COMPUTATION: DAY 2

BURTON ROSENBERG
UNIVERSITY OF MIAMI
21 MARCH 2025

CONTENTS

[1. Finite Automata and Regular Languages|

[2. Regular Languages Closure Properties|

[3. The product machine constructionl

[3.1. Second example ot the product machine construction|
(3.2, Discussion on intersection or unionl

4. Nondeterminism|

[4.1. Nondeterminism: ¢ edges|

[4.2. Nondeterminism: multiple edges|

E T T Johniti :] T l
[5.1. Asymmetry of accepting and non-accepting

[5.2. Non-constructive language)

b.3. DFA’s are NFA’s tod|

[6. The power set construction|

[7. Examples of the power set construction|

1. FINITE AUTOMATA AND REGULAR LANGUAGES

A finite automata is a 5-tuple,

M = <Q72767QO7F>
where

e () is a finite set of states,
e X is a finite alphabet set,
® gy € @ is the start state,
o [7 C () is the set of accept states and

e 0:(@Q xX — (@ is the state transition function.
1

O I 3O Tk~ W+

el e e T i
N OO OO O

2 BURTON ROSENBERG UNIVERSITY OF MIAMI 21 MARCH 2025
0
Q 1
T
—

(A) At least one one.

0,

—_

0,1

. [
@

B) Never any one’s

O
J
®>-

~~

FIGURE 1. Strings with at least one one and its complement language

The transition function ¢ directs a path through the states as allowed by a string
5 € X",

S =0102 ...0p

according to a sequence of states ¢; € @,

q; = Gitn = <%%‘+1, cee 7Qi+n>

constrained by d(gj_1,0;) = ¢;. The finite accepts the stings s according to the rule,

M(s) T q0i>qfwithqf€F
8 =
F else

where qq is the start state of the finite automata.

Definition 1.1. A set S C ¥* is a regular language if there exists a Finite Automata
M such that (s € §) = M(s).

Example: The language of strings over 0 and 1 with at least one 1 is regular.
The finite automata that accepts exactly such string is show in figure [Ial Note
that by exchanging the set of final and non-final states, the machine recognizes the
complement language — the strings that contain no 1’s, including the empty string.

Theorem 1.1. If S C ¥* is regular, so is the complement of .S in X*.

Exercise 1.1: Show that the set () is a regular language. That is, give a machine
M that accepts nothing, not even the empty string.

Exercise 1.2: Show that the set { € } is a regular language. That is, give a machine
M that accepts only the empty string.

Exercise 1.3: Show that the set X* is a regular language. That is, give a machine
M that accepts everything.

Exercise 1.4: Show that the set {s € ¥*||s| > 0} is a regular language. That is,
give a machine M that accepts any string but the empty string.

COMPUTATION: DAY 2 3

2. REGULAR LANGUAGES CLOSURE PROPERTIES

A set is a mathematical object having a membership predicate. A set defined in
any fashion that is sufficiently clear to determine membership. Given sets X, Y and
U such that X C U, these new sets are obviously allowed, as the construction of a
membership predicate follows easily,

XUY = {z]zeXorzeY}
XNY = {z|zeXandze€VY}
X\U = {uelUlugX}

XxY = {(r,y)|lreXandyeVY}

These are called, respectively, the union, intersection, complement and cartesian
product.

While all of these should be familiar constructions, the Kleene Star is very impor-
tant for us, and maybe be less familiar,

X =pUXUXxX)UX xXxX)U...=JX
=0

We do not doubt the existence of such a set, because for an = of length i, we
already have the predicate for x € X*.

The free algebra on the set X has as values sets of strings o € ¥*, including the
empty string ¢ where union of elements is addition and concatenation is multiplica-
tion. The empty string is the unit for multiplication, and the empty set is the null
element for union. With these notions we have the concatenation of sets (elements
of the free algebra),

SoT ={st|seS,teT}

Regular languages are closed by these operations. We have already seen that if S
is a regular language then ¥* \ S, the complement of S, is a regular language. So
far, to prove a set regular, one must present a finite automata accepting exactly the
elements in the set. With closure properties a powerful new tool is available.

For instance, a singleton set is a regular language. Therefore by the closure by
union, we have that any finite set is a regular language.

Our plan is to prove union and intersection closure laws by introducing the product
machine. And to prove closure by concatenation and Kleene star by introducing a
nondeterministic version of the finite automata.

Exercise 2.1: Show that the set { s} for an s € ¥* is a regular language.

