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Mac OS X supports a number of application environments, each with its own runtime rules,
conventions, and file formats. In Mac OS X, kernel extensions, command-line tools, applications,
frameworks, and libraries (shared and static) are implemented using Mach-O (Mach object) files.

The Mac OS X runtime architecture dictates how object files are laid out in the filesystem and how
programs communicate with the kernel. The object file format used in Mac OS X is Mach-O .

A Mach-O file has the following regions of data (the complete format is described in Mac OS X ABI
Mach-O File Format Reference):

 ■ Header: Specifies the target architecture of the file, such as PPC, PPC64, IA-32, or x86-64.

 ■ Load commands: Specify the logical structure of the file and the layout of the file in virtual
memory.

 ■ Raw segment data: Contains raw data for the segments defined in the load commands.

The following list describes other runtime environments supported in Mac OS X:

 ■ Classic is a Mac OS X application that runs Mac OS 9 within its address space and provides
bridging services that allow Mac OS X to interact with Mac OS 9 applications. Both classic 68K
applications and PowerPC Code Fragment Manager (CFM) applications can run under Mac OS
9 in Classic. (Mac OS 9 does not support the 68K variant of Code Fragment Manager, so you
cannot run CFM-68K applications in Mac OS X.)

 ■ LaunchCFMApp is a command-line tool that runs programs created for the PowerPC Code
Fragment Manager. The file format used by such programs is called Preferred Executable Format
(PEF). Carbon provides bridging for Code Fragment Manager applications that allows them to
link to Mach-O–based code, but—for ease of debugging if for no other reason—it’s generally a
good idea to use Mach-O for Carbon applications.

 ■ The HotSpot Java virtual machine is a Mac OS X application that executes Java bytecode
applications and applets.

 ■ The Mac OS X kernel supports kernel extensions (KEXTs), which are static Mach-O executable
files that are loaded directly into the address space of the kernel. Because errant code can write
directly to memory used by the kernel, kernel extensions have the potential to crash the operating
system. You should generally avoid implementing functionality as kernel extensions if possible.

The Code Fragment Manager is documented in Mac OS Runtime Architectures, available from the
Apple Developer Connection website.
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This document discusses how you use the Mach-O file format. It describes what types of programs
you can build, how programs are loaded and executed, how you can change the way programs are
loaded and executed, how to load code at runtime, and how to load and link code at runtime. If you
create or load bundles, shared libraries, or frameworks, you’ll probably want to read and understand
everything in this document.

Who Should Read This Document

If you write development tools for Mac OS X, you need to understand the information presented in
this document.

This document is also useful for developers of shared libraries and frameworks, and for developers
of applications that need to load code at runtime.

Organization of This Document

This document contains the following articles:

 ■ “Building Mach-O Files” (page 11) describes how Mac OS X programs are built and describes
the types of programs you can develop.

 ■ “Executing Mach-O Files” (page 17) provides an overview of the Mac OS X dynamic loading
process.

 ■ “Loading Code at Runtime” (page 25) describes how to use shared libraries and frameworks and
how to load plug-ins at runtime.

 ■ “Indirect Addressing” (page 31) explains how a Mach-O file refers to symbols defined in another
Mach-O file.

 ■ “Position-Independent Code” (page 37) discusses the method by which the dynamic linker loads
a region of code at a nonfixed virtual memory address.

 ■ “x86-64 Code Model” (page 43) describes differences in the Mac OS X x86-64 user-space code
model from the System V x86-64 code model.

This document also contains a revision history and an index.

See Also

You can access full reference documentation for the standard command-line development tools using
the man tool on the command line, or by choosing Open Man Page from the Xcode Help menu.

This document provides information on the Mach-O runtime architecture. It does not address the
following:

 ■ Descriptions of the data structures that make up a Mach-O file. You can find this information in
Mac OS X ABI Mach-O File Format Reference.
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 ■ If you are loading code at runtime but cannot or do not wish to use the CFBundle opaque type
or the NSBundle class, you should refer to Mac OS X ABI Dynamic Loader Reference.

 ■ The GCC C++ application binary interface—the specification of C++ class member layout,
function/method name mangling, and related C++ issues. This information is documented for
GCC 3.0 and later at http://www.codesourcery.com/cxx-abi/abi.html.

 ■ The GCC Objective-C data structures and dynamic runtime functions. For this information, see
The Objective-C 2.0 Programming Language.

 ■ The runtime environment of the Mac OS X kernel, Darwin. See Darwin Documentation for more
information.

For additional documentation on the standard Mac OS X developer tools, see Tools Documentation.

Source code from the Darwin project can be downloaded from http://developer.apple.com/darwin/.

You might also find the following books useful in conjunction with this document:

 ■ Mac OS Runtime Architectures, Apple Computer, Inc. Available at http://developer.ap-
ple.com/tools/mpw-tools/books.html. Documents the classic 68K segment loader architecture,
as well as the Code Fragment Manager Preferred Executable executable format used with classic
PowerPC applications and with many Carbon applications.

 ■ PowerPC Numerics in Performance Documentation. Describes the Mac OS X numerics environment.

 ■ Linkers and Loaders, John R. Levine, Morgan Kaufmann, 2000, ISBN 1-55860-496-0. Describes the
workings and operation of standard linkers from the earliest program loaders to the present
dynamic link editors. Among the contents of this book are discussions of the classic BSD a.out
format, the Executable and Linking Format (ELF) preferred by many current operating systems,
the IBM System/360 linker output format, and the Microsoft Portable Executable (PE) format.

 ■ System V Application Binary Interface AMD64 Architecture Processor Supplement. Found at
http://www.x86-64.org/documentation, this document describes the System V x86-64
environment, on which the Mac OS X x86-64 environment is based.

See Also 9
2006-11-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Mach-O Programming Topics

http://www.codesourcery.com/cxx-abi/abi.html
http://developer.apple.com/darwin/
http://developer.apple.com/tools/mpw-tools/books.html
http://developer.apple.com/tools/mpw-tools/books.html
http://www.x86-64.org/documentation


10 See Also
2006-11-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Mach-O Programming Topics



To create programs, developers convert source code to object files. The object files are then packaged
into executable code or static libraries. Mac OS X includes tools to transform source code into a running
application or a shared library that can be used by one or more applications.

This article loosely describes how Mac OS X programs are built, and discusses, in depth, the types of
programs you can build. It describes the tools involved in the Mach-O file build process, explains the
types of Mach-O files you can build, and talks about modules, which are the smallest linkable unit
of code and data in the Mac OS X runtime environment. It also describes static archive libraries, which
are files that package a set of modules.

The Tools—Building and Running Mach-O Files

To perform the work of actually loading and binding a program at runtime, the kernel uses the
dynamic linker (a specially marked dynamic shared library located at /usr/lib/dyld). The kernel
loads the program and the dynamic linker into a new process and executes them.

Throughout this document, the following tools are discussed abstractly:

 ■ A compiler is a tool that translates from source code written in a high-level language into
intermediate object files that contain machine binary code and data. Unless otherwise specified,
this book considers a machine-language assembler to be a compiler.

 ■ A static linker is a tool that combines intermediate object files into final products (see “The
Products—Types of Mach-O Files You Can Build” (page 13)).

The Xcode Tools CD contains several command-line tools (which this document refers to collectively
as the standard tools) for building and analyzing your application, including compilers and ld, the
standard static linker. Whether you use the Xcode application, the standard command-line tools, or
a third-party tool set to develop your application, understanding the role of each of the following
tools can enhance your understanding of the Mach-O runtime architecture and facilitate communication
about these topics with other Mac OS X developers. The standard tools include the following:

 ■ The compiler driver, /usr/bin/gcc, contains support for compiling, assembling, and linking
modules of source code from the C, C++, and Objective-C languages. The compiler driver calls
several other tools that implement the actual compiling, assembling, and static linking functionality.

The Tools—Building and Running Mach-O Files 11
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The actual compiler tools for each language dialect are normally hidden from view by the compiler
driver; their role is to transform input source code into assembly language for input to the
assembler.

 ■ The C++ compiler driver, /usr/bin/c++, is like /usr/bin/cc but automatically links C++ runtime
functions into the output file (to support exceptions, runtime type information and other advanced
language features).

 ■ The assembler, /usr/bin/as, creates intermediate object files from assembly language code. It
is primarily used by the compiler driver, which feeds it the assembly language source generated
by the actual compiler.

