections, that the
string can be rejected. An example of this for B = { 0, 1 } is Fig. 1. Note that the
state q3 can be split into two states to remember whether there was a change of
length in the advice.

5.3. Input and the work tape. In addition to the input and advice tape, the third
tape is a work tape. The input tape is copied to the work tape. The machine M
is started on the work and advice tape. The halting states T, F or ⊥, rather than
halting, return to the simulator for a decision on further action. If the return is
through the accepting state, than the simulator accepts: the current advice is an a
such that M(s, a) = T . Otherwise the simulator will restart M with the next advice
string in lexicographic order. A flowchart is on Fig. 2.

5.4. Recognizing rejection. An additional detail is that when the advice tape
advices to the next length, it is somehow marked signaling that no ⊥ outcomes have
occurred at this length. When the simulation ends transition for a terminated state,
this mark is cleared. At the next increment of the advice tape, if the mark is still
present, all advice strings of this length have returned F and the simulator will halt
rejecting.

Theorem 5.1. If N is an NTM that recognizes a language, the simulator will rec-
ognize that language. If N decides the language, the simulator will decide that
language.



6 BURTON ROSENBERG UNIVERSITY OF MIAMI

init copy A result T
T

→ ⊥

⊥

a++

F

overflow

No

= F?

Yes

F
Yes

→ F
No

• Init: initialize the advice tape with the empty string and a mark to decide
reject.

• Copy: erase the work tape and copy the input tape to the work tape.
• A: Run the advice machine on the work tape and the advice tape.
• result: The result is sorted out.
• → ⊥: mark the advice tape if the result was a terminated, to signal some
advice at this length did not reject.

• ++ a: advice the advice on the advice tape.
• overflow: if the advice advances in length, a choice is made to possible reject
the input.

• =?F : if the tape mark was not updated, all advice rejects, so reject.
• → F : mark the tape.

Figure 2. Simulating a NTM with a TM

As any MT is an NTM with |Ω| = 1, the converse is also true.

Theorem 5.2. NTM’s and NT’s recognize and decide exactly the same languages.

6. Multitape Turing Machines

Please refer to the textbook for the definition of a k-tape TM, and its simulation
by a (one tape) TM.

7. Universal Turing Machines

A feature of our computers is that the hardware is fixed and the utility of the
machine is determined by software. Even the software is under the control of software,
as there is software to download new software onto our computers, install and run
the software. This is also a fact about Turing Machines. The state, which is encoded
in the transition function δ can be a university program to carry out a program
description that is written onto of the tapes before the start of the computation. For



COMPUTATION: DAY 5 7

any Turing Machine, the δ can be transcribed into a string, which is the program to
be run, and the Universal Turing Machine can run it.

A UTM will need a universal set for Σ,Γ and Q. We represent each as a binary
code over B = { 0, 1 }. Our universal language for all these elements of a Turing
Machine is as it is on our practical computers, strings of 0’s and 1’s. We consider
how to transcribe our generally described TM into one over the language B∗.

Given the tape alphabet Γ we have an injective map to strings Bk with k sufficiently
large so that |Γ | ≤ 2k.

Given the state set Q we have an injective map to string BB+ with the preassigned
mapping of the start state to 00, the accept state to 01, the reject state to 10 the
reject state, and 11 a reserved symbol.

In representing the map δ as a sting in B∗, the string 0 notates the “move left”
action and the string 1 notates the“move right” action.

A transition is encoded as a string as,

(q, γ, q′, γ′, a) =⇒ T = BB+ ⌞⌟Bk ⌞⌟BB+ ⌞⌟Bk ⌞⌟B

And the entire transition table written on the program tape as,

⊣
(
⌞⌟ T

)+
⌞⌟ ⌞⌟

A working tape encoded as,

⊣
(
⌞⌟Bk

)∗
⌞⌟ ⌞⌟

The current tape head position is over the blank to the left of the k-length tape
symbol, and is initialized to the leftmost cell on the tape (which is a blank).

An additional “current state” tape has the symbol of the current state written on
it, and is initialized to the well-known name of the start state 00. After each step
this tape checked for equality to 01 or 10, and on match the universal machine enters
its own accept or reject state.

The program that is written into the states of the universal machine is a loop
which marches down the program tape looking for a match between the current
state and the current input symbol, and on match replaces these with the symbols in
the matched transition T . The tape head is advanced according to the last symbol
in T . Encountering a double-blank means the table is incomplete and this can be
taken as an implied transition to a reject state.

7.1. Enumeration of Turing Machines. We have described a UTM, but I wish
to go further and describe that machine as Ui(j), a machine on two integer indices, i
and j. We will then speak of the computation of the i-th machine on the j-th input.
We will have then comprised all possible computations into a single integer function,

Ui(j) : Z× Z → {T, F,⊥}.



8 BURTON ROSENBERG UNIVERSITY OF MIAMI

We need to enumerate all possible TM’s. Our UTM as a strict syntax for programs, a
subset of strings over B∗. This string set is Regular, so we can write a regular expres-
sion accepting strings that are TM descriptions, and create a TM that enumerates
all strings in B∗ in lexicographic order applying a TM program for the regular ex-
pression to decide which strings are programs. As a string matches, it is written on
an output tape, and the the sequence of output programs is then our enumeration
of programs. If the i-th program is required, this enumerator is run with a counter
that stops at the i-th output and writes just that program on a program tape for
subsequent use by Ui(j).

Likewise to find the j-th input. In detail, this is dependent on the program, as
the tape symbol set, dependent on k, will be determined by the program syntax.

However, we now have a program which given i and j, writes the i-th program on
the program tape, the j-th input on the work tape and then starts the UTM.

8. The Entscheidungsproblem

Theorem 8.1. The set,

ATM = { (i, j) ∈ N× N |Ui(j) }
is RE but not recursive.

Proof: The set is recursive because it is recognized by Ui(j).
We prove it is not recursive, suppose ATM were recursive. We will show a con-

tradiction. If ATM were recursive, there is a recursive function H(i, j) which is true
when Ui(j) is true, and false otherwise,

H(i, j) =

{
T Ui(j) = T

F otherwise

The function H resolves the undecided cases of Ui(j). We can then define the recur-
sive function D,

D(i) = ¬H(i, i)

by running H until its result, then negating it as the result of D. Since D is com-
putable, there is a TM that computes it. Let that be the j-th TM,

D(i) = Uj(i).

We then ask for the result of giving D as input this index.

D(j) = T =⇒ Uj(j) = T =⇒ H(j, j) = T =⇒ D(j) = F.

Therefore D(j) cannot be true.

D(j) = F =⇒ Uj(j) ̸= T =⇒ H(j, j) = F =⇒ D(j) = T.

So D(j) cannot be false either. Therefore there can be no H that decides ATM . □.


	1. Turing Machines
	2. Turing Machine Formal Definition
	3. Example RE and Recursive languages
	4. Nondeterministic Turing Machines
	5. Machines that take advice
	5.1. The simulation argument
	5.2. Enumerating advice
	5.3. Input and the work tape
	5.4. Recognizing rejection

	6. Multitape Turing Machines
	7. Universal Turing Machines
	7.1. Enumeration of Turing Machines

	8. The Entscheidungsproblem