4 BURTON ROSENBERG UNIVERSITY OF MIAMI 21 MARCH 2025

%DO

|
=
I5
==t

(D

(A) Even ones (B) Even zeros

|l

¢) Both even

0

—@®—
1
(

5
I\
®

—_
_
—_
_

_0 .
“—

®
s
®

—~

D) Either even

FIGURE 2. Even and odd parity of 1’s and 0’s

3. THE PRODUCT MACHINE CONSTRUCTION

Theorem 3.1. If S, T C ¥* are regular languages, so are SUT and SNT.

Proof: This is a proof by example, and I owe this nice example and the graphic
depiction to Wayne Goddard of Clemson University. The languages,
Ly = {o€{0,1}"]| there are an even number of 1’s in o }

Ly = {o€{0,1}"]| there are an even number of 0’s in o }

are regular, with the machine M in figure 2af such that £(M;) = L; and machine
M, in figure 2b|such that L(M;y) = Ls.
We describe the construction of M3 shown in figure [2¢| such that,

E(Mg) == L1 ﬂ LQ,

which would prove that the language L; N Lo is regular.

A string is in both languages when the two machines that recognize the languages
are started together, and move together on a letter by letter basis, arriving both in
a final state. The two machine conceptually run in parallel. We simulate the pair of

COMPUTATION: DAY 2 5

machines with a single machine whose state set is the cartesian product of the state
sets of the two machines,
Q3 = Q1 X Q2.
Then for any ¢ € Qj3, it is written as ¢ = (¢1,¢2), and means that in a parallel
execution, M; would be in ¢; and M, would be in gs.
The transition function folds into a single machine the transitions of the two com-
ponent machines,

53((1) = 53((611,(]2)) = (51(Q1)752(Q2)) = q’.

and the accepting states are only those where, when written in the two components,
each the first and second component are accepting for their respective machines,

F3:F1XF2

And that’s the construction for the intersection.
For the union, all is the same except we accept if at least one of the first or the
second component is accepting in it’s respective machine,

F, = (F1 X QQ) U (Ql X Fg)
and this is the machine of figure 2d| O

3.1. Second example of the product machine construction. Let S; be the set
of strings containing 00, and Sy be the set of strings ending in a 1. The product
construction is given accepting the language S; N Ss.

1

—(V== (==

Accepts strings over { 0,1} containing the sequence 00.

%:)
:>

6 BURTON ROSENBERG UNIVERSITY OF MIAMI 21 MARCH 2025

Accepts strings over {0, 1} ending with a 1.

0 0 0

CQZQ/QD

The product of the above two machines, with final state to accept the intersection.

3.2. Discussion on intersection or union. The machines produced by the prod-
uct construction is a general construction, that can be performed mechanically.
Think of a machine transformer 7 that takes machine arguments and gives a machine
result,

T(Ml, MQ) = M3 such that £(M3) = E(Ml) N £<M2>

because this transformer is the proof.

While completely general, the construction has many more states than either of
the starting machines. The number of the states is the product of the number of
states of the two machines. If we want to accept strings with opposite parity of
0’s and 1’s, this could be accomplished final state set { eD,dF }. However, there is
another approach.

Theorem 3.2. The language
{o € {0,1}|parity of 1’s differs from parity of 0’s }

and be recognized by a machine with two states.

Proof: Let [by the length of o, [; be the number of 1’s in ¢, and [y be the number
of 0’s in ¢. Then from,

l == lo + ll
we conclude that if [is odd, then one of [y and [; is odd and the other even, so ¢ is
in the language. However if [is even then [y, [; are both even or both odd, so o is

not in the language. So the language is the same as the language of the parity of the
length of o. U

COMPUTATION: DAY 2 7

0,1
1 1 %@<—

(A) Using 4 states (B) Using 2 states

FIGURE 3. Parity of 1’s and 0’s differ

4. NONDETERMINISM

The nondeterministic machine allows the machine to consider alternatives in how
it continues its computation. It is an interesting idea with applications across many
types of algorithms. Probabilistic algorithms uses the alternatives by tossing a coin,
and the program’s result becomes a random variable. The result is now a function of
input and the coin tosses. The output has a probability distribution inherited from
the probability distribution of the randomness and how it is used.

In finite automata, the result is still binary —a string is either in a set or not in a
set. However a guess and check mindset appears. Rather than proving that a string
is in a set, a alleged proof is given to the automata and the automata verifies that the
proof is correct. Note however, that for finite automata, the nondeterminism is only
a shortcut. We shall introduce and use nondeterministic machines and then show
that any set recognized by a nondeterministic finite automata can be recognized by
a deterministic finite automata. However, the deterministic automata might use a
great deal more states.