 ■ The static linker, /usr/bin/ld, is used by the compiler driver (and as a standalone tool) to combine
Mach-O executable files. You can use the static linker to bind programs either statically or
dynamically. Statically bound programs are complete systems in and of themselves; they cannot
make calls, other than system calls, to frameworks or shared libraries. In Mac OS X, kernel
extensions are statically bound, while all other program types are dynamically bound, even
traditional UNIX and BSD command-line tools. All calls to the Mac OS X kernel by programs
outside the kernel are made through shared libraries, and only dynamically bound programs can
access shared libraries.

 ■ The library creation tool, /usr/bin/libtool, creates either static archive libraries or dynamic
shared libraries, depending on the parameters given. libtool supersedes an older tool called
ranlib, which was used in conjunction with the ar tool to create static libraries. When building
shared libraries, libtool calls the static linker (ld).

Note: There is also a GNU tool named libtool, which allows portable source code to build libraries
on various UNIX systems. Don’t confuse it with Mac OS X libtool; while they serve similar purposes,
they are not related and they do not accept the same parameters.

Tools for analyzing Mach-O files include the following:

 ■ The /usr/bin/lipo tool allows you to create and analyze binaries that contain images for more
than one architecture. An example of such a binary is a universal binary. Universal binaries can
be used in PowerPC-based and Intel-based Macintosh computers. Another example is a PPC/PPC64
binary, which can be used in 32-bit PowerPC–based and 64-bit PowerPC–based Macintosh
computers.

 ■ The file-type displaying tool, /usr/bin/file, shows the type of a file. For multi-architecture
files, it shows the type of each of the images that make up the archive.

 ■ The object-file displaying tool, /usr/bin/otool, lists the contents of specific sections and segments
within a Mach-O file. It includes symbolic disassemblers for each supported architecture and it
knows how to format the contents of many common section types.

 ■ The page-analysis tool, /usr/bin/pagestuff, displays information on each logical page that
compose the image, including the names of the sections and symbols contained in each page.
This tool doesn’t work on binaries containing images for more than one architecture.

 ■ The symbol table display tool, /usr/bin/nm, allows you to view the contents of an object file’s
symbol table.

12 The Tools—Building and Running Mach-O Files
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The Products—Types of Mach-O Files You Can Build

In Mac OS X, a typical application executes code that originates from many types of files. The main
executable file usually contains the core logic of the program, including the entry point main function.
The primary functionality of a program is usually implemented in the main executable file’s code.
See “Executing Mach-O Files” (page 17) for details. Other files that contain executable code include:

 ■ Intermediate object files. These files are not final products; they are the basic building blocks of
larger object files. Usually, a compiler creates one intermediate object file on output for the code
and data generated from each input source code file. You can then use the static linker to combine
the object files into dynamic linkers. Integrated development environments such as Xcode usually
hide this level of detail.

 ■ Dynamic shared libraries. These are files that contain modules of reusable executable code that
your application references dynamically and that are loaded by the dynamic linker when the
application is launched. Shared libraries are typically used to store large amounts of code that
are usable by many applications. See “Using Shared Libraries and Frameworks” (page 25) in
“Loading Code at Runtime” (page 25) for more information.

 ■ Frameworks. These are directories that contain shared libraries and associated resources, such
as graphics files, developer documentation, and programming interfaces. See “Using Shared
Libraries and Frameworks” (page 25) in “Loading Code at Runtime” (page 25) for more
information.

 ■ Umbrella frameworks. These are special types of frameworks that themselves contain more than
one subframework. For example, the Cocoa umbrella framework contains the Application Kit
(user interface classes) framework, and the Foundation (non–user-interface classes) framework.
See “Using Shared Libraries and Frameworks” (page 25) in “Loading Code at Runtime” (page
25) for more information.

 ■ Static archive libraries. These files contain modules of reusable code that the static linker can
add to your application at build time. Static archive libraries generally contain very small amounts
of code that are usable only to a few applications, or code that is difficult to maintain in a shared
library for some reason. See “Static Archive Libraries” (page 14) for more information.

 ■ Bundles. These are executable files that your program can load at runtime using dynamic linking
functions. Bundles implement plug-in functionality, such as file format importers for a word
processor. The term bundle has two related meanings in Mac OS X:

 ❏ The actual object file containing the executable code

 ❏ A directory containing the object file and associated resources. For example, applications in
Mac OS X are packaged as bundles. And, because these bundles are displayed in the Finder
as a single file instead of as a directory, application bundles are also known as application
packages. A bundle need not contain an object file. For more information on bundles, see
Bundle Programming Guide.

The latter usage is the more common. However, unless otherwise specified, this document refers
to the former.

See “Loading Plug-in Code With Bundles” (page 29) in “Loading Code at Runtime” (page 25)
for more information.
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 ■ Kernel extensions are statically bound Mach-O files that are packaged similarly to bundles.
Kernel extensions are loaded into the kernel address space and must therefore be built differently
than other Mach-O file types; see the kernel documentation for more information. The kernel’s
runtime environment is very different from the userspace runtime, so it is not covered in this
document.

To function properly in Mac OS X, all object files except kernel extensions must be dynamically
bound—that is, built with code that allows dynamic references to shared libraries.

By default, the static linker searches for frameworks and umbrella frameworks in
/System/Library/Frameworks and for shared libraries and static archive libraries in /usr/lib.
Bundles are usually located in the Resources directory of an application package. However, you can
specify the pathname for a different location at link time (and, for development purposes, at runtime
as well).

Modules—The Smallest Unit of Code

At the highest level, you can view a Mac OS X shared library as a collection of modules. A module
is the smallest unit of machine code and data that can be linked independently of other units of code.
Usually, a module is an object file generated by compiling a single C source file. For example, given
the source files main.c, thing.c, and foo.c, the compiler might generate the object files main.o,
thing.o, and foo.o. Each of these output object files is one module. When the static linker is used
to combine all three files into a dynamic shared library, each of the object files is retained as an
individual unit of code and data. When linking applications and bundles, the static linker always
combines all the object files into one module.

The static linker can also reduce several input modules into a single module. When building most
dynamic shared libraries, it’s usually a good idea to do this before creating the final shared library
because function calls between modules are subject to a small amount of additional overhead. With
ld, you can perform this optimization by using the command line as follows:

ld -r -o things.o thing1.o thing2.o thing3.o

Xcode performs this optimization by default.

Static Archive Libraries

To group a set of modules, you can use a static archive library, which is an archive file with a table
of contents entry. The format is that used by the ar command. You can use the libtool command
to build a static archive library, and you can use the ar command to manipulate individual modules
in the library.
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Note: Mac OS X libtool is not GNU libtool, see “The Tools—Building and Running Mach-O
Files” (page 11) for details.

In addition to Mach-O files, the static linker and other development tools accept static archive libraries
as input. You might use a static archive library to distribute a set of modules that you do not want to
include in a shared library but that you want to make available to multiple programs.

Although an ar archive can contain any type of file, the typical purpose is to group several object
files together with a table of contents, forming a static archive library. The static linker can link the
object files stored in a static archive library into a Mach-O executable or dynamic library. Note that
you must use the libtool command to create the static library table of contents before an archive
can be used as a static archive library.

Note: For historical reasons, the tar file format is different from the ar file format. The two formats
are not interchangeable.

The ar archive file format is described in “Static Archive Libraries” in Mac OS X ABI Mach-O File
Format Reference.

With the standard tools, you can pass the -static option to libtool to create a static archive library.
The following command creates a static archive library named libthing.a from a set of intermediate
object files, thing1.o and thing2.o:

libtool -static thing1.o thing2 -o libthing.a

Note that if you pass neither -static nor -dynamic, libtool assumes -static. It is, however,
considered good style to explicitly pass -static when creating static archive libraries.

Static Archive Libraries 15
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To perform their objectives, programs must execute processes and link to dynamic shared libraries.
To work with other libraries or modules, your application must define references to symbols in those
modules; those references are resolved at runtime. At runtime the symbol names of all the modules
your application uses live in a shared namespace, similar to a directory. To allow for future
enhancements to applications as well as the libraries they use, application and library developers
must ensure the names they choose for their functions and data do not conflict with the names used
in other modules.

The two-level namespace feature of Mac OS X v10.1 and later adds the module name as part of the
symbol name of the symbols defined within it. This approach ensures a module’s symbol names don’t
conflict with the names used in other modules. To perform special tasks or to provide an enhanced
user experience, your application may need to launch other applications or create processes to run
command-line tools. To maintain a high degree of interoperability and provide a consistent user
experience, your applications should use specific system functions and frameworks to execute processes
and launch applications.

