
COMPUTATION: DAY 3

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Free Algebras with Kleene star 1
2. Regular Languages are a Free Algebra with Kleene Star 2
2.1. Union 2
2.2. Concatenation 2
2.3. Kleene star 2
3. Regular Expressions 3
4. The Generalized NFA 3
5. Non-regular languages 4
6. The Pumping Lemma 5
7. A Counter Machine for aibi 6

1. Free Algebras with Kleene star

Definition 1.1. Let Σ be a finite set. The free algebra generate by Σ are elements
of P(Σ∗) and the operations of union and concatenation, with concatenation defined
as

A ·B = { a · b | a ∈ A, b ∈ B }.

Where union is commutative, concatenation is non-commutative. We also include in
the algebra the Kleene star,

A∗ =
⋃
i≥0

Ai.

Many usual rules apply. The empty set is the identity for union, and the set
containing only the empty string is the identity for concatenation. The distributive

1

2 BURTON ROSENBERG UNIVERSITY OF MIAMI

law applies.

A = ∅ ∪ A = A ∪ ∅
A = ε · A = A · ε
∅ = ∅ · A = A · ∅

A · (B ∪ C) = A ·B ∪ A · C
(B ∪ C) · A = B · A ∪ C · A

Note that the Kleene star, while an infinite union, has the simplifying property
that if a ∈ A∗ then for some i, a ∈ Ai. Compare this to an attempt to define,

A† =
⋂
i≥0

Ai

where a ∈ A† would require that a ∈ Ai for all i.

2. Regular Languages are a Free Algebra with Kleene Star

We need to show that the operations of union, concatenation and Kleene star on
regular languages give a regular language. This is proved by constructing and NFA
which recognizes the resulting set from DFA’s that recognize the component sets.

2.1. Union. Given regular languages A,B ⊆ Σ∗, there exist machines MA and MB

such that A = L(MA) and B = L(MB). Relabel states if necessary so that state
names are all distinct. Define the machine formed by the union of the states, final
states and transition function. Define the a new initial state with ε-moves to the old
initial states. Such machine accepts the language A ∪B.

2.2. Concatenation. Given regular languages A,B ⊆ Σ∗, there exist machines MA

and MB such that A = L(MA) and B = L(MB). Relabel states if necessary so that
state names are all distinct. Define the machine formed by the union of the states
and transition functions. Add ε-moves from the final states of MA to the initial state
of MB. Define the final states of the combined machine as just the final states of
MB. The initial state of the combined machine is the initial state of MA. Such a
machines accepts the language A ·B.

2.3. Kleene star. Given regular language A ⊆ Σ∗, there exist machines MA such
that A = L(MA). Build a machine including MA with a new initial state that is also
a final state. Add an ε-move from this state to the old initial state. Add ε-moves
from the final states to the old initial state. Such a machine accepts the language
A∗.

COMPUTATION: DAY 3 3

N.B. The new initial state is necessary. Consider the machine for the empty
language which is a single state with loops for all elements of Σ. The star is the set
including only the empty string.

3. Regular Expressions

Formulas in the free algebra are called Regular Expressions. Parenthesis are used
according to the normal precedence rules of exponents, product and addition. Hence,

A ∪ B · C∗ = A ∪ (B · (C∗)).

Theorem 3.1. A regular expression describes a regular language.

Proof: We have already shown how, beginning with NFA’s, the operations re-
quired by a regular expression can be implemented. To complete the proof we need
to build three more machines.

(1) An NFA that accepts the empty set. A machine with a single state and no
final states.

(2) An NFA that accepts only the empty string. A machine with a single state
that is a final state.

(3) An NFA that accepts a σ ∈ Σ. A machine with two states, on initial the
other final, with a transition between them on σ.

□
Regular expressions are part of many programming languages. The Python lan-

guage has the re package that will use regular expressions to match against a string.
In this case, the notation has been generalized from whether the entire string matches
the Regular Expression to which substrings of a string match the Regular Expres-
sion. The notation is made a bit kinder for programming, with a number of useful
extensions.

4. The Generalized NFA

We have so far shown that free algebras, and the Regular Expression formulas writ-
ten in that algebra, define languages that are accepted by finite automata. However,
any set accepted by a finite automata can be described by a Regular Expression.
Hence, Regular Languages, Regular Expressions, and the sets of strings recognized
by a finite automata are all the same concept.

This has a certain surprise, as intersection and complementation are not directly
expressible by Regular Expressions. However, by the equivalence, they are express-
ible. This often results in a very large, inconvenient regular expression. For instance,
while (aaa)∗ is the language of all strings of a’s of length a multiple of 3, and (aaaaa)∗

4 BURTON ROSENBERG UNIVERSITY OF MIAMI

qs qt

qr

R4

R1 R3

R2

.

(a) The path through qr

qs qt
R1R

∗
2R3 ∪ R4

.