There are two elements to nondeterminism, € edges and multiple paths. We intro-
duce these one at a time.

4.1. Nondeterminism: ¢ edges.
Theorem 4.1. If S, T C Y¥* are regular languages, so is SoT.

The proof of this theorem is added by the introduction of a curious sort of machine
called the nondeterministic finite automata. The motivating example will be the

8 BURTON ROSENBERG UNIVERSITY OF MIAMI 21 MARCH 2025

O [©] [[

o, [L, [
—O0—0 —0O=—0

(A) odd black (B) odd white

(0] O [[

A, A AR
—O=0-+O==0

(C) concatenation finite automata

FIGURE 4. Non-deterministic solution with an € move

concatenation of the two languages,

S = {oe€{e 0}] string o has an odd number of e }
T = {o€{e,0}| string o has an odd number of o }
R = SoT

and the string,

p:.O0.0.0.00.
and p € R because,

p=(e0)(cecececce)=(eccece)(cecoe)

but for no other subdivisions of p into two strings. The question for a finite state
automata is how is it to know where to parse p.

The machines are connected by a special edge marked with the symbol € that does
not consume a character and is non-deterministically followed, in fact followed at
exactly the right moment in the computation to provide a proof that a string is in
the language. For instance, the machine would opt to take the € edge after the first
white item, or would opt to take the € edge immediately after the third black item.

Note as well, if the string is not in the language the ¢ edge will not cause the
string to be accepted inappropriately. The computation before the use of the edge
must be a string in S and the computation must continue after the use of the edge
to demonstrate the remainder of the string is in 7'.

COMPUTATION: DAY 2 9

0,1 0,1

[[
O—0—0—0—0

(A) non-deterministic

0,1

10)
OO 0-L0-10
_/\/

0 0

(B) deterministic

FIGURE 5. Matching the pattern 1011, using non-determinism

4.2. Nondeterminism: multiple edges. The non-determinist finite automata we
are imagining can also have multiple outgoing edges from a state labeled with the
same letter. In this case, the non-deterministic choice is made on which edge to take.

In figure is a non-deterministic machine for matching the pattern 1011 any-
where in a string. The assuming the pattern is in the string, the machine non-
deterministically guesses its location. It loops at the start state until reaching the
start of the pattern and then proceeds with the four state transitions, ending in an
absorbing final state.

If the pattern is not in the string, any attempt to pass from the start to the final
state will get to a failure to pass to the next state, formally said, zero outgoing arrows
for the letter, and that branch of the computation will fail.

A deterministic machine for the same language is given in figure[5bl It might come
as a surprise how tricky the transition function is.

5. FORMAL DEFINITION OF NONDETERMINISTIC FINITE AUTOMATA

Definition 5.1. A nondeterministic finite automata is a five tuple (Q,%,0,q, F')
where () is a finite set of states, Y is a finite alphabet of a free algebra, ¢ € @) is the
start state and I C @ is the set of accepting or final states, and,

0: QxX. — PQ)
is the transition function from states and the input alphabet augmented by the
symbol for the empty string of the free algebra,

Ye=2XU{e}

10 BURTON ROSENBERG UNIVERSITY OF MIAMI 21 MARCH 2025

(where the symbol ¢ is assumed to be a fresh symbol, not appearing in) and P(Q)
is the set of subsets of ().

Definition 5.2. A computation of nondeterministic machine M on a string o € X*
is a sequence of states

(¢) =a1,q2,. ¢ With ¢; € Q
and a o’ € X7,
o' =01,09,...,0, Where 0’ =0
such that for every applicable 7,
Gi+1 € 6(qi, 03)-
We denotate this computation as ¢; = g,,.

Definition 5.3. The language of the nondeterministic finite automata M = (Q, %, 6, qs, F' }
is,
L(M) = {0 € ¥* | there exists a computation ¢, = ¢; with q; € F'}

5.1. Asymmetry of accepting and non-accepting. A deterministic machine has
only one computation path that serves two ends — it shows when a string is accepted
and when a string is rejected.

A non-deterministic machine only demonstrates when a string is in the language,
by providing a computation path that accepts the string. In general, there will be
no single computation that rejects the string.

5.2. Non-constructive language. A deterministic machine is a recipe for creating
a computation. The non-deterministic machine simply claims that there exists a
computation, without asking how that computation was chosen.