This article provides an overview of the Mac OS X dynamic loading process. The process of loading
and linking a program in Mac OS X mainly involves two entities: the Mac OS X kernel and the dynamic
linker. When you execute a program, the kernel creates a process for the program, and loads the
program and the dynamic linker shared library, usually /usr/lib/dyld, in the program’s address
space. The kernel then executes code in the dynamic linker that loads the libraries the program
references. This article also describes the visibility symbols in a module get depending on how they
are defined and the process of resolving symbol references at runtime.

Launching an Application

When you launch an application from the Finder or the Dock, or when you run a program in a shell,
the system ultimately calls two functions on your behalf, fork and execve. The fork function creates
a process; the execve function loads and executes the program. There are several variant exec functions,
such as execl, execv, and exect, each providing a slightly different way of passing arguments and
environment variables to the program. In Mac OS X, each of these other exec routines eventually calls
the kernel routine execve.

When writing a Mac OS X application, you should use the Launch Services framework to launch
other applications. Launch Services understands application packages, and you can use it to open
both applications and documents. The Finder and the Dock use Launch Services to maintain the
database of mappings from document types to the applications that can open them. Cocoa applications
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can use the class NSWorkspace to launch applications and documents; NSWorkspace itself uses Launch
Services. Launch Services ultimately calls fork and execve to do the actual work of creating and
executing the new process. For more information on Launch Services, see Launch Services Programming
Guide.

Forking and Executing the Process

To create a process using BSD system calls, your process must call the fork system call. The fork call
creates a logical copy of your process, then returns the ID of the new process to your process. Both
the original process and the new process continue executing from the call to fork; the only difference
is that fork returns the ID of the new process to the original process and zero to the new process.
(The fork function returns -1 to the original process and sets errno to a specific error value if the
new process could not be created.)

To run a different executable, your process must call the execve system call with a pathname specifying
the location of the alternate executable. The execve call replaces the program currently in memory
with a different executable file.

A Mach-O executable file contains a header consisting of a set of load commands. For programs that
use shared libraries or frameworks, one of these commands specifies the location of the linker to be
used to load the program. If you use Xcode, this is always /usr/lib/dyld, the standard Mac OS X
dynamic linker.

When you call the execve routine, the kernel first loads the specified program file and examines the
mach_header structure at the start of the file. The kernel verifies that the file appear to be a valid
Mach-O file and interprets the load commands stored in the header. The kernel then loads the dynamic
linker specified by the load commands into memory and executes the dynamic linker on the program
file.

The dynamic linker loads all the shared libraries that the main program links against (the dependent
libraries) and binds enough of the symbols to start the program. It then calls the entry point function.
At build time, the static linker adds the standard entry point function to the main executable file from
the object file /usr/lib/crt1.o. This function sets up the runtime environment state for the kernel
and calls static initializers for C++ objects, initializes the Objective-C runtime, and then calls the
program’s main function.

Finding Imported Symbols

When the dynamic linker loads a Mach-O file (which, for the purposes of this section, is called the
client program), it connects the file’s imported symbols to their definitions in a shared library or
framework. This section describes the process of binding the imported symbols in one Mach-O file
to their definitions in other Mach-O files. It also explains the process of finding a symbol. See also
“Loading Plug-in Code With Bundles” (page 29) in “Loading Code at Runtime” (page 25) for
information on finding symbols in plug-ins.
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Binding Symbols

Binding is the process of resolving a module’s references to functions and data in other modules (the
undefined external symbols, sometimes called imported symbols). The modules may be in the same
Mach-O file or in different Mach-O files; the semantics are identical in either case. When the application
is first loaded, the dynamic linker loads the imported shared libraries into the address space of the
program. When binding is performed, the linker replaces each of the program’s imported references
with the address of the actual definition from one of the shared libraries.

The dynamic linker can bind a program at several stages during loading and execution, depending
on the options you specify at build time:

 ■ With just-in-time binding (also called lazy binding), the dynamic linker binds a reference (and
all the other references in the same module) when the program first uses the reference. The
dynamic linker loads the shared libraries the client program depends on when the program is
loaded. However, the dynamic linker doesn’t bind the program’s references to symbols within
the shared libraries until the symbols are used.

 ■ With load-time binding, the dynamic linker binds all the imported references immediately upon
loading the program, or, for bundles, upon loading the bundle. To use load-time binding with
the standard tools, specify the -bind_at_load option to ld to indicate that the dynamic linker
must immediately bind all external references when the file is loaded. Without this option, ld
sets up the output file for just-in-time binding.

 ■ With prebinding, a form of load-time binding, the shared libraries referenced by the program
are each prebound at a specified address. The static linker sets the address of each undefined
reference in the program to default to these addresses. At runtime, the dynamic linker needs only
to verify that none of the addresses have changed since the program was built (or since the
prebinding was recomputed). If the addresses have changed, the dynamic linker must undo the
prebinding by clearing the prebound addresses for all the undefined references and then proceed
as if the program had been just-in-time bound. Otherwise, it does not need to perform any action
to bind the program.

Prebinding requires that each framework specify its desired base virtual memory address and
that none of the prebound addresses of the loaded frameworks overlap. To prebind a file with
the standard tools, specify the -prebind option to ld.

 ■ Weak references, a feature introduced in Mac OS X v10.2, is useful for selectively implementing
features that may be available on some systems, but not on others. This mode of binding allows
a program to optionally bind to specified shared libraries. If the dynamic linker cannot find
definitions for weak references, it sets them to NULL and continues to load the program. The
program can check at runtime to find out whether or not a reference is null and, if so, avoid using
the reference. You can specify both libraries and individual symbols to be weakly referenced.

Note: The Mac OS X weak linking design is derived from the classic Mac OS Code Fragment Manager
implementation of weak linking. If you are familiar with the ELF executable format, you may be used
to a different meaning for the terms weak symbol or weak linking, where a weak symbol may be
overridden by a nonweak symbol. The equivalent Mac OS X feature is the weak definition—see “Scope
and Treatment of Symbol Definitions” (page 21) for more information

If no other type of binding is specified for a given library, the static linker sets up the program’s
undefined references to that library to use just-in-time binding.

Finding Imported Symbols 19
2006-11-28 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Executing Mach-O Files



Searching for Symbols

A symbol is a generic representation of the location of a function, data variable, or constant in an
executable file. References to functions and data in a program are references to symbols. To refer to
a symbol when using the dynamic linking routines, you usually pass the name of the symbol, although
some functions also accept a number representing the ordering of the symbol in the executable file.
The name of a symbol representing a function that conforms to standard C calling conventions is the
name of the function with an underscore prefix. Thus, the name of the symbol representing the
function main would be _main.

Programs created by the Mac OS X v10.0 development tools add all symbols from all loaded shared
libraries into a single global list. Any symbol that your program references can be located in any
shared library, as long as that shared library is one of the program’s dependent libraries (or one of
the dependent libraries of the dependent libraries).

Mac OS X v10.1 introduced the two-level symbol namespace feature. The first level of the two-level
namespace is the name of the library that contains the symbol, and the second is the name of the
symbol. With the two-level namespace feature enabled, when the static linker records references to
imported symbols, it records a reference to the name of the library that contains the symbol and the
name of the symbol. Linking your programs with the two level namespace feature offers two benefits
over the flat namespace:

 ■ Enhanced performance when searching for symbols. With the two-level namespace, the dynamic
linker knows exactly where to start looking for the implementation of a symbol. With a flat
namespace, the dynamic linker must search all the loaded libraries for the one that contains the
symbol.

 ■ Enhanced forward compatibility. In the flat namespace, two or more libraries cannot contain
symbols with different implementations that share the same name because the dynamic linker
cannot know which library contains the preferred implementation. This is not initially a problem,
because the static linker catches any such problems when you first build the application. However,
if the vendor of one of your dependent shared libraries later releases a new version of the library
that contains a symbol with the same name as one in your program or in another dependent
shared library, your program will fail to run.

Your application must link directly to the shared library that contains the symbol (or, if the library is
part of an umbrella framework, to the umbrella framework that contains it).

When obtaining symbols in a program built with the two-level namespace feature enabled, you must
specify a reference to the shared library that contains the symbols.

By default, the static linker in Mac OS X v10.1 and later uses a two-level namespace for all Mach-O
files.

Note: The Mac OS X two-level namespace feature is loosely based on the design of the Code Fragment
Manager’s namespace. A two-level namespace is approximately equivalent to the namespace used
to look up symbols in code fragments. Because Code Fragment Manager always requires an explicit
reference to the library in which a symbol should be found, there is no Code Fragment Manager
equivalent to a flat namespace search.