(b) qr removed

Figure 1. Joining path through qr into the path qs to qt

those a multiple of 5, the expression for strings of a’s with length not a multiple of
3 or 5 is,

(aaaaaaaaaaaaaaa)∗(a · (ε | a · (ε | aa · (ε | aaa · (ε | a · (ε | aaa · (ε | aa · (ε | a))))))))

To show that any language recognized by an NFA can be written as a Regular
Expression, we generalize the NFA so that the edges can be regular expressions. To
follow an edge with a regular expression is consume the length of input that matches
the regular expression. There will also be a rule for a Generalized NFA (GNFA)
that there is only one accept state, and that between all states there are transitions,
including edges from a state back to itself, with the exceptions that there are no
transitions to the start state and no transitions from the final state.

With these preparations we are set to start to remove states, except the initial and
final state, according to the formula in Figure 1. To remove qr, all other nodes qs
and qt are considered, including qr = qt, and both the forward and reverse directions
between qs and qt. Removing qr would risk loosing paths from qs to qt. In order
that this does not happen, the regular expression for qs to qt via qr is added to paths
directly between qs and qt. The operations of regular expressions are sufficient to do
this.

This removal continues until only the start and final state remain, with the regular
expression on the arrow between them being the regular expression for the language
recognized by the GNFA.

5. Non-regular languages

Consider the language

Lo = { ai bi | i ≥ 1 }
It cannot be regular.

COMPUTATION: DAY 3 5

Consider a very long string in Lo. Fix a machine M which claims to recognize Lo.
It has a certain number of states p. Consider the string s = ai bi with i >> p. The
string s in the language Lo. As the machine processes successive a’s, it must at some
point repeat a state. Then the string s can be written as

aiajakbi+j+k

where after ai the machine is in state q and returns to state q again after the next
portion of the string aj. In that case, without changing the outcome, we can remove
the aj, and therefore,

aiakbi+j+k ∈ L(M)

is accepted by the machine, but that string is not in the language. In fact, for all t,

aiatjakbi+j+k ∈ L(M)

but only for t = 1 is this string in Lo. Therefore L(M) ̸= Lo. The argument is
general, so no DFA can recognize Lo, hence the language is not regular.

6. The Pumping Lemma

The argument above demonstrates a property of infinite regular languages. If a
language can be recognized by a FA, all sufficiently long strings must cause the
machine to repeat states, and the section of the string that causes the state sequence
to loop can be pumped, that is, removed or repeated. And if the language is regular,
and this is the proper machine recognizing the language, then all of those pumped
strings must be in the language.

This is formalized in the pumping lemma which essentially says: If A is an infinite
regular language, every sufficiently long string in A can be pumped.

Theorem 6.1 (The pumping lemma). If A is an infinite regular language, then there
exists an integer p, such that for every s ∈ A with |s| ≥ p, the string s can be written
as

s = xyz

where |xy| ≤ p, and |y| > 1 and for all i ≥ 0, xyiz ∈ A.

To use the pumping lemma to show a language is not regular,

(1) Cleverly pick a long enough s in the language.
(2) Consider every possible way that s = xyz, according to the lemma.
(3) For each such xyz, show an i such that xyiz is not in the language.

Then we have demonstrated that the language does not have a property that all
regular languages must have, and therefore it is not regular.

Beware of coming to the conclusion that just because a language can be pumped
that it is regular. The theorem begins with “if A is an infinite regular language”,

6 BURTON ROSENBERG UNIVERSITY OF MIAMI

def recognize_0i_1i(s):

count, saw_one = 0, False

for c in s:

if c==’1’:

saw_one = True

count -= 1

else:

if saw_one:

return False

count += 1

return count==0

Figure 2. Python program recgnizing Lo

0; c+= 1

0; c+= 1

1; c−= 1

1; c−= 1

1; c−= 1

c == 0

.

Figure 3. Counter machine for 0i1i

and therefore if it is not, nothing about the pumping lemma applies. For instance,
the language,

{ aibjck | j = k if a > 0 }
is not regular, but can be pumped.

7. A Counter Machine for aibi

What kind of machine can recognize Lo? In Figure 2 is a Python program recog-
nizing this language. I will attempt to transcribe it into a finite state machine but
I will need an additional capability. I will add a counter to the DFA. The counter
holds an integer, is initially zero, can be incremented, decremented and tested for
zero. This is all the Python program does that is beyond what a DFA can do. The
program structure, including the looping, the conditional execution are all expressible
by states and state transitions.

	1. Free Algebras with Kleene star
	2. Regular Languages are a Free Algebra with Kleene Star
	2.1. Union
	2.2. Concatenation
	2.3. Kleene star

	3. Regular Expressions
	4. The Generalized NFA
	5. Non-regular languages
	6. The Pumping Lemma
	7. A Counter Machine for aibi

