Theory of Computation: Problem Set 1

Name:

1. Prove by induction that,

$$
1^{3}+2^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

This problem is from André Weil, Number Theory for Beginners.
2. You shall prove using the steps below, that for p and odd prime, p divides $2^{p}-2$. For instance, for $p=3$, then $2^{3}-2=6$, and 6 is divisible by 3 . This proof is from the book Shape by Jordan Ellenberg. I will walk you through the proof.
Consider a necklace with n beads, and the beads are either white or black. To keep track, let the beads be numbered $0,1,2, \ldots, n-1$. A coloring is a map from the integers 0 to $n-1$ to the set $\{0,1\}$. Consider action σ_{1} of rotating necklace one position clockwise,

$$
\left(\sigma_{1} C\right)(i)=C((i-1) \bmod n)
$$

Define $\sigma_{i}=\sigma_{1} \circ \sigma_{i-1}$ for $i>1$, and σ_{0} to be the identity.
Example: The all white necklace is the map $C_{w}(i)=0$ for all i, and all black is $C_{b}(i)=1$ for all i. Since it makes no matter on a necklace of one color if it beads are moved forward $\sigma_{i} C_{w}=C_{w}$ and $\sigma_{i} C_{b}=C_{b}$ for all i.

Example: For each δ there is a necklace white beads except bead δ is black,

$$
C_{\delta}(i)= \begin{cases}1 & \text { if } i=\delta \\ 0 & \text { else }\end{cases}
$$

Then $\sigma_{i} C_{\delta}=C_{i+\delta}$.
We define the orbit \mathcal{O} of a coloring to all possible colorings by rotations from that coloring,

$$
\mathcal{O}(C)=\left\{\sigma_{i}(C) \mid i=0,1, \ldots, n-1\right\}
$$

Examples: The orbit of C_{w} has only one coloring it it. The orbit of a C_{δ} has n colorings in it.

An illuminating case is for $n=4$ (not prime) and the coloring,

$$
C(i)= \begin{cases}1 & \text { if } i=0 \text { or } 2 \\ 0 & \text { else }\end{cases}
$$

Then $\mathcal{O}(C)=\left\{C, \sigma_{1} C\right\}$.
(a) List all orbits for a necklace with 4 beads.

Hint: The sizes of the orbits are 1, 1, 2, 4, 4 and 4.
(b) List all orbits for a necklace with 5 beads.
(c) Consider the minimum integer $i>0$ such that for a coloring $C, \sigma_{i} C=C$. Prove that i divides n. Hint: If $\sigma_{i} C=C$ then $\sigma_{2 i} C=C$ and certainly $\sigma_{n} C=C$.
(d) For n a prime, prove n divides $2^{n}-2$.

Hint: If n is a prime, what are the allowable orbit sizes, and how does this group up the 2^{n} different colorings into orbits.
3. We will prove the method by which ancient mathematicians calculated the square root using a ruler and compass construction. Let $x<1$ be a length.
(a) Using a ruler, draw a line $A C$ that is divided point X such that the length of $A X$ is x and the length of $X C$ is 1 .
(b) Draw a circle with $A C$ as the diameter. This can be done by bisecting $A C$ and then setting the compass down with its point on the point of bisection and pencil on A or C.
(c) At point X erect a perpendicular. This can be done with a ruler and compass construction.
(d) The length $X B$ is the square root of the length $A X$.

I will walk you through the proof in three steps.

Step 1: Prove that in the following diagram, $\alpha=2 \beta$.

Hint: There is an isosceles triangle. Remember that the angles of a triangle add up to π.

Step 2: Prove that angle $A B C$ is a right angle.

Hint: The line from B through the center O of the circle gives angle $A B C$ as the sum of two angles $A B O$ and $O B C$, for which step 1 applies.

Step 3: Show $x=y^{2}$, where $x=|A X|$ and $y=|B X|$.

Hint: From the right triangle $A B C$ we have $|A B|^{2}+|B C|^{2}=|A C|^{2}$. Another Hint: From the right triangle $A B X$ we have another expression for $|A B|^{2}$.
Another Hint: $|A C|^{2}=(x+1)^{2}$.