For programs that do not have a two-level namespace, you can tell the linker to define references to
undefined symbols even if the linker cannot find the library that contains them. When you build an
executable with such undefined symbols, you are making the assumption that one of the other files
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loaded as part of the executable file at runtime contains those symbols. Bundles and shared libraries
sometimes use this option to reference symbols defined in the main executable. However, this causes
you to lose the performance and compatibility benefits of two-level namespaces. It’s usually better
to explicitly link against an executable that defines the references. However, if you must link with
undefined references, you can do it by enabling the flat namespace feature and suppressing undefined
reference warnings, using the options -flat_namespace and -undefined suppress as in the following
command line:

ld -o my_tool -flat_namespace -undefined suppress peace.o love.o

When building executables with a two-level namespace, you can allow the remaining undefined
symbols to be looked up by the dynamic linker if the program is targeted for Mac OS X v10.3 and
later (the MACOSX_DEPLOYMENT_TARGET environment variable is set to 10.3 or higher). To take
advantage of this feature, use the -undefined dynamic_lookup option.

To build executables with a two-level namespace, the static linker must be able to find the source
library for each symbol. This can present difficulties for authors of bundles and dynamic shared
libraries that assume a flat, global symbol namespace. To build successfully with the two-level
namespace, keep the following points in mind:

 ■ Bundles that need to reference symbols defined in the program’s main executable must use the
-bundle_loader static linker option. The static linker can then search the main executable for
the undefined symbols.

 ■ Shared libraries that need to reference symbols defined in the program’s main executable must
load the symbol dynamically using a function that does not require a library reference, such as
dlsym or NSLookupSymbolInImage (Mac OS X ABI Dynamic Loader Reference).

Note: A two-level symbol namespace can be searched using functions for doing flat symbol searches.

Scope and Treatment of Symbol Definitions

Symbols in an object file may exist at several levels of scope. This section describes each of the possible
scopes that a symbol may be defined at, and provides samples of C code used to create each symbol
type. These samples work with the standard developer tools; a third party tool set may have different
conventions.

A defined external symbol is any symbol defined in the current object file, including functions and
data. The following C code defines external symbols:

int x = 0;
double y = 99 __attribute__((visibility("default"))); // GCC 4.0 only

An undefined external symbol is any symbol defined in a file outside of the current file. The following
C code defines two external symbols, a variable and a function:

extern int x;
extern void SomeFunction(void);
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A common symbol is a symbol that may appear in multiple intermediate object files. The static linker
permits multiple common symbol definitions with the same name in input files, and copies the one
with the largest size to the final product. If there is another symbol with the same name as a common
symbol, the static linker ignores the common symbol instead.

The standard C compiler generates a common symbol when it sees a tentative definition—a global
variable that has no initializer and is not marked extern. The following line is an example of a tentative
definition:

int x;

A multi-module shared library, which ld builds by default, cannot have common symbols. However,
you can build a shared library as a single module with the -single_module flag. To eliminate common
symbols in an existing shared library, you must either explicitly define the symbol (with an initialized
value, for example) in one of the modules in the shared library, or pass the -fno-common flag to the
compiler.

A private defined symbol is a symbol that is not visible to other modules. The following C code
defines a private symbol:

static int x;

A private external symbol is a defined external symbol that is visible only to other modules within
the same object file as the module that contains it. The standard static linker changes private external
symbols into private defined symbols unless you specify otherwise (using the -keep_private_externs
flag).

You can mark a symbol as private external by using the __private_extern__ keyword (which works
only in C) or the visibility("hidden") attribute (which works both in C and C++ with GCC 4.0),
as in this example:

__private_extern__ int x = 0; // C only
int y = 99 __attribute__((visibility("hidden"))); // C and C++, GCC 4.0 only

A coalesced symbol is a symbol that may be defined in multiple object files but that the static linker
generates only one copy of in the output file. This can save a lot of memory with certain C++ language
features that the compiler must generate for each individual object file, such as virtual function tables,
runtime type information (RTTI), and C++ template instantiations. The compiler determines which
constructs should be coalesced; no work on your part is required.

A weak reference is an undefined external symbol that need not be found in order for the client
program to successfully link. If the symbol does not exist, the dynamic linker sets the address of the
symbol to zero. Files with weak references can be used only in Mac OS X v10.2 and later. The following
C code demonstrates conditionalizing an API call using a weak reference:

/* Only call this API if it exists */
if ( SomeNewFunction != NULL )

SomeNewFunction();

To specify that a function should be treated as a weak reference, use the weak_import attribute on a
function prototype, as demonstrated by the following code:

void SomeNewFunction(void) __attribute__((weak_import));
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A coalesced weak reference is an undefined external reference to a symbol defined in multiple object
files. In Mac OS X v10.4 and later (with GCC 4.0 and later), you can specify that a symbol be made
into a coalesced weak reference by adding the weak attribute to the symbol’s declaration. For example:

void SomeNewFunction(void) __attribute__((weak));

Note: Programmers who use other operating systems may be familiar with the concept of symbols
that are marked with a COMDAT flag; a coalesced symbol is the Mac OS X equivalent feature.

A weak definition is a symbol that is ignored by the linker if an otherwise identical but nonweak
definition exists. This is used by the standard C++ compiler to support C++ template instantiations.
The compiler marks implicit—and not explicit—template instantiations as weak definitions. The static
linker then prefers any explicit template instantiation to an implicit one for the same symbol, which
provides correct C++ linking semantics. As with coalesced symbols, the compiler determines the
constructs that require the weak definitions feature; no work on your part is required.

Note: Files with weak definitions can be used only in Mac OS X v10.2 and later. The static linker
changes any weak definitions into nonweak definitions, so this is only a concern for intermediate
object files and static libraries that you wish to deploy on earlier versions of Mac OS X.

A debugging symbol is a symbol generated by the compiler that allows the debugger to map from
addresses in machine code to locations in source code. The standard compilers generate debugging
symbols using either the Stabs format or the DWARF format (supported in Xcode 2.4 and later). When
using the Stabs format, debugging symbols, like other symbols, are stored in the symbol table (see
“Symbol Table and Related Data Structures” in Mac OS X ABI Mach-O File Format Reference). But with
the DWARF format, debugging symbols are stored in a specialized segment: the __DWARF segment.
With DWARF you also have the option of storing debugging symbols in a separate debug-information
file, which reduces the size of the binary files while permitting a full debugging experience when the
corresponding debug-information files are available.
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You may need to use dynamic shared libraries, which store reusable code, in your applications to
take advantage of functionality used by more than one application. For example, when you develop
Cocoa applications, at a minimum your application links against the Foundation and Application Kit
frameworks. Through this practice, your program can automatically take advantage of improvements
in those frameworks as your application’s users update the system software in their computers. See
“The Products—Types of Mach-O Files You Can Build” (page 13) for more information on dynamic
shared libraries.

If you develop shared libraries and distribute them as framework bundles to be used by other
developers in their applications, you should ensure changes you make to the libraries (to implement
new features, for example) don’t break current versions of the applications that use them. You maintain
compatibility by exposing the same programming interface to client applications between upgrades
of the shared libraries.

When a change to your framework’s API is required to implement a feature, you should make available
in the same framework bundle the last version of the framework that exposes the API current client
applications expect, in addition to the version of the framework that exposes the new, incompatible
API. If you follow this guideline, developers of client applications don’t have to revise them every
time your framework’s API changes. And developers that choose to update their applications can
take advantage of the features you added to the framework. To ensure that earlier versions of your
framework’s client applications don’t break when the framework is updated, you must package the
shared libraries and their resources within the framework bundle in a way that allows earlier versions
of client applications to continue using the versions of the framework that they understand.

This article describes how you can load code at runtime. It shows the benefits of using shared libraries
and explains how they are packaged inside frameworks to maintain client-application compatibility
across updates to the frameworks. It also describes how the Mac OS X runtime environment takes
advantage of bundles to allow you to load plug-in code at runtime.

Using Shared Libraries and Frameworks

Programmers often refer to dynamic shared libraries using different names, such as dynamically linked
shared libraries, dynamic libraries, DLLs, dylibs, or just shared libraries. In Mac OS X, all these names refer
to the same thing: a library of code dynamically loaded into a process at runtime.
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Dynamic shared libraries allow the operating system as a whole to use memory efficiently. Each
process in Mac OS X has its own virtual address space. The Mac OS X kernel allows regions of logical
memory to be mapped into multiple processes at different addresses. The dynamic linker takes
advantage of this feature by mapping the same read-only copy of the shared library code into the
address space of each process. The result is that only one physical copy of a shared library is in memory
at any time, even though many processes may use it at the same time. Data, such as variables and
constants, contained by a shared library is mapped into each client process using the kernel’s
copy-on-write optimization capability. With copy-on-write, the data is shared among processes until
one of the processes attempts to change the data. At that point, the kernel creates a writable copy of
the data private to that process. The other processes continue to use the read-only shared copy. Thus,
additional memory for data is allocated only when absolutely necessary.