5.3. DFA’s are NFA’s too. A deterministic finite automata (DFA) is a nondeter-
ministic finite automata (NFA) when the NFA has the following two qualities,

(1) There are no € edges, Vq € @, |d(q,¢)| = 0.

(2) There is exactly one choice for any other edge, Vg € Q,0 € X,(6(q,0) | = 1.

Hence NFA’s can recognize all regular languages.

6. THE POWER SET CONSTRUCTION

An NFA can recognize all regular languages. We now set out to show that any
language recognized by an NFA is regular. This is shown by building an DFA from the
NFA that simulates in one computation path the trajectory of multiple computation
paths in the NFA.

The diagrams for a DFA computation consisted of a single token, initially placed on
the start node and moved along edges from node to node according to the consumed

COMPUTATION: DAY 2 11

letter. If we allow tokens to be created and discarded, so that many tokens can be
placed on many nodes, we can visualize the collection of all possible computations
each step of the way. As the token meets several possible next moves, it spawns new
tokens and takes them all.

We can then build a DFA where the states are the configuration of tokens on the
NFA. That is, each state in the simulating DFA represents a subset of the states of
the NFA — those with tokens on them. With the NFA,

N: <Q7E757q07F>

we construct a DFA,
M = <Q/7 E? 5/7 QQ7 F/>

Where @' = P(Q), the power set of @, that is the set of all subsets of Q.

Given a state ¢’ € Q' it corresponds to a set of states)’ that have tokens on them
in N. Given a letter o, each token ¢’ € @)’ removed and replaced with tokens on all
of §(¢’,0). For a deterministic machine, this is not a set but a single token, so the
effect is the token “moves” to the prescribed state. In the case of a non-deterministic
machine, the old token is discarded and new tokens a placed on each of several states,
or no state. If 6(¢/,0) = () then this computation path had ended.

Hence, the totality of new tokens given in response to letter o with tokens on all
sets in Q' is,

R={]d(q0).
qeQ’

But we need to consider € edges as well. To follow all possible computation paths, it
must be that if the set () contains a state ¢’, and there are £ edges leaving ¢', tokens
must all be on everything in §(¢/,). This brings us to the definition of the e-closure
operator,

Definition 6.1. Given an NFA M = (Q, %, 6, q,, F' } and a set of states S C @, the
e-closure of S,

E(S) : P(Q) = P(Q)
is the smallest subset of () such that,

(1) 5 ¢ E(S),
(2) and Vq € E(S5), 6(q,e) C E(S).

It is called a closure operator because E(E(S)) = E(S).

Theorem 6.1. The e-closure operator commutes with set union, F(AUB) = E(A)U
E(B).

12 BURTON ROSENBERG UNIVERSITY OF MIAMI 21 MARCH 2025

e e

FIGURE 6. Power construction applied to figure

Theorem 6.2. Given a nondeterministic finite automata N = (Q, %, 4, q,, F') the
deterministic finite automata M = (@', %,d,q,, F') simulates N, where the state
set, the initial and final states are,

Q = PQ)

4% = E({¢})

F'={deqQ|Fnd#0}
and the transition function for ¢’ € @’ is,

(¢ 0)=E (U é(q. 0))

q€q’

Proof: It is best that the reader think this through for themselves. 0]
Despite being a lower case letter, ¢’ is a set. In M it is a state, but it is a state
representing a set of states in the machine N. Since ¢’ € P(Q) then any g € ¢’ is a

q€ Q.
7. EXAMPLES OF THE POWER SET CONSTRUCTION

The power set construction is applied to NFA of [dd resulting in the DFA of [6]
There are some interesting discoveries in the result. Although there are 16 states in
the DFA, only 6 are shown, for only those matter. The rest are configurations of
tokens that are never achieved in normal operation.

COMPUTATION: DAY 2 13

Also, the two leftmost states could be collapsed into a single state without a
change to the language, as they are both final states. This means that there are
certain prefixes that place the string in the language not matter what follows. The
state diagram shows that the simplest such prefix is eo. The state diagram also
shows that there are arbitrarily long strings containing both colors that are not in
the language.

	1. Finite Automata and Regular Languages
	2. Regular Languages Closure Properties
	3. The product machine construction
	3.1. Second example of the product machine construction
	3.2. Discussion on intersection or union

	4. Nondeterminism
	4.1. Nondeterminism: edges
	4.2. Nondeterminism: multiple edges

	5. Formal definition of nondeterministic finite automata
	5.1. Asymmetry of accepting and non-accepting
	5.2. Non-constructive language
	5.3. DFA's are NFA's too

	6. The power set construction
	7. Examples of the power set construction