Dynamic shared libraries also provide a way for programs to seamlessly benefit from system upgrades.
When the system is upgraded, the shared libraries are updated, but the programs need not be. Since
they are dynamically bound to the shared libraries, the programs can continue to call the same
functions and the updated implementation of the shared libraries is executed. For more information
on dynamic-library development and usage, see Dynamic Library Programming Topics.

Maintaining Client Application Compatibility

This is an overview of various parameters that affect compatibility with client applications. You can
set these parameters at build time. For a more detailed discussion of this topic, see Dynamic Library
Design Guidelines in Dynamic Library Programming Topics.

Shared libraries have two version numbers, which allow you to create versions of a shared library
that are binary compatible (that is, they do not require client programs to be recompiled) with the
functions exported by the earlier versions of a library:

 ■ The current version of the library specifies the current version number of the library’s
implementation. A client program can examine this version number to find out the exact version
of the library, which can be useful for checking for bug fixes and feature additions. The shared
library can also examine the version number that the client program originally linked against,
which can be useful for maintaining backwards compatibility.

 ■ The compatibility version of the library specifies the version of the library’s API that the shared
library claims to be backward-compatible with. If the compatibility version of the shared library
is more recent than the version recorded with the client program, the program fails to link and
an error occurs.

The install name is the pathname used by the dynamic linker to find a shared library at runtime. The
install name is defined by the shared library and recorded into the client program by the static linker.

Packaging a Shared Library as a Framework

A framework is a shared library packaged with associated resources, such as headers, localized
strings, and documentation, installed in a standard folder hierarchy, usually in a standard location
in the file system. The folders usually contain related header files, documentation in any format, and
resource files. A framework may contain multiple versions of itself, and each version may have its
own set of resources, documentation, and header files.
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From a tools perspective, a framework is a shared library whose install name ends in the form
frameworkName.framework/Versions/versionName/frameworkName or the form
frameworkName.framework/frameworkName.

You create a framework by building a normal dynamic shared library into a folder with the same
name and the .framework extension. For example, to create a framework named Chaos, place a
dynamic shared library named Chaos in a folder called Chaos.framework. You can create other folders
inside this folder to store related resources, such as header files, documentation, and images (the
standard folder names for these are called, respectively, Headers, Documentation, and Resources).

You can locate private frameworks and shared libraries in an application package using a relative-path
install name beginning with @executable_path, such as
@executable_path/../Frameworks/MyFramework.framework. This is useful for sharing functionality
with plug-ins (bundles).

Apple follows a standard framework versioning convention, different from the shared library version
numbering system. By versioning your framework, you can ship older versions of your framework
alongside newer versions, to allow older clients to continue functioning, while still allowing you to
advance the design of the framework in ways not compatible with older clients.

To version your framework, create a parent folder inside the framework called Versions, create a
subfolder in Versions using a naming scheme of your choice, and build the framework shared library
and other folders in this subfolder. Then create symbolic links in the framework’s root folder to point
to the shared library and folders. When you need to create a version of your framework that is not
compatible with the previous version, build it into a new directory in the versions directory and
update the symlinks to point to the new version. When a client links to a versioned framework, the
install name recorded in the client executable includes the full path to the shared library executable,
and the dynamic linker, thus, loads only that version.

For example, a client links to a framework called Peace.framework, and the symlinks in
Peace.framework point to the latest version, which is named B.The install name of the framework
ends with Peace.framework/Versions/B/Peace. The static linker records this install name in the
client. When the client is loaded, the dynamic linker attempts to load the shared library with this
install name. Note that, while frameworks that ship with the system usually name successive versions
with consecutive letters of the English alphabet (A through Z), you can use any name you want.

A framework developer can build a simple, versioned framework in four steps:

1. Create the framework version directory.

2. Compile the framework executable into the framework version directory.

3. Create a symbolic link named Current that points to the framework version directory.

4. Create a symbolic link to the framework executable in the parent framework directory.

The shell commands in Listing 1 builds a framework named Bliss from the C source files Peace.c
and Love.c. The resulting framework has the install name Bliss.framework/Versions/A/Bliss.

Listing 1 Building a framework

gcc -c -o Peace.o Peace.c
gcc -c -o Love.o Love.c
mkdir -p Bliss.framework/Versions/A
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gcc -dynamiclib -o Bliss.framework/Versions/A/Bliss Peace.o Love.o
cd ./Bliss.framework/Versions && ln -sf A Current
cd ./Bliss.framework && ln -sf Versions/Current/Bliss Bliss

Listing 2 demonstrates how to create a private framework—that is, a framework located in an
application package. Specify the install name explicitly during the linking phase and prefix it with
@executable_path. The install name of the resulting framework is
@executable_path/../Frameworks/Bliss.framework/Versions/A/Bliss.

Listing 2 Building a private framework

mkdir -p Bliss.framework/Versions/A
gcc -c Peace.c Love.c
libtool -dynamic
-install_name @executable_path/../Frameworks/Bliss.framework/Versions/A/Bliss
-o Bliss.framework/Versions/A/Bliss Peace.o Love.o
-framework System

For detailed information about designing and using frameworks, see Framework Programming Guide.

Packaging Frameworks and Libraries Under an Umbrella
Framework

An umbrella framework is a framework that serves as the “parent” of a group of frameworks and
shared libraries that implement related functionality. Umbrella frameworks help manage extremely
large development projects with complex interdependencies, such as subsystems of Mac OS X itself.
For all other projects, a single framework should suffice (and is better for load-time performance).

To create an umbrella framework, you can take a normal framework and designate a subset of its
imported frameworks as subframeworks. The subframeworks themselves need not be aware that
they are part of the umbrella. With ld, you can use the -sub_umbrella option to designate a
subframework.

When your program links against an umbrella framework, it also implicitly links against all the
subframeworks. Symbols located in subframeworks of umbrella frameworks are recorded in the client
program as if they were implemented directly in the umbrella framework. This feature allows the
contents of the umbrella framework to change over time while preserving compatibility with older
client programs.

To ensure that clients link to the “parent” umbrella framework and not one of the subframeworks,
the subframework can be built with a special load command to prevent unauthorized linking. When
a client tries to link directly to such a subframework, the static linker produces an error. However,
the subframework can authorize specific clients to link against it, and all subframeworks of an umbrella
framework are implicitly authorized to link against each other. (Load commands are explained in
Mac OS X ABI Mach-O File Format Reference. The particular load commands referenced here are
documented as sub_framework_command and sub_client_command; ld generates them if given the
-sub_framework <parent_umbrella_name> and -sub_client <client_name> options.) Note that
these conventions are enforced at build time by the static linker but ignored by the dynamic linker
at runtime.
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You can also include libraries in umbrella frameworks. For example the Foundation framework
includes both the Objective-C runtime library (libobjc) as a sublibrary and the Core Foundation
framework as a subframework. You may build Foundation using a variation on the commands listed
in Listing 3.

Listing 3 Building a simple umbrella framework

mkdir Foundation.framework
gcc -dynamiclib -o Foundation.framework/Foundation -sub_umbrella CoreFoundation

-sub_library libobjc -framework CoreFoundation -lobjc Foundation.o

By convention, subframeworks of an umbrella framework live within the Frameworks directory in
the root directory of the umbrella framework, although this is obviously not a technical requirement.
For example, the Cocoa framework is an umbrella framework that includes the AppKit framework;
the AppKit framework is itself an umbrella framework that includes Foundation and Application
Services as subframeworks.

Loading Plug-in Code With Bundles

Bundles provide the Mac OS X mechanism for loading extension (or plug-in) code into an application
at runtime. Typically, a bundle links against the application binary to gain access to the application’s
exported API. Bundles can be—but are not required to be—packaged with resources, using the same
folder hierarchy as that of an application package. In some cases (depending on the code in the bundle),
bundles can also be unloaded.

Mac OS X supports several schemes that allow third-party developers to extend the capabilities of
your application by writing plug-in code that your program can load at runtime. Although you can
use any one of these plug-in schemes in any type of application, some are more suited to particular
situations than others. For example:

 ■ To load Objective-C classes at runtime, use the Foundation framework class NSBundle. NSBundle
provides general services for referring to a packaged program, whether the program is an
application or a plug-in.

 ■ To load C functions at runtime, use the Core Foundation framework object CFBundle, which, like
the NSBundle class, provides general services for referring to a packaged program, whether the
program is an application or a plug-in.

 ■ The Core Foundation framework object CFPlugin implements a small subset of the Microsoft
Component Object Model (COM) standard. COM allows you to instantiate C functions and data
in an object-oriented manner at runtime.

 ■ Carbon developers can also use Code Fragment Manager (CFM) to load code fragments updated
for Carbon from PEF files. For more information, see the Code Fragment Manager documentation.

 ■ In general, for applications or libraries targeted for Mac OS X v10.4 or later, use the dynamic
loader compatibility functions, defined in /usr/include/dlfcn.h, to load and link bundle files.
These functions are the preferred way to load code at runtime. They are particularly helpful when
porting UNIX tools that support plug-ins to Mac OS X. See “Dynamic Loader Compatibility
Functions” in Mac OS X ABI Dynamic Loader Reference for more information.
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Note: The dynamic linker in Mac OS X v10.0 causes your program to crash if you ask it to load
programs that are built with a two-level namespace hint table. By default, the static linker in Mach
OS X v10.0 creates bundles that do not include the two-level namespace hint table. If you want your
program to run in Mac OS X 10.0 and are developing in Mac OS X v10.1 or later, use the
-flat_namespace flag to ask the static linker to create the program using a flat namespace.

The CFBundle and CFPlugin objects can both be used from Carbon applications running in both Mac
OS 9 and Mac OS X. Both the NSBundle class and the CFPlugin object allow you to package plug-in
code with the resources associated with the plug-in (such as graphics files and documentation), similar
to the packaging for an application. To load COM objects in Mac OS 9, CFPlugin uses Code Fragment
Manager, and in Mac OS X, CFPlugin uses the object file image dyld library functions.

For more information on loading resources using the NSBundle class, see “Bundles” in Resource
Programming Guide. For more information on Code Fragment Manager, see Mac OS Runtime
Architectures. For more information on CFPlugin and COM, see Core Foundation Documentation.
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Indirect addressing is the name of the code generation technique that allows symbols defined in one
file to be referenced from another file, without requiring the referencing file to have explicit knowledge
of the layout of the file that defines the symbol. Therefore, the defining file can be modified
independently of the referencing file. Indirect addressing minimizes the number of locations that
must be modified by the dynamic linker, which facilitates code sharing and improves performance.

When a file uses data that is defined in another file, it creates symbol references. A symbol reference
identifies the file from which a symbol is imported and the referenced symbol. There are two types
of symbol references: nonlazy and lazy.

 ■ Nonlazy symbol references are resolved (bound to their definitions) by the dynamic linker when
a module is loaded.

A nonlazy symbol reference is essentially a symbol pointer—a pointer-sized piece of data. The
compiler generates nonlazy symbol references for data symbols or function addresses.

 ■ Lazy symbol references are resolved by the dynamic linker the first time they are used (not at
load time). Subsequent calls to the referenced symbol jump directly to the symbol’s definition.

Lazy symbol references are made up of a symbol pointer and a symbol stub, a small amount of
code that directly dereferences and jumps through the symbol pointer. The compiler generates
lazy symbol references when it encounters a call to a function defined in another file.

The following sections describe how symbol references are implemented for the PowerPC and IA-32
architectures. For detailed information on the PowerPC and IA-32 symbol stubs, see Mac OS X
Assembler Reference.

PowerPC Symbol References

In the PowerPC architecture, when generating calls to functions that are defined in other files, the
compiler creates a symbol stub and a lazy symbol pointer. The lazy symbol pointer is an address
that is initially set to glue code that calls the linker glue function dyld_stub_binding_helper. This
glue function calls the dynamic linker function that performs the actual work of binding the stub. On
return from dyld_stub_binding_helper, the lazy pointer points to the actual address of the external
function.
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The simple code example in Listing 1 might produce two different types of symbol stubs, depending
on whether it is compiled with position-independent code generation. Listing 2 shows indirect
addressing without position-independent code, and Listing 3 (page 32) shows both indirect addressing
and position-independent code.

Listing 1 C code example for indirect function calls

extern void bar(void);
void foo(void)
{

bar();
}

Listing 2 Example of an indirect function call

.text
; The function foo
.align 2
.globl _foo

_foo:
mflr r0 ; move the link register into r0
stw r0,8(r1) ; save the link register value on the stack
stwu r1,-64(r1) ; set up the frame on the stack
bl L_bar$stub ; branch and link to the symbol stub for _bar
lwz r0,72(r1) ; load the link register value from the stack
addi r1,r1,64 ; removed the frame from the stack
mtlr r0 ; restore the link register
blr ; branch to the link register to return

.symbol_stub ; the standard symbol stub section
L_bar$stub:

.indirect_symbol _bar ; identify this symbol stub for the
; symbol _bar

lis r11,ha16(L_bar$lazy_ptr) ; load r11 with the high 16 bits of the
; address of bar’s lazy pointer

lwz r12,lo16(L_bar$lazy_ptr)(r11) ; load the value of bar’s lazy pointer
; into r12

mtctr r12 ; move r12 to the count register
addi r11,r11,lo16(L_bar$lazy_ptr) ; load r11 with the address of bars lazy

; pointer
bctr ; jump to the value in bar’s lazy pointer

.lazy_symbol_pointer ; the lazy pointer section
L_bar$lazy_ptr:

.indirect_symbol _bar ; identify this lazy pointer for symbol
; _bar

.long dyld_stub_binding_helper ; initialize the lazy pointer to the stub
; binding helper address

Listing 3 Example of a position-independent, indirect function call

.text
; The function foo
.align 2
.globl _foo

_foo:
mflr r0 ; move the link register into r0
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stw r0,8(r1) ; save the link register value on the stack
stwu r1,-80(r1) ; set up the frame on the stack
bl L_bar$stub ; branch and link to the symbol stub for _bar
lwz r0,88(r1) ; load the link register value from the stack
addi r1,r1,80 ; removed the frame from the stack
mtlr r0 ; restore the link register
blr ; branch to the link register to return

.picsymbol_stub ; the standard pic symbol stub section
L_bar$stub:

.indirect_symbol _bar ; identify this symbol stub for the symbol _bar
mflr r0 ; save the link register (LR)
bcl 20,31,L0$_bar ; Use the branch-always instruction that does not

; affect the link register stack to get the
; address of L0$_bar into the LR.

L0$_bar:
mflr r11 ; then move LR to r11

; bar’s lazy pointer is located at
; L1$_bar + distance

addis r11,r11,ha16(L_bar$lazy_ptr-L0$_bar); L0$_bar plus high 16 bits of
; distance

mtlr r0 ; restore the previous LR
lwz r12,lo16(L_bar$lazy_ptr-L0$_bar)(r11); ...plus low 16 of distance
mtctr r12 ; move r12 to the count register
addi r11,r11,lo16(L_bar$lazy_ptr-L0$_bar); load r11 with the address of bar’s

; lazy pointer
bctr ; jump to the value in bar’s lazy

; pointer

.lazy_symbol_pointer ; the lazy pointer section
L_bar$lazy_ptr:

.indirect_symbol _bar ; identify this lazy pointer for symbol bar

.long dyld_stub_binding_helper ; initialize the lazy pointer to the stub
; binding helper address.

As you can see, the __picsymbol_stub code in Listing 3 (page 32) resembles the position-independent
code generated for Listing 2 (page 38). For any position-independent Mach-O file, symbol stubs must
obviously be position independent, too.

The static linker performs two optimizations when writing output files:

 ■ It removes symbol stubs for references to symbols that are defined in the same module, modifying
branch instructions that were calling through stubs to branch directly to the call.

 ■ It removes duplicates of the same symbol stub, updating branch instructions as necessary.

Note that a routine that branches indirectly to another routine must store the target of the call in
GPR11 or GPR12. Standardizing the registers used by the compiler to store the target address makes
it possible to optimize dynamic code generation. Because the target address needs to be stored in a
register in any event, this convention standardizes what register to use. Routines that may have been
called directly should not depend on the value of GR12 because, in the case of a direct call, its value
is not defined.
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IA-32 Symbol References

In the IA-32 architecture, symbol references are implemented as a symbol stub and a lazy symbol
pointer combined into one JMP instruction. Initially, such instructions point to the dynamic linker.
When the dynamic linker encounters such an instruction, it locates the referenced symbol and modifies
the JMP instruction to point directly to this symbol. Therefore, subsequent executions of the JMP
instruction, jump directly to the referenced symbol.

Listing 4 and Listing 5 show a simple C program and the IA-32 assembly generated highlighting the
symbol stub and nonlazy pointer for an imported symbol.

Listing 4 C program using an imported symbol

#include <stdio.h>
main( int arc, char *argv[])
{
fprintf(stdout, "hello, world!\n") ;

}

Listing 5 IA-32 symbol reference in assembly

.cstring
LC0:

.ascii "hello, world!\12\0"

.text
.globl _main
_main:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
movl L___sF$non_lazy_ptr, %eax
addl $88, %eax
movl %eax, 12(%esp)
movl $14, 8(%esp)
movl $1, 4(%esp)
movl $LC0, (%esp)
call L_fwrite$stub ; call to imported symbol
leave
ret
.section

__IMPORT,__jump_table,symbol_stubs,self_modifying_code+pure_instructions,5
L_fwrite$stub: ; symbol stub

.indirect_symbol _fwrite
hlt ; hlt ; hlt ; hlt ; hlt
.section __IMPORT,__pointers,non_lazy_symbol_pointers

L___sF$non_lazy_ptr: ; nonlazy pointer
.indirect_symbol ___sF
.long 0
.subsections_via_symbols
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x86-64 Symbol References

This section describes deviations from the System V x85-64 environment in the area of symbol
references.

Note: The Mac OS X x86-64 environment uses Mach-O (not ELF) as its executable file format.

The static linker is responsible for generating all stub functions, stub helper functions, lazy and nonlazy
pointers, as well as the indirect symbol table needed by the dynamic loader (dyld(1)).

For reference, Listing 6 shows how a a stub, helper, and lazy pointer are generated.

Listing 6 Generating a stub, helper and lazy pointer

_foo$stub: jmp *_foo$lazy_pointer(%rip)
_foo$stub_helper: leaq _foo$lazy_pointer(%rip),%r11

jmp dyld_stub_binding_helper
_foo$lazy_pointer: .quad _foo$stub_helper
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Position-independent code, or PIC, is the name of the code generation technique used in the PowerPC
environments that allows the dynamic linker to load a region of code at a nonfixed virtual memory
address. Without some form of position-independent code generation, the operating system would
need to place all code you wanted to be shared at fixed addresses in virtual memory, which would
make maintenance of the operating system remarkably difficult. For example, it would be nearly
impossible to support shared libraries and frameworks because each one would need to be preassigned
an address that could never change.

Mach-O position-independent code design is based on the observation that the __DATA segment is
always located at a constant offset from the __TEXT segment. That is, the dynamic loader, when
loading any Mach-O file, never moves a file’s __TEXT segment relative to its __DATA segment. Therefore,
a function can use its own current address plus a fixed offset to determine the location of the data it
wishes to access. All segments of a Mach-O file, not only the __TEXT and __DATA segments, are at
fixed offsets relative to the other segments.

Note: If you are familiar with the Executable and Linking Format (ELF), you may note that Mach-O
position-independent code is similar to the GOT (global offset table) scheme. The primary difference
is that Mach-O code references data using a direct offset, while ELF indirects all data access through
the global offset table.

Eliminating Position-Independent Code References

Position-independent code is typically required for shared libraries and bundles to allow the dynamic
loader to relocate them to different addresses at load time. However, it is not required for applications
that typically reside at the same address in virtual memory. GCC 3.1 introduces a new option, called
-mdynamic-no-pic. This option both reduces the code size of application executables and improves
their performance by eliminating position-independent code references, while preserving indirect
calls to shared libraries and indirection to undefined symbols. If you use Xcode to create your
application, this option is enabled by default. For an example of dynamic code generated without
PIC, see Listing 2 (page 32).

Listing 2 shows an example of the position-independent code generated for the C code in Listing 1.

Listing 1 C source code example for position-independent code

struct s { int member1; int member2; };
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struct s bar = {1,2};

int foo(void)
{

return bar.member2;
}

Listing 2 Position-independent code generated from the C example (with addresses in the left column)

.text
; The function foo
.align 2
.globl _foo

0x0 _foo: mflr r0 ; save the link register (LR)
0x4 bcl 20,31,L1$pb ; Use the branch always instruction

; that does not affect the link
; register stack to get the address
; of L1$pb into the LR.

0x8 L1$pb: mflr r10 ; then move LR to r10
0xc mtlr r0 ; restore the previous LR

; bar is located at L1$pc + distance
0x10 addis r9,r10,ha16(_bar-L1$pb); L1$pb plus high 16 bits of distance
0x14 la r9,lo16(_bar-L1$pb)(r9) ; plus low 16 of distance

; => r9 now contains address of bar
0x18 lwz r3,4(r9) ; return bar.member2
0x1c blr
.data

; The initialized structure bar
.align 2
.globl _bar

0x20 _bar: .long 1 ; member1’s initialized value
0x24 .long 2 ; member2’s initialized value

To calculate the address of _bar, the generated code adds the address of the L1$pb symbol (0x8) to
the distance to bar. The distance to bar from the address of L1$pb is the value of the expression _bar
- L1$pb, which is 0x18 (0x20 - 0x8).

Relocating Position-Independent Code

To support relocation of code in intermediate object files, Mach-O supports a section difference
relocation entry format. Relocation entries are described in “Relocation Data Structures” in Mac OS
X ABI Mach-O File Format Reference.

Each of the add-immediate instructions is represented by two relocation entries. For the addis
instruction (at address 0x10 in the example) the following tables list the two relocation entries. The
fields of the first relocation entry (of type scattered_relocation_info) are:

1—truer_scattered

0—falser_pcrel

2—indicating 4 bytesr_length
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PPC_RELOC_HA16_SECTDIFFr_type

0x10—the address of the addis instructionr_address

0x20—the address of the symbol _barr_value

The values of the second relocation entry are:

1—truer_scattered

0—falser_pcrel

2—indicating 4 bytesr_length

PPC_RELOC_PAIRr_type

0x18—the low 16 bits of the expression (_bar - L1$pb)r_address

0x8—the address of the symbol L1$pbr_value

The first relocation entry for the la instruction (at address 0x14 in the example) is:

1—truer_scattered

0—falser_pcrel

2—indicating 4 bytesr_length

PPC_RELOC_LO16_SECTDIFFr_type

0x14—the address of the addi instructionr_address

0x20—the address of the symbol _barr_value

The values of the second relocation entry are:

1—truer_scattered

0—falser_pcrel

2—indicating 4 bytesr_length

PPC_RELOC_PAIRr_type

0x0—the high 16 bits of the expression (_bar - L1$pb)r_address

0x8—the address of the symbol L1$pbr_value
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Relocations in the x86-64 Environment

Relocations in the Mac OS X x86-64 environment are different than relocations in other Mac OS X
environments and System V x86-64 (http://www.x86-64.org/documentation). The main differences
are:.

 ■ Scattered relocations are not used

 ■ Compiler-generated code uses mostly external relocations

 ■ Mach Object (Mach-O), not Executable and Linkable Format (ELF), is used as the executable file
format

This section describes how relocations are implemented in the Mac OS X x86-64 environment.

When the assembler generates relocations, if the target label is a local label (it begins with L), the
previous nonlocal label in the same section is used as the target of the external relocation. An addend
(that is, the 4 in _foo + 4) is used with the distance from that nonlocal label to the target label. The
assembler uses an internal relocation only when there is no previous nonlocal label in the section.

The addend is encoded in the instruction (Mach-O does not have RELA relocations). For PC-relative
relocations, the addend is stored in the instruction. This practice is different than in other Mac OS X
environments, which encode the addend minus the current section offset. The x86-64 relocation types
are described in Mac OS X ABI Mach-O File Format Reference.

Listing 3 shows assembly instructions and the relocation and section content that they generate.

Listing 3 Example assembly instructions and their corresponding relocations

call _foo
r_type=X86_64_RELOC_BRANCH, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
E8 00 00 00 00

call _foo+4
r_type=X86_64_RELOC_BRANCH, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
E8 04 00 00 00

movq _foo@GOTPCREL(%rip), %rax
r_type=X86_64_RELOC_GOT_LOAD, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
48 8B 05 00 00 00 00

pushq _foo@GOTPCREL(%rip)
r_type=X86_64_RELOC_GOT, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
FF 35 00 00 00 00

movl _foo(%rip), %eax
r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
8B 05 00 00 00 00

movl _foo+4(%rip), %eax
r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
8B 05 04 00 00 00

movb $0x12, _foo(%rip)
r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
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C6 05 FF FF FF FF 12

movl $0x12345678, _foo(%rip)
r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
C7 05 FC FF FF FF 78 56 34 12

.quad _foo
r_type=X86_64_RELOC_UNSIGNED,r_length=3, r_extern=1,r_pcrel=0, r_symbolnum=_foo
00 00 00 00 00 00 00 00

.quad _foo+4
r_type=X86_64_RELOC_UNSIGNED,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_foo
04 00 00 00 00 00 00 00

.quad _foo - _bar
r_type=X86_64_RELOC_SUBTRACTOR,r_length=3,r_extern=1, r_pcrel=0,r_symbolnum=_bar
r_type=X86_64_RELOC_UNSIGNED,r_length=3,r_extern=1, r_pcrel=0,r_symbolnum=_foo
00 00 00 00 00 00 00 00

.quad _foo - _bar + 4
r_type=X86_64_RELOC_SUBTRACTOR,r_length=3, r_extern=1,r_pcrel=0,r_symbolnum=_bar
r_type=X86_64_RELOC_UNSIGNED,r_length=3, r_extern=1,r_pcrel=0,r_symbolnum=_foo
04 00 00 00 00 00 00 00

.long _foo - _bar
r_type=X86_64_RELOC_SUBTRACTOR,r_length=2,r_extern=1,r_pcrel=0,r_symbolnum=_bar
r_type=X86_64_RELOC_UNSIGNED,r_length=2,r_extern=1,r_pcrel=0,r_symbolnum=_foo
00 00 00 00

lea L1(%rip), %rax
r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_prev
48 8d 05 12 00 00 00
// Assumes that _prev is the first nonlocal label 0x12 bytes before L1.

lea L0(%rip), %rax
r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=0, r_pcrel=1, r_symbolnum=3
48 8d 05 56 00 00 00
// Assumes that L0 is in third section, and has an address of 0x00000056
// in .o file, and no previous nonlocal label.

.quad L1
r_type=X86_64_RELOC_UNSIGNED,r_length=3,r_extern=1,r_pcrel=0, r_symbolnum= _prev
12 00 00 00 00 00 00 00
// Assumes that _prev is the first nonlocal label 0x12 bytes before L1.

.quad L0
r_type=X86_64_RELOC_UNSIGNED,r_length=3, r_extern=0, r_pcrel=0, r_symbolnum= 3
56 00 00 00 00 00 00 00
// Assumes that L0 is in third section, and has address of 0x00000056
// in .o file, and no previous nonlocal label.

.quad _foo - .
r_type=X86_64_RELOC_SUBTRACTOR,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_prev
r_type=X86_64_RELOC_UNSIGNED,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_foo
EE FF FF FF FF FF FF FF
// Assumes that _prev is the first nonlocal label 0x12 bytes
// before this .quad
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.quad _foo - L1
r_type=X86_64_RELOC_SUBTRACTOR,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_prev
r_type=X86_64_RELOC_UNSIGNED,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_foo
EE FF FF FF FF FF FF FF
// Assumes that _prev is the first nonlocal label 0x12 bytes before L1.

.quad L1 - _prev
// No relocations. This is an assembly time constant.
12 00 00 00 00 00 00 00
// Assumes that _prev is the first nonlocal label 0x12 bytes before L
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This article describes differences in the Mac OS X x86-64 user-space code model from the code model
described in System V Application Binary Interface AMD64 Architecture Processor Supplement, at
http://www.x86-64.org/documentation.

The x86-64 environment in Mac OS X has only one code model for user-space code. It’s most similar
to the small PIC model defined by the x86-64 System V ABI. Under Mach-O, all static initialized
storage (both code and data) must fit within a 4GB Mach-O file. Uninitialized (zero-fill) data may be
any size, although there is a practical limit imposed by Mac OS X.

All local and small data is accessed directly using addressing that’s relative to the instruction pointer
(RIP-relative addressing). All large or possibly nonlocal data is accessed indirectly through a global
offset table (GOT) entry. The GOT entry is accessed directly using RIP-relative addressing.

Listing 1 shows sample C code and corresponding assemble code.

Listing 1 C code and the corresponding assembly code

extern int src[];
extern int dst[];
extern int* ptr;

static int lsrc[500];
static int ldst[500];
static int bsrc[500000];
static int bdst[500000];
static int* lptr;

dst[0] = src[0]; movq _src@GOTPCREL(%rip), %rax
movl (%rax), %edx
movq _dst@GOTPCREL(%rip), %rax
movl %edx, (%rax)

ptr = dst; movq _dst@GOTPCREL(%rip), %rdx
movq _ptr@GOTPCREL(%rip), %rax
movq %rdx, (%rax)
ret

*ptr = src[0]; movq _ptr@GOTPCREL(%rip), %rax
movq (%rax), %rdx
movq _src@GOTPCREL(%rip), %rax
movl (%rax), %eax
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movl %eax, (%rdx)
ret

ldst[0] = lsrc[0]; movl _lsrc(%rip), %eax
movl %eax, _ldst(%rip)

lptr = ldst; lea _ldst(%rip), %rax
movq %rax, _lptr(%rip)

*lptr = lsrc[0]; movl _lsrc(%rip), %edx
movq _lptr(%rip), %rax
movl %edx, (%rax)

bdst[0] = bsrc[0]; movq _bsrc@GOTPCREL(%rip), %rax
movl (%rax), %edx
movq _bdst@GOTPCREL(%rip), %rax
movl %edx, (%rax)

lptr = bdst; movq _bdst@GOTPCREL(%rip), %rax
movq %rax, _lptr(%rip)

*lptr = bsrc[0]; movq _bsrc@GOTPCREL(%rip), %rdx
movq _lptr(%rip), %rax
movl (%rdx), %edx

The Mac OS X x86-64 code-generation model accesses large local data through the GOT, which is
different from the way the small PIC model works in the System V x86-64 environment. Indirection
through the GOT obviates the need for a medium code model. This behavior stems from the fact that,
when the linker lays out data, it places data that is accessed directly (small local data and the GOT
itself) within 2 GB of the code. Other data can be placed farther away because these data are accessed
only through the GOT. This behavior enables large (greater than 4 GB) and small executables to be
built using the same code model.

Note: It is acceptable for the compiler to access static data through a GOT entry. The linker preserves
the static semantics of the symbol.

The code model for function calls is very simple, as shown in Listing 2.

Listing 2 The code model for function calls

extern int foo();
static int bar();

foo(); call _foo

bar(); call _bar

All direct function calls are made using the CALL rel32 instruction.

The linker is responsible for creating GOT entries (also known as nonlazy pointers) as well as stub
functions and lazy pointers (also known as program load table entries, or PLT entries) for calls to
another linkage unit. Since the linker must create these entries, it can also choose not to create them
when it sees the opportunity. The linker has a complicated set of rules that dictate which symbols
must be accessed indirectly (depending on flat versus two-level namespace, weak versus nonweak
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definitions, symbol visibility, distance from code, and so on). But ultimately there are many symbols
that can be accessed directly (not through GOT or PLT entries). For these symbols the linker makes
the following optimization:

1. A CALL or JMP instruction performs a direct, PC-relative branch to the target.

2. A load instruction performed on a GOT entry (for example, movq _foo@GOTPCREL(%rip), %rxx)
is transformed into a LEA calculation (for example, leaq _foo(%rip), %rxx). This transformation
removes one GOT entry and saves one memory load.

In both cases special relocations are used that allow the linker to perform this optimization.
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This table describes the changes to Mach-O Programming Topics.

NotesDate

Added details about the Mac OS X x86-64 environment.2006-11-28

Added details about the user-space code model in “x86-64 Code
Model” (page 43).

Added details about symbol references to “x86-64 Symbol
References” (page 35).

Added details about symbol relocations in “Relocations in the x86-64
Environment” (page 40).

Added information on the IA-32 symbol stubs and the DWARF debugging
format.

2006-11-07

Added information about the DWARF debugging format to “Scope and
Treatment of Symbol Definitions” (page 21).

Added information on the stubs used for indirect addressing in the IA-32
environment in “Indirect Addressing” (page 31).

Added the "Dynamic Code Generation" article from content previously
published in "PowerPC Runtime Architecture Guide."

2005-11-09

Clarified terminology for binaries that contain object files for more than
one architecture.

2005-08-11

Updated for Mac OS X v10.4.2005-06-04

New document that describes basic concepts about the Mac OS X runtime
environment. Replaces information that was published previously in
"Mach-O Runtime Architecture."

2005-04-29

Added information on @loader_path macro.

Corrected sample of a private external symbol in “Scope and Treatment
of Symbol Definitions” (page 21) in “Executing Mach-O Files” (page 17).

2004-08-31
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NotesDate

Corrected framework-building example in Listing 1 (page 27).
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